Higher coherence equations of semi-simplicial types as n-cubes of proofs

Hugo Herbelin and Moana Jubert

IRIF, Inria, CNRS, Université Paris-Cité, France

$$
\text { June 15, } 2023
$$

TYPES 2023 - Valencia, Spain

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

Problem

Define semi-simplicial types in homotopy type theory

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

Problem

Define semi-simplicial types in homotopy type theory

- Maybe not so much about semi-simplicial \{sets, types\}...

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

Problem

Define semi-simplicial types in homotopy type theory

- Maybe not so much about semi-simplicial \{sets, types\}...
- Nor this might be about homotopy type theory...

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

Problem

Define semi-simplicial types in homotopy type theory

- Maybe not so much about semi-simplicial \{sets, types\}...
- Nor this might be about homotopy type theory...
- Definitely about n-cubes!

What is this talk about?

Higher coherence equations of semi-simplicial types as n-cubes of proofs

Problem

Define semi-simplicial types in homotopy type theory

- Maybe not so much about semi-simplicial \{sets, types\}...
- Nor this might be about homotopy type theory...
- Definitely about n-cubes!

We still want to have an explicit construction of semi-simplicial types eventually...

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

- Sets $X_{0}, X_{1}, X_{2}, \ldots$

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

- Sets $X_{0}, X_{1}, X_{2}, \ldots$
- Face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ for any $0 \leq i \leq n$

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

- Sets $X_{0}, X_{1}, X_{2}, \ldots$
- Face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ for any $0 \leq i \leq n$
- Satisfying the semi-simplicial identity...

$$
d_{i} d_{j}=d_{j-1} d_{i} \quad \text { when } \quad i<j
$$

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

- Sets $X_{0}, X_{1}, X_{2}, \ldots$
- Face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ for any $0 \leq i \leq n$
- Satisfying the semi-simplicial identity...

$$
d_{i} d_{j}=d_{j-1} d_{i} \quad \text { when } \quad i<j
$$

- ...And nothing more!

Semi-simplicial sets

Semi-simplicial $\left(\Delta_{+}\right)=\operatorname{Simplicial}(\Delta)-$ Degeneracies

- Sets $X_{0}, X_{1}, X_{2}, \ldots$
- Face maps $d_{i}: X_{n} \rightarrow X_{n-1}$ for any $0 \leq i \leq n$
- Satisfying the semi-simplicial identity...

$$
d_{i} d_{j}=d_{j-1} d_{i} \quad \text { when } \quad i<j
$$

- ...And nothing more!

Straightforward to do in type theory if we have UIP (or restrict ourselves to sets)

An old problem

Problem (Voevodsky and others, 2012)
Define semi-simplicial types (SSTs) in HoTT

An old problem

Problem (Voevodsky and others, 2012)
Define semi-simplicial types (SSTs) in HoTT

- Types in HoTT are weak ∞-groupoids

An old problem

Problem (Voevodsky and others, 2012)
Define semi-simplicial types (SSTs) in HoTT

- Types in HoTT are weak ∞-groupoids
- Constructions are no longer set-truncated

An old problem

Problem (Voevodsky and others, 2012)
Define semi-simplicial types (SSTs) in HoTT

- Types in HoTT are weak ∞-groupoids
- Constructions are no longer set-truncated
- Higher coherence issues!

An old problem

Problem (Voevodsky and others, 2012)
Define semi-simplicial types (SSTs) in HoTT

- Types in HoTT are weak ∞-groupoids
- Constructions are no longer set-truncated
- Higher coherence issues!

The semi-simplicial identity $d_{i} d_{j}=d_{j-1} d_{i}$ induces "higher proof terms" that interfere with each other and need to be identified

Illustration

Suppose we want to show that $d_{i} d_{j} d_{k}=x_{n} \rightarrow X_{n-3} d_{k-2} d_{j-1} d_{i}$ in type theory

Illustration

Suppose we want to show that $d_{i} d_{j} d_{k}=x_{n} \rightarrow x_{n-3} d_{k-2} d_{j-1} d_{i}$ in type theory

- The semi-simplicial identity is the data of a term

$$
\alpha_{i, j}: d_{i} d_{j}=x_{n} \rightarrow x_{n-2} d_{j-1} d_{i}
$$

Illustration

Suppose we want to show that $d_{i} d_{j} d_{k}=x_{n} \rightarrow X_{n-3} d_{k-2} d_{j-1} d_{i}$ in type theory

