
INDEXED AND FIBERED

PRESENTATIONS OF PRESHEAVES

IN TYPE THEORY

And their equivalence via the Grothendieck construction

Moana Laurent JUBERT

Advisor :

Hugo HERBELIN

M2 de Mathématiques fondamentales

Septembre 2022

https://pauillac.inria.fr/~herbelin/

Abstract

There are two “canonical” ways to define presheaves in type theory: with

an indexed presentation, or with a fibered one. Both presentations should be

of course equivalent, and the exact nature of this equivalence appears to be

related to a well-known result of category theory, the Grothendieck construc-

tion. This master’s thesis aims at presenting all the basic tools necessary to

understand this equivalence in the special case of direct categories.

Contents

Introduction 1

1 Presheaves 3

1.1 Definition . 3

1.2 Yoneda lemma . 4

1.3 Density theorem . 7

1.4 Semi-simplicial sets . 8

1.4.1 Equivalent definitions . 9

1.4.2 Geometric intuition . 11

2 Grothendieck construction 13

2.1 Discrete version . 13

2.2 Categorical version . 15

2.3 To infinity and beyond . 19

3 Presheaves in type theory 20

3.1 Two possible presentations . 20

3.2 Reedy categories . 22

3.3 Polygraphs . 25

3.4 Transitioning from fibered to indexed 27

3.5 Conclusion . 29

4 A “Yoneda-esque” presentation 31

4.1 Staying at Hom . 32

4.2 Definition . 34

4.3 Why “Yoneda-esque”? . 35

4.4 Coherence becomes associativity 39

References 42

i

Introduction

The initial goal of my intership was to investigate the Grothendieck construction

in type theory. Hugo Herbelin have been working for quite some time on

the various ways to implement presheaves in type theory, most notably semi-

simplicial types [4]. He presented to me the observation that there are at least

two “canonical” ways to define presheaves: with an indexed presentation, or with

a fibered one. The correspondence between both appears to be tightly related

with the Grothendieck construction.

As I come from more “classical” areas of mathematics I was unfamiliar with

type theory, and in the end I have spent a considerable amount of my time trying

to find a similar distinction on the presentation of presheaves directly at the

level of category theory — in the hopes of constructing a clearer picture in my

mind. Even though I did not succeed, I have learned a lot on the Grothendieck

construction and type theory over the course of my three months at the Institut

de recherche en informatique fondamentale (IRIF). In the end, this internship

took the turn of making general conjectures about the indexed and fibered

presentations of presheaves.

This text is divided in four parts of roughly the same size. I first define

presheaves, and make a series of general statements about them. I then move

on to introducing the Grothendieck construction in category theory, in its sim-

plest versions. Next, I explain what the indexed and fibered presentations of

presheaves are in type theory, in the case of direct categories. I finally present

some unfinished work on a variant of the indexed presentation that I call

“Yoneda-esque” for its “family resemblance” with the Yoneda lemma, and

formulate a number of open questions.

Although it is barely mentioned in this work, homotopy type theory (HoTT)

had a special place in my considerations. HoTT is a recent paradigm shift in

type theory, with the observation that the equality type x =A y can be thought

as the type of “all paths from x to y”. Higher up, p =x=Ay p′ can be thought as

the type of “all continuous deformations of the path p into the path p′”, and so

on. In short, types such as A are interpreted as being ∞-groupoids (see [11] for

more). As a consequence, what would be interesting is how the higher structure

would interact with the different presentations and their correspondence, and

how what we already know in higher category theory could help us understand

what would be a reasonable construction of presheaves in HoTT.

1

Acknowledgements

I would like to thank my advisor Hugo Herbelin for his kind support, and for

guiding me during my three months as an intern. I would also like to thank

Daniel de Rauglaudre with whom I have had the pleasure of being his last

“co-bureau”, as he went into retirement at the end of my stay.

2

1 Presheaves

Presheaves are a key ingredient of category theory. It is important to get them

right, as I will make heavy use of presheaves thereafter.

I assume the reader is already familiar with the most basic notions of category

theory (e.g. definition, functors, limits and colimits, . . .), otherwise a good

introduction written by Emily Riehl is available at [13].

1.1 Definition

DEFINITION 1. A presheaf over some category C is the data of a functor X

from the opposite category Cop to the category of (small) sets Set:

X : Cop −→ Set

It is standard to write Xc instead of X(c) when applying the presheaf X

to some object c ∈ C. One can think of X as a “generalized set”, where each

element is labeled with an object of C. In this case, Xc is the set of elements

labeled with c.

As X is also a functor, given a morphism f : c −→ c′ of C, the corresponding

map X f sends elements labeled with c′ to elements labeled with c:

c c′

Xc Xc′

f

X f

Thus if presheaves are indeed generalized sets, they additionally reflect the

structure of the base category C in a sense that will be soon made precise. A

different, albeit completely equivalent point of view is to think of C as the base

space of some projection Σ such that the fibers are exactly the labeled elements:

el X Σ−1(c) ∼= Xc

C c

Σ

3

This, again, will be made precise in a moment. The domain el X is called

the category of elements of X, and every pair (el X, Σ) is uniquely associated to

a presheaf X. This bijective correspondence is already a special case of the

Grothendieck construction, as we will see in the next section.

The collection of presheaves over a category C forms a well-behaved category

usually noted PSh(C), or sometimes Ĉ. Morphisms are the natural transforma-

tions between presheaves, and it is both complete and cocomplete. A mildly

nontrivial fact is that when C is locally small, PSh(C) contains a copy of the

original category C through the Yoneda embedding, which we will now see.

1.2 Yoneda lemma

Let us assume that C is locally small, that is, for any two objects c, c′ ∈ C the

collection C(c, c′) of morphisms from c to c′ is a (small) set. This gives us a

well-defined hom functor into the category of sets:

C(−,−) : Cop × C −→ Set

It acts contravariantly on the left as pre-composition is contravariant, while post-

composition is covariant. Another — perhaps obnoxious — way to formulate

this is to say that C is a Set-enriched category. Now given any object c ∈ C, we

have:

C(−, c) : Cop −→ Set

i.e. to every object of a locally small category, we can associate a canonical

presheaf. This is the definition of the Yoneda embedding:

DEFINITION 2. The map Y : C −→ PSh(C) defined as:

Y(c) def
= C(−, c)

is a well-defined functor, called the Yoneda embedding.

Again, it is standard to write Yc, or even ĉ instead of Y(c). If a presheaf X is

(naturally) isomorphic to some ĉ it is said to be representable, and we say that X

is represented by c. The name comes from the fact that it is enough to know how

to “probe” the object c — i.e. to know C(−, c) — in order to know X. In some

sense, c then “encodes” everything there is to know about the shape of X.

Of course, most presheaves are not representable. Yet, their structure is

completely determined by their relation to the representable ones. This is the

4

statement of the so-called “Yoneda lemma”:

LEMMA 1 (Yoneda). Hom(ĉ, X) ∼= Xc

Proof. We only have to unfold the definition of a natural transformation

from ĉ to X. The data of a natural transformation γ ∈ Hom(ĉ, X) is the

data of a family of morphisms γd : ĉ(d) −→ Xd in Set such that for any

arrow f : d −→ d′ in C, the following diagram commutes:

ĉ(d′) Xd′

ĉ(d) Xd

γd′

ĉ(f) X f

γd

The identity 1c ∈ C(c, c) is sent to an element of Xc through γc. I now

claim that γ as a whole is completely determined by γc(1c). For any

arrow f : d −→ c ∈ ĉ(d), we have:

C(c, c) Xc

C(d, c) Xd

γc

f ∗ X f

γd

where f ∗ is defined as the pre-composition by f . We then conclude by

observing that γd(f) = X f (γc(1c)). ■

By analogy, one could argue that a natural transformation γ from ĉ to X is

some sort of “linear map” with γc(1c) as its coefficient. We will see it again

when discussing the “Yoneda trick” in type theory. For now, what the lemma

states is that you only need to look at the “incoming arrows” of a presheaf to

know everything about it:

ĉ −→ X

With the “generalized sets” point of view, it amounts to picking exactly one

element labeled with c from X. This is not unlike the usual intuition in Set,

where looking at the elements of a set A, or at the arrows ∗ −→ A from any

5

singleton to A, is exactly the same thing. In fact, it is quite easy to show that the

category Set is isomorphic to PSh(∗).
I claimed earlier that PSh(C) contains a copy of the original category C. This

is an immediate consequence of the Yoneda lemma:

LEMMA 2. The Yoneda embedding is fully faithful.

