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Higher coherence equations of semi-simplicial
types as n-cubes of proofs
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Define semi-simplicial-types in hometepy-type theory

» Maybe not so much about semi-simplicial {sets, types}...
» Nor this might be about homotopy type theory...
» Definitely about n-cubes!

We still want to have an explicit construction of semi-simplicial types
eventually...
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Semi-simplicial sets

Semi-simplicial (A4) = Simplicial (A) — Degeneracies

> Sets Xo,Xth, .
» Face maps d;: X, = X,—1forany0 < i<n
» Satisfying the semi-simplicial identity...

didj = d;_1d; when i<

» ...And nothing more!

Straightforward to do in type theory if we have UIP (or restrict
ourselves to sets)
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Define semi-simplicial types (SSTs) in HoTT

» Types in HoTT are weak co-groupoids
» Constructions are no longer set-truncated

» Higher coherence issues!

The semi-simplicial identity did; = d;_1d; induces “higher proof
terms” that interfere with each other and need to be identified
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[llustration

Suppose we want to show that didjdy =x,—x,_, dk—2d;j_1d; in type
theory

» The semi-simplicial identity is the data of a term
@ij did; =x,—x,_, dji-1d;

» There are two ways to compose the «; ;’s together in order to
inhabit the type

dididx =x,—x,_; dk—2dj—1d
» This is given by
— I
T = Qg Qg1 Qj j and 7 = Q- Qj e O q k—1

» We now need the dataof aterm 3, : m = 7', and so on...
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» n-Truncate (e.g. h-Sets, h-Grps, ...)
X : AP — h-Level(n+ 2)
» For any externally fixed n, stop the construction at stage n

Xo : Type
X1: X0 = Xo — Type
X5 : Habc:Xo Xi(a, b) — Xi(b, c) — Xi(a, c) — Type

Xo: [[--- — Type

» Add an “outer” equality which is strict (2LTT, Altenkirch,
Capriotti, Kraus, HTS, Voevodsky, ...)

A general solution is believed to be impossible in “plain” HoTT
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Ten years of investigations

2012-13 Special Year on UF

2012-13 Homotopy Type System (Voevodsky)

2014-15 Indexed + h-Sets (Herbelin)
2015 Logic-enriched HoTT (Part, Luo)

2015-16 2-Level Type Theory (Altenkirch, Capriotti, Kraus)
2017 Simplicial types up to a finite level (Kraus, Sattler)
2022 MLTT + Type Streams (Kolomatskaia)
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What if we write down all the coherence equations explicitly?

The explicit form taken by the higher-order coherence equations is
well described in the case of (strict) w-categories, i.e. when
associativity and the exchange law hold on the nose for path
composition

P Ross Street. The algebra of oriented simplexes. Journal of Pure

and Applied Algebra, 49(3):283-335, 1987.

» lan R. Aitchison. The geometry of oriented cubes. Macquarie
University Research Report No: 86-0082, 1986.

» Dimitri Ara et al. Polygraphs: from rewriting to higher categories.
To be published.
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n-Cubes of proofs

Goal

Reformulate Aitchison (and Ara et al.)’s constructions in type theory

» Composition of n morphisms corresponds to the “spine” of an
n-cube

» (Higher) proof terms correspond to (composition of) faces of
dimension > 2

» The k-hemispheres are special cases of these compositions, as
sources and targets of the equalities

How to give a recursive formulation of all the compositions involved?



Backmost

——
i\ : a. : a. _1 ' a.i. = . . ai’j ' ai7k : aj_17k_1
ﬂld’k J’k ik " (didjdk:(xnﬁxn_:i)dk—2d_171dl) N _

TV
Frontmost
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Combinatorial structure

» When n > 4 associativity and the exchange law are explicitly
required

» There are nontrivial proof terms that are not equivalent to
k-hemispheres. ..

» ...But are generated by hemispheres interfering at different
levels!

Problem

How to describe the k-hemispheres?

» k-Hemispheres are made up of k-faces composed together in
some order (not linear a priori!)

> We write hfn for the k-hemispheres of the n-cube
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Dy is the poset of increasing sequences x; . .. x, of length n with
values 0 < x; < k equipped with the “pointwise” order

00

!

Hasse diagram of D3 01 — 11

Lol

02 — 12 — 22

The k-hemispheres of the n-cube are described by D,’j_ « in the sense that
there is a bijection sending any hf , onto a linear extension of D,’;_ B
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Combinatorial structure

D} has a rich structure—so does hfn as a result

» There is (essentially) one canonical choice of linear extension of
Dy given by
x Xy = (%, x) < (yny)
In our previous examples with D3, it chooses 11 < 02

» Dy can be recursively constructed with maps
d.:Dj_,— Dy and R:D]"'— D
Then D} = d,Dj_, LI RD} ™"

» This construction preserves < defined above!

Observation

hkin has a similar recursive formula
9



+ _rr + _ N\
hey= o+ his




» What are the other categories for which the “n-cubes of proofs”
make sense?

23



» What are the other categories for which the “n-cubes of proofs”
make sense?

» Use the recursive definition of the k-hemispheres as well as the
canonical order to make explicit associativity, whiskering and
the exchange law whenever it is needed

23



To do

» What are the other categories for which the “n-cubes of proofs”
make sense?

» Use the recursive definition of the k-hemispheres as well as the

canonical order to make explicit associativity, whiskering and
the exchange law whenever it is needed

O: 1L~ Hh < < hn+—1,n (W= ) h;—l,n
O1i=d;
L2ij=a;;
L3ijk=pBj«



To do

» What are the other categories for which the “n-cubes of proofs”
make sense?

» Use the recursive definition of the k-hemispheres as well as the

canonical order to make explicit associativity, whiskering and
the exchange law whenever it is needed

L1 Hn:NHi1 <o < i hn+—1,n :(h+ han) h;—l,n

n72,n:- n—2,n
1i= d,'
]2 Ij =Qjj
D3l.jk5/8,‘7j?k

» Plug this into a “cumulatively defined” indexed construction (see
appendix for an idea)



To do

» What are the other categories for which the “n-cubes of proofs”
make sense?

» Use the recursive definition of the k-hemispheres as well as the

canonical order to make explicit associativity, whiskering and
the exchange law whenever it is needed

L1 Hn:NHi1 <o < i hn+—1,n :(h+ han) h;—l,n

n72,n:- n—2,n
1i= d,'
]2 Ij =Qjj
D3l.jk5/8,‘7j?k

» Plug this into a “cumulatively defined” indexed construction (see
appendix for an idea)

» Define semi-simplicial types in homotopy type theory



Thank you!

(Questions?)



Xo
X

X2

X3

1 Ay — Type
Va: A,

Vso: [Hao
Type

Va: Ay,

Vs : [Hao

V$1 : [Ha1
Type

:‘v’a3 . A3,

Vs : [Hao

1 Ao Hﬁ,

T Ay ]._.[foz
T Ay ]._.[ﬁ:

T Ay Hfo:
T Ay ]._.[ﬁ:
T Ay ]._.[fz:

: Hom(a,ar) Xo a"] )

Hom(ay,az) Xo a"] )

Hom(ay,az) Xi a ()‘ﬁ) . SO(f‘l Oﬂ)))] ’

Hom(ao,a5) X0 aO] ;
X ar (Mo s(fi 0 )]
Hom(ay,a3)
(o) X2 @ (Vs 505 0 0)) (M- (f 0 )]
Hom(ay,a3
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Appendix

“Octagon of octagons” — Extracted from Aitchison’s report
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