- The semi-simplicial identity is the data of a term

$$
\alpha_{i, j}: d_{i} d_{j}=x_{n} \rightarrow x_{n-2} d_{j-1} d_{i}
$$

- There are two ways to compose the $\alpha_{i, j}$'s together in order to inhabit the type

$$
d_{i} d_{j} d_{k}=x_{n} \rightarrow x_{n-3} d_{k-2} d_{j-1} d_{i}
$$

Illustration

Suppose we want to show that $d_{i} d_{j} d_{k}=x_{n} \rightarrow X_{n-3} d_{k-2} d_{j-1} d_{i}$ in type theory

- The semi-simplicial identity is the data of a term

$$
\alpha_{i, j}: d_{i} d_{j}=x_{n} \rightarrow x_{n-2} d_{j-1} d_{i}
$$

- There are two ways to compose the $\alpha_{i, j}$'s together in order to inhabit the type

$$
d_{i} d_{j} d_{k}=x_{n} \rightarrow x_{n-3} d_{k-2} d_{j-1} d_{i}
$$

- This is given by

$$
\pi:=\alpha_{j, k} \cdot \alpha_{i, k-1} \cdot \alpha_{i, j} \quad \text { and } \quad \pi^{\prime}:=\alpha_{i, j} \cdot \alpha_{i, k} \cdot \alpha_{j-1, k-1}
$$

Illustration

Suppose we want to show that $d_{i} d_{j} d_{k}=x_{n} \rightarrow X_{n-3} d_{k-2} d_{j-1} d_{i}$ in type theory

- The semi-simplicial identity is the data of a term

$$
\alpha_{i, j}: d_{i} d_{j}=x_{n} \rightarrow x_{n-2} d_{j-1} d_{i}
$$

- There are two ways to compose the $\alpha_{i, j}$'s together in order to inhabit the type

$$
d_{i} d_{j} d_{k}=x_{n} \rightarrow x_{n-3} d_{k-2} d_{j-1} d_{i}
$$

- This is given by

$$
\pi:=\alpha_{j, k} \cdot \alpha_{i, k-1} \cdot \alpha_{i, j} \quad \text { and } \quad \pi^{\prime}:=\alpha_{i, j} \cdot \alpha_{i, k} \cdot \alpha_{j-1, k-1}
$$

- We now need the data of a term $\beta_{i, j, k}: \pi=\pi^{\prime}$, and so on...

Possible approaches

- n-Truncate (e.g. h-Sets, h-Grps, ...)

$$
X: \Delta_{+}^{\mathrm{op}} \rightarrow \mathbf{h - L e v e l}(n+2)
$$

Possible approaches

- n-Truncate (e.g. h-Sets, h-Grps, ...)

$$
X: \Delta_{+}^{\mathrm{op}} \rightarrow \mathbf{h - L e v e l}(n+2)
$$

- For any externally fixed n, stop the construction at stage n

$$
\begin{aligned}
X_{0} & : \text { Type } \\
X_{1} & : X_{0} \rightarrow X_{0} \rightarrow \text { Type } \\
X_{2} & : \prod_{a b c}: X_{0} X_{1}(a, b) \rightarrow X_{1}(b, c) \rightarrow X_{1}(a, c) \rightarrow \text { Type } \\
& \vdots \\
X_{n} & : \prod_{\cdots} \rightarrow \text { Type }
\end{aligned}
$$

Possible approaches

- n-Truncate (e.g. h-Sets, h-Grps, ...)

$$
X: \Delta_{+}^{\mathrm{op}} \rightarrow \text { h-Level }(n+2)
$$

- For any externally fixed n, stop the construction at stage n

$$
\begin{aligned}
X_{0} & : \text { Type } \\
X_{1} & : X_{0} \rightarrow X_{0} \rightarrow \text { Type } \\
X_{2} & : \prod_{a b c}: X_{0} X_{1}(a, b) \rightarrow X_{1}(b, c) \rightarrow X_{1}(a, c) \rightarrow \text { Type } \\
& \vdots \\
X_{n} & : \prod \cdots \rightarrow \text { Type }
\end{aligned}
$$

- Add an "outer" equality which is strict (2LTT, Altenkirch, Capriotti, Kraus, HTS, Voevodsky, ...)

Possible approaches

- n-Truncate (e.g. h-Sets, h-Grps, ...)

$$
X: \Delta_{+}^{\mathrm{op}} \rightarrow \text { h-Level }(n+2)
$$

- For any externally fixed n, stop the construction at stage n

$$
\begin{aligned}
X_{0} & : \text { Type } \\
X_{1} & : X_{0} \rightarrow X_{0} \rightarrow \text { Type } \\
X_{2} & : \prod_{a b c}: X_{0} X_{1}(a, b) \rightarrow X_{1}(b, c) \rightarrow X_{1}(a, c) \rightarrow \text { Type } \\
& \vdots \\
X_{n} & : \prod \cdots \rightarrow \text { Type }
\end{aligned}
$$

- Add an "outer" equality which is strict (2LTT, Altenkirch, Capriotti, Kraus, HTS, Voevodsky, ...)