Indeed, for any two objects c, d ∈ C we have that Hom(ĉ, d̂) ∼= C(c, d) by the

Yoneda lemma. Thus Y truly is an embedding of C into PSh(C). As presheaves

are completely determined by the arrows “coming out of” Y(C) into them, the

reader should now easily see how the structure of C and the “internal” structure

of a presheaf are tightly related:

ĉ

X

d̂

f̂

f (Xd) ⊆ Xc

Xd

One could make the observation that, since PSh(C) is cocomplete, a family

of arrows from ĉ to X is the same as a single arrow from the coproduct ⨿ ĉ to X:

ĉ X ∼= ⨿ ĉ X

x ∈ Xc

⨿ x

More generally, if we were to “break X down” into its arrows ĉ −→ X for

every object c ∈ C instead of a fixed one, we would get a canonical arrow from

a special colimit into X. The shape of this colimit is the aforementioned category

of elements of X, and as I said before, knowing about X is the same as knowing

about its elements, so it should come as no surprise that X is actually isomorphic

to this colimit.

6

1.3 Density theorem

DEFINITION 3. The category of elements of X, noted el X, is the data of

objects (c, x) for every x ∈ Xc, together with morphisms f : (c, x) −→ (c′, y)

for every f : c −→ c′ of C such that X f (y) = x.

el X contains all the elements of X paired with their appropriate label, hence

the name “category of elements”. There is a canonical projection Σ : el X −→ C
such that Σ(c, x) def

= c. Then we indeed have that Σ−1(c) ∼= Xc by definition.

The definition of el X may prompt us to look for a universal property. If Set∗
is the category of pointed sets (i.e. pairs (a, A) with a ∈ A), then el X can be

seen as a subcategory of the product C × Set∗ with objects (c, (x, Xc)). This is

exactly the data of a pullback square along X (with the appropriate variance) and

the evident projection from Set∗ to Set:

el X Set∗ (a, A)

C Set A

Σ

⌟

X

A remarkable fact of Σ is that because X is a presheaf, for any y ∈ Xc′ and

any morphism f : c −→ c′ of C, the arrow (X f (y), c) −→ (y, c′) is the unique lift

of f into el X. Maps such as Σ with this property are called discrete right fibrations.

As I hinted earlier, this is a first illustration of the Grothendieck construction:

any discrete right fibration is equivalent to the data of a presheaf.

But for now, we are still only looking at presheaves. The category of elements

tells us exactly how the pieces fit together:

THEOREM 1 (Density). If C is also small, then X is isomorphic to the colimit

of the projection Σ composed with the Yoneda embedding:

lim
−→

YΣ ∼= X

This is usually called the “density theorem”. One way to understand the

name is to think of the image of C through the Yoneda embedding as “being

dense”, since any presheaf is actually a colimit of representables. The size

7

condition on C is necessary to make sure that the colimit is small. An idea

of proof is the following: glue as many disjoint copies of ĉ’s as there are in

each Xc, then identify what should be equal under the action of the X f ’s. This

is trivial to state using coends, but it would require us to make an important

détour in the realm of abstract nonsense. In any case, an introduction to coends

is available in [12] and a complete proof of the previous theorem using Kan

extensions instead is available in [13, p. 212].

The somehow “converse” statement is also true: PSh(C) is the “most general”

category containing a copy of C and having all (small) colimits, i.e.:

THEOREM 2. PSh(C) is the free (small) cocompletion of C, that is for any

functor:

F : C −→ D

into a cocomplete category D, there exists an extension:

C D

PSh(C)

F

Y
∃! F̃

which is unique up to isomorphism.

The proof is more technical, and again can be found in [13, p. 213] as a

remark. What is more interesting is that this theorem provides a completely

different characterization of presheaves by a universal property, which might

be worth exploring in type theory.

1.4 Semi-simplicial sets

I have presented some of the general properties of presheaves so far. I will now

focus on the specifics of semi-simplicial sets (also sometimes called ∆-sets in the

literature).

Simplicial sets (without the semi-) encode the ways to glue n-simplices

together along their faces in order to build arbitrarily complex shapes. They are

“rich” enough to entirely capture the “algebraic” data of (nice) topological spaces

as well as the higher structure of categories, up to equivalence. Topological

8

and homotopical aspects of simplicial sets are extensively covered in [10] or [3],

while their use as a model for (∞, 1)-categories is covered in [9].

Semi-simplicial sets provide a more “rigid” (thus less powerful) approach to

simplicial sets, with the benefit of being easier to define and manipulate. As we

are eventually interested in constructing semi-simplicial types, different (albeit

equivalent) definitions will yield different constructions in the end.

1.4.1 Equivalent definitions

NOTATION. We write [n] for the nonempty finite set {0, . . . , n}.

DEFINITION 4. The semi-simplex category ∆+ is defined as having all the

sets [n] as objects, and all the strictly increasing maps between them as

morphisms. A semi-simplicial set is then a presheaf X : ∆op
+ −→ Set.

Notice that all the arrows can only go from an object [n] to another [m]

with n < m, except for the identity morphisms. ∆+ is an example of what is

called a direct category, and we will soon study them in more details.

The category of semi-simplicial sets is noted SSSet, and is not to be confused

with the category of simplicial sets, similarly noted sSet. The main difference

between the two is that we allow ourselves to look at nonstrictly increasing maps

as well in the definition of the latter. Now, for the main result:

9

THEOREM 3. The following characterizations of SSSet are all equivalent:

i) A semi-simplicial set is a presheaf X : ∆op
+ −→ Set.

ii) A semi-simplicial set is the data of a family (Xn)n∈N of sets together

with maps di : Xn −→ Xn−1 such that 0 ⩽ i ⩽ n called face maps,

which satisfy the relation:

didj = dj−1di when i < j

iii) Strictly increasing maps [n] −→ [m] are in bijection with the subsets of

[m] of cardinal n + 1, thus giving a different definition of ∆+.

iv) A semi-simplicial set is the data of a discrete right fibration:

Σ : E −→ ∆+

v) SSSet is the free (small) cocompletion of ∆+.

Point ii) is actually the standard approach to defining semi-simplicial sets.

The category ∆+ is generated by coface maps di : [n] −→ [n + 1] such that di is

the only strictly increasing map which “misses” i in its image. Unsurprisingly,

the coface maps also satisfy the dual relation:

djdi = didj−1 when i < j

What is interesting is that it gives us some kind of description of ∆+ by means

of generators and relations, as indeed the following (easy) lemma holds:

LEMMA 3. Any strictly increasing map [n] −→ [m] can be canonically

written as a composition of di’s.

Points i) and iii) are essentially different sets of generators and relations for

the category ∆+. One might then be tempted to say that ∆+ is “presentable”

just as the “presentation” of a group encapsulates the corresponding notion in

group theory, but unfortunately the term is already used by category theorists

for a distinct (although similar) concept. Instead, a category theorist would

rather say that ∆+ is a “2-polygraph” (or a “2-computad” if they are Australian). I

will present the full definition of polygraphs in a later section.

The general idea is this: if we have distinct but equivalent definitions of

a category using generators and relations, then from a constructive point of

10

view we should see distinct but equivalent constructions of presheaves. These

distinctions “vanish” in classical mathematics, while they are unavoidable in

type theory. The primary goal of this thesis is precisely to better understand

these unavoidable distinctions.

Before ending this first section, I will now go back to point ii) and elaborate

on the “geometric” aspect of face maps.

1.4.2 Geometric intuition

NOTATION. As [̂n] is pretty much unreadable, we write ∆n
+ for the repre-

sentable functors of SSSet instead.

DEFINITION 5. ∆n
+ is called the (standard) n-(semi-)simplex.

Simplices are “generalized triangles in higher dimensions”. Their direct

counterpart in topology are the sets:

{ (x1, . . . , xn) ∈
(
R+

)n | x1 + · · ·+ xn ⩽ 1 }

Any map ∆n
+ −→ X can really be thought as picking a single n-simplex

from the space X. Simplices themselves are made of smaller simplices. If we

write α0α1 . . . αn the strictly injective map from [n] to some [m] such that:

α0 < α1 < · · · < αn ∈ [m]

Then we can easily see that the “filled” triangle ∆2
+ is made up of three vertices,

three segments , and one surface:

(∆2
+)0 = {0, 1, 2}

(∆2
+)1 = {01, 12, 02}

(∆2
+)2 = {012}

(∆2
+)3 = ∅

(∆2
+)4 = ∅

...

11

1

0 2

12
012

01

02

The face maps di really select the faces of the simplex, as for example:

d2(012) = 01 d1(12) = 1 d1(01) = 0

i.e. vertices, segments, etc. Semi-simplicial sets are then made of simplices

which are glued along common faces indicated by the face maps.

REMARK. One way of building a 2-sphere is to contract all the edges of a

triangle to a point, like a rubber balloon that you would seal at its end.

This is impossible to describe with semi-simplicial sets as the gluing can

only occur on faces of matching dimension: we cannot contract a segment

to a single point.

Simplicial sets (without the semi-), by contrast, allow for this sort of

“compact” constructions at the cost of being even more difficult to use.

12

2 Grothendieck construction

The Grothendieck construction relates functors Cop −→ U into a sufficiently

nice category U (e.g. Set or Cat) with “well-behaved” projections. We already

have seen an example of it in the previous section, with the correspondence:

X : Cop −→ Set ≃ Σ : el X −→ C

It is essentially equivalent to either look for the list of objects of a given label,

or given an object look its label up. If we look at presheaves X : Cop −→ Cat

instead, the correspondence in fact still holds — provided the fibers of the

projection now additionally has the structure of a category.

2.1 Discrete version

Let E and C be small categories.

DEFINITION 6. A discrete right fibration (over C) is a functor Σ : E −→ C
such that for any x ∈ E and any arrow f : c −→ Σ(x) in C, there exists a

unique lift f̃ : y −→ x in E such that Σ(f̃) = f .

If we write 2 for the category with two objects and a single nontrivial arrow

between them and r : ∗ ↪−→ 2 for the canonical inclusion on the right, then

the definition of a discrete right fibration can be succintly formulated with a

diagram:

∗ E

2 C

∀ x

r Σ

∀ f

∃! f̃

Remember that Cat is the category of all small categories:

NOTATION. I will use the nonstandard notation Discr C for the full subcate-

gory of Cat/C (the slice category over C) of discrete right fibrations.

THEOREM 4. The categories PSh(C) and Discr C are equivalent.

13

The proof is very standard: we define a functor F : Discr C −→ PSh(C), and

we show that it is essentially surjective and fully faithful. Let us consider:

F : Discr C −→ PSh(C)

Σ : E −→ C 7−→ Σ−1

It is easy to check that F is well-defined.

On the one hand, given a presheaf X : Cop −→ Set we already know that its

associated Σ : el X −→ C is a discrete right fibration. Moreover, we have that:

Σ−1(c) = { (x, c) | x ∈ Xc } ∼= Xc

and similarly Σ−1(f) ≃ X f for any arrow f of C. As a result F(Σ) ≃ X, i.e. F is

essentially surjective.

On the other hand, suppose that we have a morphism R : D −→ E in Cat as

well as two discrete right fibrations Γ : D −→ C and Σ : E −→ C. We want to

know what necessary and sufficient conditons we need on R to be a morphism

in Discr C, i.e. such that the following diagram commutes:

D E

C

R

Γ Σ

For any x ∈ D and f : c −→ c′ of C such that Γ(x) = c′, there is a unique

lift f̃ : y −→ x in D such that Γ(f̃) = f . Similarly, given R(x) ∈ E there is a

unique lift f̂ : y′ −→ R(x) in E such that Σ(f̂) = f .

Clearly, what we need is R to send f̃ to f̂ for any choice of f . This is the data

of a commutative square:

y Γ−1(c) Σ−1(c) y′

x Γ−1(c′) Σ−1(c′) R(x)

R

f̃ Γ−1(f)

R

Σ−1(f) f̂

which exactly describes a natural transformation between Γ−1 and Σ−1, and

thus it shows that F is fully faithful. ■

14

2.2 Categorical version

A more general statement of the Grothendieck construction relates “categorical”

presheaves with a special sort of fibrations, called Grothendieck fibrations:

X : Cop −→ Cat ≃ Σ :
∫

X −→ C

The precise theorem below is adapted from [7, p. 264].

DEFINITION 7. The Grothendieck category of a presheaf X : Cop −→ Cat,

noted
∫

X, is defined as:

• Objects are pairs (c, x) for every object x ∈ Xc of the small category Xc

• Morphisms are pairs (f , α) : (c, x) −→ (c′, y) of arrows:

f : c −→ c′ of C
α : x −→ X f (y) of Xc

such that, given (g, β) : (c′, y) −→ (c′′, z) we have:

x X f (y) X f (Xg(z)) = X(g f)(z)α X f (β)

i.e. composition is defined as (g, β) ◦ (f , α) = (g f , X f (β)α).

The definition is very similar to the one of categories of elements with

presheaves over Set. Just like then, we have a canonical projection Σ :
∫

X −→ C
defined such that Σ(c, x) def

= c. Even more so, there is an obvious functor:

D : Set −→ Cat

which turns a set A into the discrete category DA with A as its set of objects.

Now, if we have S : Cop −→ Set we can push it forward into Cat:

Cop

Set Cat

S DS

D

Then indeed we have that el S ∼=
∫

DS, i.e. the two notions do coincide.

15

REMARK. In the last step of the definition of composition in
∫

X, we have:

X f (Xg(z)) = X(g f)(z)

because X is a “strict” contravariant functor.

One could ask X : Cop −→ Cat to be merely a pseudofunctor instead, that

is a functor which preserves composition only up to isomorphism. Then

the last step would become:

X f (Xg(z)) X(g f)(z)
θ f ,g

∼

where θ f ,g is the corresponding isomorphism. Everything that I will

present next also applies to pseudofunctors, at the cost of being extra

careful with the compositions involved. The fully “pseudofunctorial”

approach is the one done in [7].

Again, just like with categories of elements, the projection Σ :
∫

X −→ C has

special lifting properties. But first, let us have a closer look to the structure of

morphisms in
∫

X:

DEFINITION 8. A morphism (f , α) : (c, x) −→ (c′, y) can be decomposed

the following way:

x

X f (y) y

c c′

(1c , α)
(f , α)

(f , 1X f (y))

Σ Σ

f

• Morphisms with shape (1c, α) : (c, x) −→ (c, X f (y)) lie entirely within

the fiber Σ−1 ∼= Xc and are said to be vertical

• Morphisms with shape (f , 1X f (y)) : (c, X f (y)) −→ (c′, y) are said to

be horizontal

16

The factorization (f , α) = (f , 1X f (y)) ◦ (1c, α) is clearly unique. Now, for any

diagram such as below:

x

X f (y) y

c c′

∀∆

(f , 1X f (y))

Σ Σ

f

where both x, X f (y) ∈ Xc, and Σ(∆) = f . By definition of
∫

X, there must be a

unique vertical arrow ϕ which completes the diagram:

x

X f (y) y

∃! ϕ ∀∆

(f , 1X f (y))

In that case (f , 1X f (y)) : (c, X f (y)) −→ (c′, y) can be thought as the “canonical

lift” of f : c −→ c′ into
∫

X at point y, since any morphism ∆ : x −→ y over f is

uniquely an extension of (f , 1X f (y)). This is the special lifting property we are

looking for:

DEFINITION 9. Let Σ : E −→ C be a functor. A morphism γ : e −→ e′

of E is a cartesian lift of a morphism f : c −→ c′ of C if Σ(γ) = f , and

for any other morphism ∆ : e′′ −→ e′ with the same codomain as γ and

such that Σ(∆) = f , there exists a unique ϕ : e′′ −→ e such that Σ(ϕ) = 1c

and γϕ = ∆:

e′′

e e′

∃! ϕ
∀∆

γ

17

This is exactly the same diagram as before, except for a general category E.