A general solution is believed to be impossible in "plain" HoTT

Ten years of investigations

2012-13 Special Year on UF

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)
2014-15 Indexed + h-Sets (Herbelin)

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)
2014-15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)
2014-15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)
2015-16 2-Level Type Theory (Altenkirch, Capriotti, Kraus)

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)
2014-15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)
2015-16 2-Level Type Theory (Altenkirch, Capriotti, Kraus)
2017 Simplicial types up to a finite level (Kraus, Sattler)

Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)
2014-15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)
2015-16 2-Level Type Theory (Altenkirch, Capriotti, Kraus)
2017 Simplicial types up to a finite level (Kraus, Sattler)
2022 MLTT + Type Streams (Kolomatskaia)

TLCA 2015 - Warsaw, Poland

What if we write down all the coherence equations explicitly?

Strict composition

TLCA 2015 - Warsaw, Poland

What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is well described in the case of (strict) ω-categories, i.e. when associativity and the exchange law hold on the nose for path composition

Strict composition

TLCA 2015 - Warsaw, Poland

What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is well described in the case of (strict) ω-categories, i.e. when associativity and the exchange law hold on the nose for path composition

- Ross Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3):283-335, 1987.

Strict composition

TLCA 2015 - Warsaw, Poland

What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is well described in the case of (strict) ω-categories, i.e. when associativity and the exchange law hold on the nose for path composition

- Ross Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3):283-335, 1987.
- Ian R. Aitchison. The geometry of oriented cubes. Macquarie University Research Report No: 86-0082, 1986.

Strict composition

TLCA 2015 - Warsaw, Poland

What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is well described in the case of (strict) ω-categories, i.e. when associativity and the exchange law hold on the nose for path composition

- Ross Street. The algebra of oriented simplexes. Journal of Pure and Applied Algebra, 49(3):283-335, 1987.
- Ian R. Aitchison. The geometry of oriented cubes. Macquarie University Research Report No: 86-0082, 1986.
- Dimitri Ara et al. Polygraphs: from rewriting to higher categories. To be published.

n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)'s constructions in type theory

n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)'s constructions in type theory

- Composition of n morphisms corresponds to the "spine" of an n-cube

n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)'s constructions in type theory

- Composition of n morphisms corresponds to the "spine" of an n-cube
- (Higher) proof terms correspond to (composition of) faces of dimension ≥ 2

n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)'s constructions in type theory

- Composition of n morphisms corresponds to the "spine" of an n-cube
- (Higher) proof terms correspond to (composition of) faces of dimension ≥ 2
- The k-hemispheres are special cases of these compositions, as sources and targets of the equalities

n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)'s constructions in type theory

- Composition of n morphisms corresponds to the "spine" of an n-cube
- (Higher) proof terms correspond to (composition of) faces of dimension ≥ 2
- The k-hemispheres are special cases of these compositions, as sources and targets of the equalities

How to give a recursive formulation of all the compositions involved?

3-Cube of proofs

$$
\beta_{i, j, k}: \overbrace{\alpha_{j, k} \cdot \alpha_{i, k-1} \cdot \alpha_{i, j}}^{\text {Backmost }}=\left(d_{i} d_{j} d_{k}={ }_{\left(x_{n} \rightarrow x_{n-3}\right)} d_{k-2} d_{j-1} d_{i}\right) \underbrace{\alpha_{i, j} \cdot \alpha_{i, k} \cdot \alpha_{j-1, k-1}}_{\text {Frontmost }}
$$

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required
- There are nontrivial proof terms that are not equivalent to k-hemispheres...

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required
- There are nontrivial proof terms that are not equivalent to k-hemispheres...
- ...But are generated by hemispheres interfering at different levels!

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required
- There are nontrivial proof terms that are not equivalent to k-hemispheres...
- ...But are generated by hemispheres interfering at different levels!

Problem

How to describe the k-hemispheres?

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required
- There are nontrivial proof terms that are not equivalent to k-hemispheres...
- ...But are generated by hemispheres interfering at different levels!

Problem

How to describe the k-hemispheres?

- k-Hemispheres are made up of k-faces composed together in some order (not linear a priori!)

Combinatorial structure

- When $n \geq 4$ associativity and the exchange law are explicitly required
- There are nontrivial proof terms that are not equivalent to k-hemispheres...
- ...But are generated by hemispheres interfering at different levels!