Cartesian lifts such as γ are the direct analogue of horizontal morphisms, while

the factor ϕ is a vertical morphism. Now, there is no reason for a cartesian lift to

be unique a priori — but it is indeed the case:

LEMMA 4. A cartesian lift, if it exists, is unique up to (unique) isomorphism.

Proof. This is a matter of straightforward verification of a universal property.

Given a functor Σ : E −→ C and two possible cartesian lifts:

γ : e −→ e′ and δ : e′′ −→ e′

of a morphism f : c −→ c′ of C, we must have:

e′′

e e′

e′′

∃! ϕ

1e′′

δ

γ

∃! ϕ′
δ

and similarly in the other direction by interverting γ and δ. This shows

that the arrow ϕ in the diagram must be an isomorphism. ■

DEFINITION 10. A functor Σ : E −→ C is called a Grothendieck fibration if

every arrow f : c −→ c′ of C has a cartesian lift.

NOTATION. The full subcategory of Cat/C of Grothendieck fibrations is

noted Fib C.

Grothendieck fibrations are the “correct” notion of fibrations for categorical

presheaves. Just as with discrete right fibrations, the lifting property can be

succintly formulated with a diagram:

18

∗ E

2 C

∀ e′

r Σ

∃ γ

∀∆

∀ f

∃! ϕ

REMARK. A nice (and important) property of Grothendieck fibrations is

that cartesian lifts are stable under composition, up to isomorphism.

If X : Cop −→ Cat were a pseudofunctor instead, we would need to relax

the definition of a cartesian lift in order to keep track of the isomorphisms.

As a result we would also need to make an explicit choice of lifts, and

include this additional data in our definition of fibrations — losing the

stability under composition in the process. This is done in [7] with the

notion of cleavage and cloven fibrations.

Unsurprisingly, the projection Σ :
∫

X −→ C is a Grothendieck fibration. We

now know all the ingredients for the main result:

THEOREM 5. The categories [Cop,Cat] and Fib C are equivalent.

The structure of the proof is essentially the same as in the discrete case. ■

2.3 To infinity and beyond

An even more general statement of the Grothendieck construction exists within

the setting of (∞, 1)-categories, and is covered in [9, p. 168].

For the rest of this thesis, we will focus on the Grothendieck construction in

type theory:

X : A −→ Type ≃ π1 : ∑
a : A

X a −→ A

which relates dependent types with Σ-types. We will now see how with the

definition of presheaves in type theory.

19

3 Presheaves in type theory

From this point I will adopt a more informal style, as I will only be presenting

intuitions for the most part in the absence of concrete results. I assume the

reader has a basic knowledge of Martin-Löf type theory (Π-types and Σ-types,

identity types, . . .) and homotopy type theory (HoTT). Any introduction should

suffice, although [11] covers both extensively.

A question raised during the Univalent foundations special year [8] asked

whether it would be possible to construct semi-simplicial sets as dependently-

typed families of sets, i.e. something along the lines of:

X0 : Type

X1 : X0 −→ X0 −→ Type

X2 : ∏
a b c : X0

X1(a, b) −→ X1(b, c) −→ X1(a, c) −→ Type

...

where X0 would be the type of points, X1(a, b) would be the type of segments

with endpoints a and b, and so on. One notable issue arising in the setting of

HoTT is the need of higher coherence witnesses as the identity types have then

unbounded homotopy level. The investigations pertaining to the construction of

semi-simplicial types and the higher coherence issues are covered for example

in [4] or [1].

3.1 Two possible presentations

There is one “obvious” way of defining semi-simplicial types. We know from

our previous section on semi-simplicial sets that we only need the data of a

family of sets (Xn)n∈N and an associated family of face maps di : Xn −→ Xn−1

which satisfy the relation:

didj = dj−1di when i < j

That would informally translate in type theory into a family of types:

X : nat −→ Type

together with a family of face maps and relations:

d : ∏
i n : nat

i ⩽ n −→ X n −→ X (n − 1)

α : ∏
i j n : nat

i < j −→ didj = dj−1di

20

It would not be that simple in HoTT as, in general, we need additional data

to ensure that the α’s are compatible together higher up in a “coherent” way.

One workaround is to truncate, i.e. replace Type with hSet (that is, types with

homotopy level 2).

In any case (truncated or not), we now have two possible approaches to

defining semi-simplicial types:

• The indexed presentation mentioned earlier with dependent types, where

the face maps are mere projections and thus implicit

• The fibered presentation I just showed, where the face maps and their rela-

tions are explicitly part of the data

Now as both approaches supposedly produce the same semi-simplicial types

in the end, there must exist an isomorphism that turns indexed presentations

into fibered ones. Consider a much simpler case where, instead of presheaves

over ∆+, we look at presheaves over 2. An element of PSh(2) is the data of

two sets X0, X1 together with an application f : X1 −→ X0. In type theory, this

would give:

X0 : Type

X1 : X0 −→ Type

for the indexed presentation, and:

Y0, Y1 : Type

f : Y1 −→ Y0

for the fibered one. Mapping X0 to Y0 is direct, but what about X1 and Y1?

Clearly, the only sensible choice would be for Y1 to be the “elements” of X1:

Y1
def
= ∑

a : X0

X1 a

Then f would be naturally defined as the projection π1 : ∑ X1 a −→ X0. This is

exactly the discrete Grothendieck construction!

Of course, we restricted ourselves to the case where the base category is 2 for

illustrative purposes. In general, we would have many more dependencies and

coherence equations to keep track of in order to build an isomorphism. Even

worse, in the case of simplicial sets we have seen that there are multiple ways to

describe the base category ∆+. Making these distinctions more explicit is the

subject of the next subsections.

21

3.2 Reedy categories

Let us be a little bit more rigorous on what we need to give a precise formulation

of the indexed and fibered presentations.

It seems unavoidable that in order to turn presheaves Cop −→ Set into a

type-theoretic concept, C must have special properties which makes it at least

definable in type theory. At the very least, both its objects and hom sets should

be definable as types (and, as a consequence, at most countable). Now, in order

to build a dependently-typed family of sets, we need an inductive structure on

the objects of C, i.e. there cannot be any kind of “circular dependencies”. This is

where the notion of Reedy category comes in:

DEFINITION 11. A Reedy category is a category C such that:

• Every object c ∈ C has an associated degree d(c) ∈ ω, where ω is the

first countable ordinal

• There exist two subclasses of arrows of C noted C+ and C− such that:

i) Morphisms c −→ c′ of C+ raise degrees, i.e. d(c) < d(c′)

ii) Morphisms c −→ c′ of C− lower degrees, i.e. d(c) > d(c′)

iii) Every morphism of C factors uniquely as the composition of a

morphism in C− followed by a morphism in C+

One could also think of C+ and C− as wide subcategories of C.

Many classical examples of finite or countable categories are actually Reedy

categories. In particular, the categories ∆ (simplex category) and ∆+ (semi-

simplex category) are Reedy categories. Even more so, ∆+ really is the wide

subcategory of ∆ of degree-raising morphisms!

The fact that every object of a Reedy category has a well-ordered degree

opens up the possibility of an indexed presentation of presheaves. Assuming

we have the “degree functor” d : C −→ ω and a presheaf X : Cop −→ Set, we

can decompose X the following way:

22

d−1(0) d−1(1) d−1(2) · · ·

Set

∈ C−

X|d−1(0)

∈ C−

∈ C+

X|d−1(1)

∈ C−

∈ C+

X|d−1(2)

∈ C+

···

where the X|d−1(i)’s are the presheaf X restricted to the domain d−1(i). Notice

how the arrows of C+ and C− obviously change directions in Cop.