Problem

How to describe the k-hemispheres?

- k-Hemispheres are made up of k-faces composed together in some order (not linear a priori!)
- We write $h_{k, n}^{ \pm}$for the k-hemispheres of the n-cube

Illustration

Illustration

Illustration

Illustration

Illustration

Combinatorial structure

Definition

D_{k}^{n} is the poset of increasing sequences $x_{1} \ldots x_{n}$ of length n with values $0 \leq x_{i} \leq k$ equipped with the "pointwise" order

Combinatorial structure

Definition

D_{k}^{n} is the poset of increasing sequences $x_{1} \ldots x_{n}$ of length n with values $0 \leq x_{i} \leq k$ equipped with the "pointwise" order

Combinatorial structure

Definition

D_{k}^{n} is the poset of increasing sequences $x_{1} \ldots x_{n}$ of length n with values $0 \leq x_{i} \leq k$ equipped with the "pointwise" order

Theorem

The k-hemispheres of the n-cube are described by D_{n-k}^{k} in the sense that there is a bijection sending any $h_{k, n}^{ \pm}$onto a linear extension of D_{n-k}^{k}

Illustration

Illustration

Illustration

Combinatorial structure

D_{k}^{n} has a rich structure-so does $h_{k, n}^{ \pm}$as a result

Combinatorial structure

D_{k}^{n} has a rich structure-so does $h_{k, n}^{ \pm}$as a result

- There is (essentially) one canonical choice of linear extension of D_{k}^{n} given by

$$
x \preceq y \Longleftrightarrow\left(x_{n}, x\right) \leq\left(y_{n}, y\right)
$$

In our previous examples with D_{2}^{2}, it chooses $11 \prec 02$

Combinatorial structure

D_{k}^{n} has a rich structure-so does $h_{k, n}^{ \pm}$as a result

- There is (essentially) one canonical choice of linear extension of D_{k}^{n} given by

$$
x \preceq y \Longleftrightarrow\left(x_{n}, x\right) \leq\left(y_{n}, y\right)
$$

In our previous examples with D_{2}^{2}, it chooses $11 \prec 02$

- D_{k}^{n} can be recursively constructed with maps

$$
d_{*}: D_{k-1}^{n} \rightarrow D_{k}^{n} \quad \text { and } \quad R: D_{k}^{n-1} \rightarrow D_{k}^{n}
$$

Then $D_{k}^{n}=d_{*} D_{k-1}^{n} \amalg R D_{k}^{n-1}$

Combinatorial structure

D_{k}^{n} has a rich structure-so does $h_{k, n}^{ \pm}$as a result

- There is (essentially) one canonical choice of linear extension of D_{k}^{n} given by

$$
x \preceq y \Longleftrightarrow\left(x_{n}, x\right) \leq\left(y_{n}, y\right)
$$

In our previous examples with D_{2}^{2}, it chooses $11 \prec 02$

- D_{k}^{n} can be recursively constructed with maps

$$
d_{*}: D_{k-1}^{n} \rightarrow D_{k}^{n} \quad \text { and } \quad R: D_{k}^{n-1} \rightarrow D_{k}^{n}
$$

Then $D_{k}^{n}=d_{*} D_{k-1}^{n} \amalg R D_{k}^{n-1}$

- This construction preserves \preceq defined above!

Combinatorial structure

D_{k}^{n} has a rich structure-so does $h_{k, n}^{ \pm}$as a result

- There is (essentially) one canonical choice of linear extension of D_{k}^{n} given by

$$
x \preceq y \Longleftrightarrow\left(x_{n}, x\right) \leq\left(y_{n}, y\right)
$$

In our previous examples with D_{2}^{2}, it chooses $11 \prec 02$

- D_{k}^{n} can be recursively constructed with maps

$$
d_{*}: D_{k-1}^{n} \rightarrow D_{k}^{n} \quad \text { and } \quad R: D_{k}^{n-1} \rightarrow D_{k}^{n}
$$

Then $D_{k}^{n}=d_{*} D_{k-1}^{n} \amalg R D_{k}^{n-1}$

- This construction preserves \preceq defined above!

Observation

$h_{k, n}^{ \pm}$has a similar recursive formula

Extrusion of the 3-cube

To do

- What are the other categories for which the " n-cubes of proofs" make sense?