By extension, I say that the “degree” of a set Xc is the degree of its corre-

sponding object c. Now, the arrows of C+ then indicate a dependency of some

set Xd on sets Xc1, Xc2, . . . of lower degree. An arrow fk : ck −→ d of C+ is

associated with an application X fk : Xd −→ Xck which, for any x ∈ Xd, tells

me that the element x “projects to”, or is “made up of” fk(x) ∈ Xck. From an

indexed point of view, this would give in type theory:

...

Xc1, Xc2, . . . : . . .

Xd : Xc1 −→ Xc2 −→ · · · −→ Type

...

Then x : Xd f1(x) f2(x) · · ·
On the other hand, the arrows of C− could be thought as “elevating a copy”

of an element from a low degree set into a higher degree set. This is much more

difficult to express properly in type theory, but an unpublished note by Hugo

Herbelin [5] makes a proposition in that direction. As such, I will only focus on

categories for which C− is empty, i.e. what are called direct categories:

DEFINITION 12. A direct category is a Reedy category for which there are no

degree-lowering morphisms.

Using the same notations as before, if C is a Reedy category then it is a direct

category if “C = C+”. ∆+ is the most immediate example of a direct category,

and as a consequence if we have a general theory of presheaves over direct

categories in type theory, then in particular we will be able to use it to construct

semi-simplicial types.

I have hinted before that the description of a category in terms of generators

and relations would play a key role. Let me illustrate this with an elementary

example of a direct category that I will call M:

23

a b c
f

ℓ

g

h

The category M has three objects a, b, c and four nontrivial arrows f , g, h, ℓ

such that g f = ℓ = h f . It is easy to see that M is indeed a direct category. Now,

I could drop ℓ in my definition of M as it is “generated” by g f or h f . At the

very least, the fibered presentation of a presheaf X : Mop −→ Set in type theory

would change as the generators and relations change:

Xa, Xb, Xc : Type

X f : Xb −→ Xa

Xg : Xc −→ Xb

Xh : Xc −→ Xb

Then I either add the data of Xℓ : Xc −→ Xa and α : X f Xg = Xℓ = X f Xh, or

I only add the data of α : X f Xg = X f Xh. This is perfectly equivalent, but not

strictly equal. From the indexed point of view on the other hand, we would get:

Xa : Type

Xb : Xa −→ Type

Xc : ∏
i : Xa

Xb i −→ Xb i −→ Type

The relations have been “flattened” into definitional equalities of projections,

and the generators have been completely eliminated. Indeed, if we consider:

i : Xa

j, k : Xb i

x : Xc i j k

Then somehow we could say that:

g∗x = j h∗x = k ℓ∗x = f ∗g∗x = f ∗h∗x = i

provided we interpret f ∗, g∗, h∗, ℓ∗ as being the obvious projections. What

happens is that the Π-type “eats” all of the complexity when we explicitly know

how to compute the relations of our category. But, let us say that, instead of

a description as explicit as with M we are given an abstract set of generating

24

morphisms G, and an abstract set of relations R identifying some compositions

of morphisms of G. As definitional equality is stricter, it would not be possible

for us to turn the propositional equalities of R into definitional ones in general,

inside of our Π-type (at least, not this way). In any case, we need to make the

notion of generators and relations in the setting of category theory more explicit.

3.3 Polygraphs

Given an arbitrary graph, it should be quite easy to imagine how to construct the

“free category” over this graph, by formally adding all the finite paths as arrows.

To be more precise, the process is the following: take a set of 0-generators P0 that

will serve as objects of our category, and a set of 1-generators P1 which connect

objects to one another, effectively describing arrows. This additionally requires

two maps s0, t0 : P1 −→ P0 usually called source and target, such that given an

arrow f ∈ P1 then its “domain” and “codomain” are s0(f) and t0(f).

It is actually a classical result of abstract nonsense that directed graphs are

exactly the data of a presheaf over the category:

• •
s

t

Now, the pieces I introduced would fit in a (slightly more complete) diagram:

P0 P1

P∗
0 P∗

1

i0
t0

s0
i1

t∗0

s∗0

The bottom row contains the structures freely generated by the data on the

top row. One could think of P∗
0 as the “0-cells” of the “free 0-category” (i.e. with

only objects) generated by P0. Then we really have P∗
0 = P0, witnessed by the

inclusion i0. We can thus ask for the maps s0, t0 to land in P∗
0 instead as it is

strictly the same, just like on the diagram. P∗
1 would be, in turn, the “1-cells”

of the “free (1-)category” generated by the arrows in P1 by formally adding all

the finite paths as mentioned before, and s∗0 , t∗0 would be the extensions of s0, t0

to P∗
1 . Of course, the generating arrows are in particular finite paths, so we

have a canonical inclusion i1 : P1 −→ P∗
1 as well. How do we now introduce

relations? A relation is merely the choice of two arrows of P∗
1 that we want to

be identified. We could further extend our diagram on the right:

25

P0 P1 P2

P∗
0 P∗

1 P∗
2

i0
t0

s0
i1

t1

s1
i2

t∗0

s∗0

t∗1

s∗1

The set P2 describes the relations we want on P∗
1 . More concretely, given an

element r ∈ P2 we ask that s1(r) = t1(r), and for that to make sense we need

the domains and codomains of the selected arrows to coincide, i.e.:

s∗0s1 = s∗0t1 t∗0s1 = t∗0t1

Then again, P∗
2 would be the “2-cells” of the “free 2-category” generated by

quotienting P∗
1 with the relations in P2. If we keep iterating this process, we get

the general definition of a polygraph:

DEFINITION 13. An n-polygraph is the data of a diagram in Set:

P0 P1 · · · Pn−1 Pn

P∗
0 P∗

1 · · · P∗
n−1

i0
t0

s0
i1

t1

s1
in−1

tn−2

sn−2

tn−1

sn−1

t∗0

s∗0

t∗1

s∗1

t∗n−2

s∗n−2

Elements of the Pk’s are called k-generators. Additionally, the arrows on the

diagram should satisfy the following relations:

• The maps s∗k , t∗k really are extensions of sk, tk through ik+1:

s∗k ik+1 = sk t∗k ik+1 = tk

• Sources and targets should coincide at the previous level:

s∗k sk+1 = s∗k tk+1 t∗k sk+1 = t∗k tk+1

Notice how I did not include P∗
n in the definition. To put it loosely, the idea is

that an n-polygraph should be the description of a “free (n− 1)-category” where

we already strictly identified some of the “(n − 1)-cells”, instead of directly

26

looking at a “free n-category”. A 2-polygraph really is, for example, an ordinary

(1-)category which has a set P1 of generators and a set P2 of relations which are

“strictly” considered (i.e. the diagrams commute “on the nose”). There are many

other higher categorical aspects of polygraphs to consider which are completely

out of the scope of this thesis, but which the interested reader can find in the

substantial compilation of Ara et al. [2] to be published. In any case, I will really

only look at 2-polygraphs for the time being.

Let us go back to our previous example, the category M:

a b c
f

ℓ

g

h

I can now give (at least) two descriptions of M as a 2-polygraph:

P1 = { f , g, h, ℓ } P1 = { f , g, h }

P2 = { “g f = ℓ”, “ℓ = g f ” } P2 = { “g f = h f ” }

with P0 = { a, b, c } in both cases. If we go even further back to our main goal of

defining presheaves in type theory, then we should have a general procedure

that turns 2-polygraphs (and more generally n-polygraphs in the “n-truncated”

case) into either the indexed or the fibered presentation, together with the

equivalence between the two. But there is actual room for intermediate steps.