To do

- What are the other categories for which the " n-cubes of proofs" make sense?
- Use the recursive definition of the k-hemispheres as well as the canonical order to make explicit associativity, whiskering and the exchange law whenever it is needed

To do

- What are the other categories for which the " n-cubes of proofs" make sense?
- Use the recursive definition of the k-hemispheres as well as the canonical order to make explicit associativity, whiskering and the exchange law whenever it is needed

$$
\begin{gathered}
\square: \prod_{n: \mathbb{N}} \prod_{i_{1}<\cdots<i_{n}} h_{n-1, n}^{+}={ }_{\left(h_{n-2, n}^{+}=\ldots h_{n-2, n}^{-}\right)} h_{n-1, n}^{-} \\
\square 1 i \equiv d_{i} \\
\square 2 i j \equiv \alpha_{i, j} \\
\square 3 i j k \equiv \beta_{i, j, k}
\end{gathered}
$$

To do

- What are the other categories for which the " n-cubes of proofs" make sense?
- Use the recursive definition of the k-hemispheres as well as the canonical order to make explicit associativity, whiskering and the exchange law whenever it is needed

$$
\begin{gathered}
\square: \prod_{n: \mathbb{N}} \prod_{i_{1}<\ldots<i_{n}} h_{n-1, n}^{+}={ }_{\left(h_{n-2, n}^{+}=\ldots h_{n-2, n}^{-}\right)} h_{n-1, n}^{-} \\
\square 1 i \equiv d_{i} \\
\square 2 i j \equiv \alpha_{i, j} \\
\square 3 i j k \equiv \beta_{i, j, k}
\end{gathered}
$$

- Plug this into a "cumulatively defined" indexed construction (see appendix for an idea)

To do

- What are the other categories for which the " n-cubes of proofs" make sense?
- Use the recursive definition of the k-hemispheres as well as the canonical order to make explicit associativity, whiskering and the exchange law whenever it is needed

$$
\begin{gathered}
\square: \prod_{n: \mathbb{N}} \prod_{i_{1}<\cdots<i_{n}} h_{n-1, n}^{+}={ }_{\left(h_{n-2, n}^{+}=\ldots h_{n-2, n}^{-}\right)} h_{n-1, n}^{-} \\
\square 1 i \equiv d_{i} \\
\square 2 i j \equiv \alpha_{i, j} \\
\square 3 i j k \equiv \beta_{i, j, k}
\end{gathered}
$$

- Plug this into a "cumulatively defined" indexed construction (see appendix for an idea)
- Define semi-simplicial types in homotopy type theory

Thank you!
(Questions?)

Appendix

$$
\begin{aligned}
& X_{0}: A_{0} \longrightarrow \text { Type } \\
& X_{1}: \forall a_{1}: A_{1}, \\
& \forall s_{0}: {\left[\prod_{a_{0}: A_{0}} \prod_{f_{0}: \operatorname{Hom}\left(a_{0}, a_{1}\right)} X_{0} a_{0}\right], } \\
& \text { Type }
\end{aligned}
$$

$X_{2}: \forall a_{2}: A_{2}$,

$$
\begin{aligned}
\forall s_{0}: & {\left[\prod_{a_{0}: A_{0}} \prod_{f_{0}: \operatorname{Hom}\left(a_{0}, a_{2}\right)} X_{0} a_{0}\right] } \\
\forall s_{1}: & {\left[\prod_{a_{1}: A_{1}} \prod_{f_{1}: \operatorname{Hom}\left(a_{1}, a_{2}\right)} X_{1} a_{1}\left(\lambda f_{0} \cdot s_{0}\left(f_{1} \circ f_{0}\right)\right)\right], } \\
& \quad \text { Type }
\end{aligned}
$$

$$
X_{3}: \forall a_{3}: A_{3}
$$

$$
\begin{aligned}
& \forall s_{0}:\left[\prod_{a_{0}: A_{0}} \prod_{f_{0}: \operatorname{Hom}\left(a_{0}, a_{3}\right)} X_{0} a_{0}\right] \\
& \forall s_{1}:\left[\prod_{a_{1}: A_{1}} \prod_{f_{1}: \operatorname{Hom}\left(a_{1}, a_{3}\right)} X_{1} a_{1}\left(\lambda f_{0} \cdot s_{0}\left(f_{1} \circ f_{0}\right)\right)\right] \\
& \forall s_{2}:\left[\prod_{a_{2}: A_{2}} \prod_{f_{2}: \operatorname{Hom}\left(a_{2}, a_{3}\right)} X_{2} a_{2}\left(\lambda f_{0} \cdot s_{0}\left(f_{2} \circ f_{0}\right)\right)\left(\lambda f_{1} \cdot s_{1}\left(f_{2} \circ f_{1}\right)\right)\right],
\end{aligned}
$$

Appendix

"Octagon of octagons" - Extracted from Aitchison's report

Appendix