3.4 Transitioning from fibered to indexed

Here is one of the possible fibered presentations for the category M, that we

already have seen earlier:

Xa, Xb, Xc : Type

X f : Xb −→ Xa

Xg : Xc −→ Xb

Xh : Xc −→ Xb

α : X f Xg = X f Xh

27

What we could do is successively “eliminate” the maps using the Grothendieck

construction. Let me illustrate this by first eliminating X f , for example:

Xa : Type

Xb : Xa −→ Type

Xc : Xa −→ Type

Xg : ∏
i : Xa

Xc i −→ Xb i

Xh : ∏
i : Xa

Xc i −→ Xb i

α : π1Xg = π1Xh

The maps π1 are defined as the obvious “mere” projections, through implicit

curryification. For example, in the previous case:

π1 : ∏
i : Xa

Xb i −→ Xa

(i, j) 7−→ i

Everything that comes “after” f in the base category M has to be updated

to depend on a choice of term in Xa:

a b c
f

g

h

i.e. both Xb and Xc now depend on Xa, and the canonical projections corre-

spond to the now-eliminated respective maps X f and X f Xg = X f Xh. Another

possibility would have been to eliminate Xg first:

Xa, Xb : Type

X f : Xb −→ Xa

Xc : Xb −→ Type

Xh : ∏
j : Xb

Xc j −→ Xb

α : X f π1 = X f Xh

Again, we only have to update what comes “after” g in the base category:

28

a b c
f

g

h

Now if I eliminate X f then Xg, I would get:

Xa : Type

Xb : Xa −→ Type

Xc : ∏
i : Xa

Xb i −→ Type

Xh : ∏
i : Xa

∏
j : Xb i

Xc i j −→ Xb i

α : π1π1 = π1Xh

This is starting to look a lot like the indexed presentation. If I eliminate Xh:

Xa : Type

Xb : Xa −→ Type

Xc : ∏
i : Xa

Xb i −→ Xb i −→ Type

α : π1π1 = π1π1

Then indeed, I do get the indexed presentation — up to an extra trivial term α.

Overall, it thus seems possible to decompose the equivalence of the fibered

and indexed presentations as a succession of “basic” eliminations, correspond-

ing to either direction of the Grothendieck construction. The other direction

would be using Σ-types to turn the mere projections π1 back into full-fledged

maps. As eliminating maps almost inevitably introduces dependent products

(just as above), maybe an easy slogan would be that “fibered and indexed pre-

sentations are equivalent, up to replacing Σ’s with Π’s and vice versa”. I will

now try to make a summary of everything we have seen so far, and outline

possible areas of research.

3.5 Conclusion

As there is no reason not to take the order of the eliminations into account,

we could argue that the possible paths of successive eliminations should be

themselves equivalent at a higher level:

29

Fibered

· · · · · ·

Indexed

∼ ∼

∼

∼

∼

Furthermore we only have covered the case of 2-polygraphs here, ignoring

the delicate subtleties of fully dealing with the identity type — which would

be inevitable in plain HoTT for example. At last, we only really looked at the

discrete version of the Grothendieck construction, effectively limiting us in the

level of generality we could achieve.

The central intuition is the following: it would be reasonable to expect that

“equivalences of equivalences” of possible paths of successive eliminations as

in the diagram above, should be again equivalent and higher up. The way these

higher equivalences emerge should be reflected in the “higher formulations”

of the Grothendieck construction, translated into type theory. In the end, we

want a general procedure that turns arbitrary n-polygraphs (or “∞-polygraphs”

if we can make sense of the notion. . . ?) encoded in type theory in some way

and describing a Reedy category, into a “spectrum” — ranging from fibered to

indexed — of type-theoretic presentations of presheaves, together with proofs

using the Grothendieck construction that these presentations are all equivalent,

and proofs that the proofs are all equivalent, and so on.

To be more precise, there are two levels of equivalence:

i) Given a fixed polygraph, all its presentations in type theory (fibered,

indexed, and otherwise) should be equivalent

ii) All the polygraphs that describe the same category should be themselves

equivalent in some sense

Then, presumably, i) the space of all the possible ways to build presheaves

given a fixed polygraph should be contractible and contractibility is exactly the

statement of the Grothendieck construction, and ii) the higher category of all

the possible ways to build presheaves out of any polygraph describing the same

higher category should be equivalent to its category of “higher presheaves”.

30

4 A “Yoneda-esque” presentation

One issue that I have avoided so far is to keep track of the necessary “higher

coherence witnesses” I mentioned in the previous introduction. Another aspect

I have not touched yet is that, in general, the data of a 2-polygraph is “opaque”

in the sense that it is not externally fixed, but a parameter of the procedure we

wish to have. Let me illustrate the first point with the semi-simplex category.

Part of this is already explained in the introduction of [4]. Consider the

following commutative diagram in ∆+, assuming i < j < k:

[n + 2] [n + 3]

[n + 1] [n + 2]

[n + 1] [n + 2]

[n] [n + 1]

di

dk−1 dk

di

dj−1

dj

di

dj−1

dk−2 dj

dk−1

di

The commutation is given by the fact that:

dydx = dxdy−1 when x < y

One can think of this relation as “continuously deforming” the path dydx into

the path dxdy−1 and vice versa, on one of the faces of the cube above. Then,

still looking at the cube, it seems pretty clear that there are at least two ways

to “continuously deform” the path dkdjdi into the path didj−1dk−2, either by

crossing “at the top” or by crossing “at the bottom” of the cube.

If we tediously named all the faces of the cube, we could formally express

this in type theory by showing that there are two distinct proofs of the equality:

π, π′ : dkdjdi = didj−1dk−2

Then we would need a “higher coherence” proof, witnessing the fact that these

two proofs should be equal too (i.e. π = π′) in order for us to define presheaves

properly. Of course, this would keep going at higher levels if we draw an

hypercube, a “5-cube”, . . .

One solution seems to render these coherence issues entirely “opaque”, at

the cost of introducing new difficulties with dependent typing.

31

4.1 Staying at Hom

Consider our now-favorite example, the category M:

a b c
f

ℓ

g

h

We have seen that the indexed presentation for M is the following:

Xa : Type

Xb : Xa −→ Type

Xc : ∏
i : Xa

Xb i −→ Xb i −→ Type

Notice how the number of dependencies of each type do coincide with the

number of ingoing morphisms in the base category, up to equality. For example,

on the one hand the only (nontrivial) morphism ending with b is f : a −→ b,

while on the other hand Xb “happens” to only depend on Xa. Similarly, the only

morphisms ending with c are g, h, ℓ and at the same time Xc only depends on

two copies of Xb over the same point i (witnessing the fact that g f = ℓ = h f).

Let us try to factor the dependencies together using the hom “functor” of M:

Xa : Type

Xb : ∀ s0 :
[
∏ f0 : Hom(a,b) Xa

]
,

Type

Xc : ∀ s0 :
[
∏ f0 : Hom(a,c) Xa

]
,

∀ s1 :
[
∏ f1 : Hom(b,c) Xb (λ f0 . s0(f1 ◦ f0))

]
,

Type

For the sake of readability, I wrote some of the dependent products with ∀
instead of Π. Let me carefully unpack this:

• As nothing happens at the base level a, the type Xa is left unchanged.

• At level b, every arrow f0 : a −→ b in the base category should add a new

dependency on Xa. To choose the dependencies “all at once”, we simply

require the data of a dependent function:

s0 : ∏ f0 : Hom(a,b) Xa

32

In our case, Hom(a, b) really only contains f so this is equivalent to choos-

ing a single element in Xa, i.e. just as if we wrote Xb : Xa −→ Type.

• The last one is the most interesting. We first apply to Xc exactly the same

reasoning to choose the dependencies on Xa:

s0 : ∏ f0 : Hom(a,c) Xa

Again, as Hom(a, c) only contains ℓ this is equivalent to choosing a single

element in Xa. But now, Xb also depends on Xa so we must ensure that

no matter which path we choose, the choices we already made are consistent:

a b c
f0

f1 ◦ f0

f1

This is why we need to choose the dependencies on Xb “all at once” the

following way:

s1 : ∏ f1 : Hom(b,c) Xb (λ f0 . s0(f1 ◦ f0))

If we break down the definition of s1 we might see how it makes sense,

and more importantly how it type checks:

f0 : Hom(a, b)

f1 : Hom(b, c)

s0 : ∏ f0 : Hom(a,c) Xa

s0(f1 ◦ f0) : Xa

λ f0 . s0(f1 ◦ f0) : ∏ f0 : Hom(a,b) Xa

Xb : ∀ s0 :
[
∏ f0 : Hom(a,b) Xa

]
,

Type

Xb (λ f0 . s0(f1 ◦ f0)) : Type

Since we always have that f0 = f and f1 = g or f1 = h in the definition

above, then by definition of M the composition f1 ◦ f0 will always be

equal to ℓ, and thus Xb (λ f0 . s0(f1 ◦ f0)) will always be the same “fiber”,

i.e. it only depends on s0. It therefore seems that we have moved the

complexity of dealing with the relations of M “inside” the Hom!

I will now vastly generalize this to any direct category.

33

4.2 Definition

Suppose we have the data of a direct category in type theory, encoded as:

A : nat −→ Type

Hom : ∏
i j : nat

Ai −→ Aj −→ Type

...

i.e. A is a family such that Ai contains the objects of degree i, and Hom(−,−)

is the underlying hom “functor”. The details of composition, associativity

and identity are left out as they are not relevant for now. All the subtleties of

generators, relations, and higher coherence witnesses are so far hidden “inside”

the computation of Ai and Hom(x, y). To make this more convincing, note that

the following easy lemma holds:

LEMMA 5. A direct category is exactly the data of a category whose objects

can be partitioned into a family (Ai)i∈N such that:

i) All the arrows within any Ai are trivial, i.e. there are only identities

ii) A nontrivial arrow can only go from Ai to Aj, with i < j

As a consequence, if we can formulate an indexed presentation of presheaves

only using these ingredients, then presumably we would have successfully

overcome the higher coherence issues and made them entirely “opaque”. Here

is how we could do it, by extending what we did with the category M before:

X0 : A0 −→ Type

X1 : ∀ a1 : A1,

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,a1)

X0 a0

]
,

Type

X2 : ∀ a2 : A2,

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,a2)

X0 a0

]
,

∀ s1 :
[
∏a1 : A1 ∏ f1 : Hom(a1,a2)

X1 a1 (λ f0 . s0(f1 ◦ f0))
]

,

Type

...

34

Xn : ∀ an : An

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,an) X0 a0

]
,

∀ s1 :
[
∏a1 : A1 ∏ f1 : Hom(a1,an) X1 a1 (λ f0 . s0(f1 ◦ f0))

]
,

...

∀ si :
[
∏ai : Ai ∏ fi : Hom(ai ,an) Xi ai (λ f0 . s0(fi ◦ f0)) · · · (λ fi−1 . si−1(fi ◦ fi−1))

]
,

...

∀ sn−1 :
[
∏an−1 : An−1 ∏ fn−1 : Hom(an−1,an) Xn−1 an−1 (λ f0 . s0(fn−1 ◦ f0)) · · ·

]
,

Type

We now depend on an additional parameter Ai at each level i, which corre-

sponds to selecting the object of degree i we are looking at. Everything else is

the same as with M, even the intermediate “choices of dependencies”:

λ fk . sk(fi ◦ fk)

There were no reason a priori that its expression would be this simple at any

level, but in practice if one were to implement the above definition in a proof

assistant such as COQ [14] then one would observe that it indeed works, provided

the associativity of composition holds definitionally! This last precision is absolutely

crucial and I will come back to it in a moment. For now, I would like to explain

the name.

4.3 Why “Yoneda-esque”?

Let us look at one of the si’s of Xn:

si : ∏ai : Ai ∏ fi : Hom(ai ,an) Xi ai (λ f0 . s0(fi ◦ f0)) · · · (λ fi−1 . si−1(fi ◦ fi−1))

Given that an is the very first parameter of Xn, the dependence on Hom(ai, an)

should strongly remind us of the representable functor ân. Then fi could be

thought as an “i-edge” of ân, and we would be tempted to write instead:

si : ∏ fi : (ân)i
· · ·

Let me better illustrate this by taking ∆+ as an example of direct category. If we

do the necessary simplifications in the definition, we are left with:

35

X0 : Type

X1 :
[
(∆1

+)0 −→ X0

]
−→ Type

X2 : ∀ s0 :
[
(∆2

+)0 −→ X0

]
,

∀ s1 :
[
∏ f1 : (∆2

+)1
X1 (λ f0 . s0(f1 ◦ f0))

]
,

Type

...

Xn : ∀ s0 : [(∆n
+)0 −→ X0] ,

∀ s1 :
[
∏ f1 : (∆n

+)1
X1 (λ f0 . s0(f1 ◦ f0))

]
,

...

∀ si :
[
∏ fi : (∆n

+)i
Xi (λ f0 . s0(fi ◦ f0)) · · · (λ fi−1 . si−1(fi ◦ fi−1))

]
,

...

∀ sn−1 :
[
∏ fn−1 : (∆n

+)n−1
Xn−1 (λ f0 . s0(fn−1 ◦ f0)) · · ·

]
,

Type

The dependency on Ai has been made implicit, as in the case of ∆+ there

is only one object of each degree. The geometric intuition should help us

understand what happens:

• The base type X0 contains the points, or vertices.

• X1 contains the segments. A segment has two endpoints that we can

describe with the data of a map (∆1
+)0 −→ X0. Indeed ∆1

+ is the “standard

segment”, so (∆1
+)0 really is the abstract data of two endpoints.

In the end, X1 returns the type of all segments with given endpoints (i.e.

“lying over (∆1
+)0 −→ X0”), hence the signature:

X1 :
[
(∆1

+)0 −→ X0

]
−→ Type

• Now, X2 contains the “filled” triangles. Just as with X1, what we do is first

select the vertices of a triangle through a map (∆2
+)0 −→ X0. Then we

need to select three segments between the vertices we have already selected!

This what the expression λ f0 . s0(f1 ◦ f0) is for.

36

If you stare at it long enough, the dependent product:

∏ f1 : (∆2
+)1

X1 (λ f0 . s0(f1 ◦ f0))

guarantees that the selected f1’s have “compatible” endpoints, i.e. one

starts where the other ends, and so on. This is what the computation

of the composition f1 ◦ f0 does. Overall, given three vertices and three

compatible segments X2 returns the type of all the “fillings” of the triangle

it describes.

• In the general case, Xn contains the n-simplices. Each si encodes the data of

the “i-edges” an n-simplex is made of. Because the “i-edges” themselves

fit inside a “structure” of “(i − 1)-edges” and so on, each si depends of

course on all of the previous ones. This is witnessed by the expressions:

λ fk . sk(fi ◦ fk)

fi is one of the “i-edges” of the standard n-simplex. Pre-composing with fk

amounts to looking at one of the “k-edges” of fi. By applying sk, we

“interpret” the resulting “k-edge” fi ◦ fk in the presheaf we already have

constructed.

To sum it all up, an easy slogan would be that “Xn takes the boundary of

an n-simplex as an argument, and returns the type of all the n-simplices

with such boundary”.

A different approach would have been to take the indexed presentation for

“what it is”, i.e. the way the n-simplices interact with each other is directly part

of the definition of the presheaf:

X0 : Type

X1 : X0 −→ X0 −→ Type

X2 : ∏
a b c : X0

X1(a, b) −→ X1(b, c) −→ X1(a, c) −→ Type

...

There is no trace of the standard n-simplex, or its structure. On the other

hand, what we did above is look at the standard n-simplex, then “interpret” its

structure with the si’s. How could we not think of the Yoneda lemma:

∆n
+ −→ X ∼= Xn

More exactly, we first looked at the “i-edges” of ∆n
+ so maybe the informal

picture to keep in mind is the following:

37

∆0
+

...

∆i
+

...

∆n
+ X ∼= Xn

s0

si

For example in the most simple case n = 1, we can imagine something like:

∆0
+

∆1
+ X

X1

i.e. X1 would be exactly all the ways to fill the arrows ∆0
+ −→ ∆1

+ which are

“parallel to” ∆0
+ −→ X. By applying the Yoneda lemma, we could reformulate

this criterion of “parallelism” as the data of an arrow (∆1
+)0 −→ X0. This is

indeed the definition of X1:

X1 :
[
(∆1

+)0 −→ X0

]
−→ Type

At this stage, I have three open questions:

i) Is there a way to make this kind of diagram more precise and systematic,

for any direct category? In particular, can we visually represent all of the

complexity of the “Yoneda-esque” presentation with a diagram?

ii) As types are ∞-groupoids in HoTT, can we make “visually explicit” all

the choices of paths and compositions that are made along the way?

iii) Suppose we look at “∞-presheaves” instead, from a base (∞, 1)-category

to the higher category of ∞-groupoids. How can the visual representation

help us understand the associativity issues that I will explain next? And

how would it relate to a hypothetical “weak ∞-Yoneda lemma”?

38

4.4 Coherence becomes associativity

The “Yoneda-esque” presentation does not type check starting at X3. Let me

write down the definition of the first few “slices”:

X0 : A0 −→ Type

X1 : ∀ a1 : A1,

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,a1)

X0 a0

]
,

Type

X2 : ∀ a2 : A2,

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,a2)

X0 a0

]
,

∀ s1 :
[
∏a1 : A1 ∏ f1 : Hom(a1,a2)

X1 a1 (λ f0 . s0(f1 ◦ f0))
]

,

Type

X3 : ∀ a3 : A3,

∀ s0 :
[
∏a0 : A0 ∏ f0 : Hom(a0,a3)

X0 a0

]
,

∀ s1 :
[
∏a1 : A1 ∏ f1 : Hom(a1,a3)

X1 a1 (λ f0 . s0(f1 ◦ f0))
]

,

∀ s2 :
[
∏a2 : A2 ∏ f2 : Hom(a2,a3)

X2 a2 (λ f0 . s0(f2 ◦ f0)) (λ f1 . s1(f2 ◦ f1))
]

,

Type

The interesting bit happens in s2:

s2 : ∏a2 : A2 ∏ f2 : Hom(a2,a3)
X2 a2 (λ f0 . s0(f2 ◦ f0)) (λ f1 . s1(f2 ◦ f1))

What is the type of ϕ in the expression λϕ . X2 a2 (λ f0 . s0(f2 ◦ f0)) ϕ? By doing

the necessary substitutions, we get:

ϕ : ∏a1 : A1 ∏ f1 : Hom(a1,a2)
X1 a1 (λ f0 . (λ f0 . s0(f2 ◦ f0))(f1 ◦ f0))

The composition on the right β-reduces to f2 ◦ (f1 ◦ f0), that is:

ϕ : ∏a1 : A1 ∏ f1 : Hom(a1,a2)
X1 a1 (λ f0 . s0(f2 ◦ (f1 ◦ f0)))

Now, if we look at the type of λ f1 . s1(f2 ◦ f1):

λ f1 . s1(f2 ◦ f1) : ∏a1 : A1 ∏ f1 : Hom(a1,a2)
X1 a1 (λ f0 . s0((f2 ◦ f1) ◦ f0))

As a result, we could only substitute ϕ with λ f1 . s1(f2 ◦ f1) if the following

equality held definitionally:

f2 ◦ (f1 ◦ f0) = (f2 ◦ f1) ◦ f0

39

This is, of course, not the case in general. A naive workaround would be to

try and introduce an additional dependency on proofs of associativity. But then

the construction would become quickly unmanageable, as we would also need

to depend on proofs of equality of proofs, and so on. This is why it would be

interesting to have some sort of diagram of the “Yoneda-esque” presentation

that makes the associativity equations more explicit, as I suggested at the end of

the previous subsection.

Furthermore, the higher coherence issues we have seen at the beginning

(with the “cube of di’s”) seem to have been replaced with higher associativity

issues. The last question is therefore this: is there an actual, formal correspon-

dence between the higher structure of coherence equations with the higher

structure of associativity equations of an (∞, 1)-category? Has “coherence

become associativity”?

REMARK. Another workaround we tried with Hugo Herbelin is to apply

the “Yoneda trick” (see [6] for example, called the “Yoneda translation”),

which roughly amounts to using the equivalence:

∏x Hom(x, a) −→ Hom(x, b) ∼= Hom(a, b)

modulo some additional details. In one direction, it sends dependent

products γ to γa(1a), and in the other direction it sends morphisms g to

the dependent product λx . λ f : x −→ a . g ◦ f .

What we supposedly gain with the “Yoneda trick” is that composition is

“lifted” to the level of type theory, and thus holds definitionally. Indeed:

h : ∏x Hom(x, b) −→ Hom(x, c)

g : ∏x Hom(x, a) −→ Hom(x, b)

λx . λ f : x −→ a . hx(gx(f)) : ∏x Hom(x, a) −→ Hom(x, c)

By substituting Hom(ai, an) with ∏x Hom(x, ai) −→ Hom(x, an) in the

“Yoneda-esque” presentation, we would presumably overcome the asso-

ciativity issues. But the equivalence would only hold if every dependent

product γ : ∏x Hom(x, a) −→ Hom(x, b) was completely determined by

its value at γa(1a)! This is made obvious for any f : x −→ a, by looking

at the following diagram:

40

Hom(a, a) Hom(a, b)

Hom(x, a) Hom(x, c)

γa

f ∗ f ∗

γx

where f ∗ is defined as the pre-composition by f . This diagram must

commute for the equivalence to make sense, and then we conclude that:

γx(f) = f ∗(γa(1a))

It is essentially the same idea as in the proof of the Yoneda lemma. But

now, our associativity issues seem to have come back as indeed we would

probably need this equality at some point:

(f ∗ ◦ (g∗ ◦ h∗))(γa(1a)) = ((f ∗ ◦ g∗) ◦ h∗)(γa(1a))

41

References

[1] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. “Extending

Homotopy Type Theory with Strict Equality”. In: 25th EACSL Annual

Conference on Computer Science Logic. 2016.

[2] Dimitri Ara, Albert Burroni, Yves Guiraud, Philippe Malbos, François Mé-

tayer, and Samuel Mimram. Polygraphs: From Rewriting to Higher Categories.

In preparation.

[3] Paul G. Goerss and John F. Jardine. Simplicial Homotopy Theory. Birkhäuser,

2009.

[4] Hugo Herbelin. “A Dependently-Typed Construction of Semi-Simplicial

Types”. In: Mathematical Structures in Computer Science (2015).

[5] Hugo Herbelin. A Stratified Dependently-Typed Definition of Simplicial Sets

and of Similar Presheaves over a Reedy Category. Unpublished.

[6] Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau,

and Nicolas Tabareau. “The Definitional Side of the Forcing”. In: Logics in

Computer Science. 2016.

[7] P. T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford

University Press, 2002.

[8] Peter LeFanu Lumsdaine. Semi-Simplicial Types. 2012. URL: https://

ncatlab.org/ufias2012/published/Semi-simplicial+types.

[9] Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009.

[10] Jon Peter May. Simplicial Objects in Algebraic Topology. University of Chicago

Press, 1967.

[11] The Univalent Foundations Program. Homotopy Type Theory: Univalent

Foundations of Mathematics. Institute for Advanced Study, 2013.

[12] Emily Riehl. Categorical Homotopy Theory. Cambridge University Press,

2014.

[13] Emily Riehl. Category Theory in Context. Courier Dover Publications, 2017.

[14] The Coq Proof Assistant. 2022. URL: https://coq.inria.fr/.

42

https://ncatlab.org/ufias2012/published/Semi-simplicial+types
https://ncatlab.org/ufias2012/published/Semi-simplicial+types
https://coq.inria.fr/

	Introduction
	1 Presheaves
	1.1 Definition
	1.2 Yoneda lemma
	1.3 Density theorem
	1.4 Semi-simplicial sets
	1.4.1 Equivalent definitions
	1.4.2 Geometric intuition

	2 Grothendieck construction
	2.1 Discrete version
	2.2 Categorical version
	2.3 To infinity and beyond

	3 Presheaves in type theory
	3.1 Two possible presentations
	3.2 Reedy categories
	3.3 Polygraphs
	3.4 Transitioning from fibered to indexed
	3.5 Conclusion

	4 A "Yoneda-esque" presentation
	4.1 Staying at Hom
	4.2 Definition
	4.3 Why "Yoneda-esque"?
	4.4 Coherence becomes associativity

	References

