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Program Equivalences

When are two programs equivalent?

In the λ-calculus, natural equivalences arise by identifying terms
with the same (possibly infinite) normal form (aka Böhm tree
equivalence).

This is not enough, some programs behave in the same way but do
not have exactly the same (infinite) normal form.
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Contextual Equivalence

t u

When are two λ-terms equivalent? [Mor68]

t ≡ctx u if for all contexts C . [ C ⟨t⟩ ⇓ ⇔ C ⟨u⟩ ⇓ ]

Head contextual equivalence is an equational theory,
where O := having a head normal form.

1. Equivalence Relation;

2. Context-Closed:

if t ≡ctx u then ∀C , C ⟨t⟩ ≡ctx C ⟨u⟩;
3. Invariance:

if t =β u then t ≡ctx u.
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When are two λ-terms equivalent? (It depends on the
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Sands’ improvement & cost equivalence

Sands’ cost equivalence [San99] is defined as:

t ≡cost u if ∀C , ∀k ≥ 0 . [ C ⟨t⟩⇓k
O ⇔ C ⟨u⟩⇓k

O ]

Again, we specify to the λ-calculus, where O :=⇓h .

Not an equational theory!
I =β I I but I ̸≡cost II
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The best of both worlds?
Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a
context modulo the internal dynamics?

Our contribution: a framework to identify
internal and interaction steps for the
untyped λ-calculus
→ checkers λ-calculus
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What should be the meaning of a program

Interaction Equivalence is an equational theory!

P

C

Q

Ck k

P ≃ Q

▶ Duality between Program/Context reminiscent of Game
Semantics

▶ Modeling communication P |C akin to π-calculus and LTS

”The meaning of a program should express its history of access to
resources which are not local to it.” – Milner 1975
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Inspecting Black Boxes
Contextual equivalences are hard to check! ∀-quantifier

Intensional equivalences are easy to check!
→ Böhm tree equivalence, normal form bisimilarity, set of
approximants, etc.

Second contribution:
interaction equivalence is exactly Böhm tree equivalence

Also answering an open question in the λ-calculus: which contextual
equivalence can match Böhm tree equivalence?
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The Checkers λ-Calculus
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The Checkers λ-Calculus

Λ ∋ t, u := x | λx .t | tu
Λ•◦ ∋ t, u := x | λ•x .t | t • u

| λ◦x .t | t ◦ u

Silent Steps:
(λ•x .t) • u 7→βτ t{x := u}
(λ◦x .t) ◦ u 7→βτ t{x := u}

Interaction Steps:
(λ•x .t) ◦ u 7→β t{x := u}
(λ◦x .t) • u 7→β t{x := u}

Intuition: C
◦⟨t•⟩
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Tags Get Mixed

Intuition: C
◦⟨t•⟩

C := (λx .⟨·⟩)I I t := λy .yx

C
◦⟨t•⟩ = (λ◦x .λ•y .y • x) ◦ I◦ ◦ I◦

→βτ (λ•y .y • I◦) ◦ I◦
→β I◦ • I◦
→β I◦
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Interaction Cost?

Counting interactions depends on the reduction sequence.

(λ•x .x • x) • (I◦ • I•)

(λ•x .x • x) • I• (I◦ • I•) • (I◦ • I•)

I• • I•

1 interaction step 1 silent step

1 silent step 2 interaction step

The checkers calculus is confluent but does not preserve interaction
steps.

We consider the head interaction cost :

t ⇓ k
h means t head-normalizes with k interaction steps
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Counting Interactions in Contextual Equivalence

We define quantitative contextual relations for the checkers calculus.
Let t, t′ ∈ Λ•◦

▶ Quantitative Contextual Equivalence:
t ≡ctx u if,

∀ colored C, ∀k, [ C⟨t⟩ ⇓ k
h ⇐⇒ C⟨u⟩ ⇓ k

h ];

▶ Quantitative Contextual Preorder:
t ⊑ctx u [u simulates t] if,

∀ colored C, ∀k , [ C⟨t⟩ ⇓ k
h =⇒ C⟨u⟩ ⇓ k

h ];

Key Point: we ignore silent steps and count interaction steps.

12 / 32



Counting Interactions in Contextual Equivalence

We define quantitative contextual relations for the checkers calculus.
Let t, t′ ∈ Λ•◦

▶ Quantitative Contextual Equivalence:
t ≡ctx u if,

∀ colored C, ∀k, [ C⟨t⟩ ⇓ k
h ⇐⇒ C⟨u⟩ ⇓ k

h ];

▶ Quantitative Contextual Preorder:
t ⊑ctx u [u simulates t] if,

∀ colored C, ∀k , [ C⟨t⟩ ⇓ k
h =⇒ C⟨u⟩ ⇓ k

h ];

Key Point: we ignore silent steps and count interaction steps.

12 / 32



Interaction Equivalence

Λ◦•Λ

Λ• Λ◦λx.x

λx.xx
λ•x.x • x

λ•x.x

λ◦x.x ◦ x

λ◦x.x

λ◦x.x • x

λ•x.x ◦ x

t 7→ t•

t ⊑int u if t• ⊑ctx u•

Note that contexts have both black or white constructors.
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Interaction Equivalence is an Equational Theory

1. Equivalence Relation;

2. Context-Closed: if t ⊑int u then ∀C , C ⟨t⟩ ⊑int C ⟨u⟩;
→ Straightforward, as C⟨C •⟩ is a colored context.

3. Invariance: if t =β u then t ⊑int u.
→ As in the plain case, it requires some work: rewriting
theorems between head and beta and specialized to the
checkers calculus.
For the interaction part, note that t• =βτ u•.
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But... What terms are interaction (in)equivalent?

Interaction equivalence is not stable by η-equivalence!
η-equivalence: λx .tx =η t if x ̸∈ fv(t)

I := λx .x ̸≡int λx .λy .xy =: 1

▶ The separating context C := ⟨·⟩ ◦ z ◦ w distinguishes 1 and I:

1• ◦ z ◦ w

(λ•y .z • y) ◦ w z • w

I• ◦ z ◦ w z ◦ w

̸=

h

•η h

h

The interaction preorder strictly refines the contextual preorder.

t =β u =⇒ t ⊑int u =⇒
̸⇐

t ⊑ctx u
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Characterizing the Interaction Preorder

The interaction preorder is characterized by the preorder induced by
Böhm trees ⊑B.

To prove that ⊑B = ⊑int, we develop interaction-based refinements
of standard techniques for the λ-calculus:

t ⊑B u t ⊑int u

Interaction Böhm-out

Black and White Intersection types
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Böhm trees

Definition (Böhm tree of a term)

Let t ∈ Λ.

▶ If t →∗
h λx1 . . . xn.y t1 · · · tk :

BT(t) := λx1 . . . xn.y

BT(t1) BT(tk )· · ·

▶ Otherwise, t is head diverging:

BT(t) := ⊥.

Preorder on Böhm trees: BT(t) ≤⊥ BT(u) if

BT(t) = λx1 . . . xn.y

...
⊥· · ·

and

BT(u) = λx1 . . . xn.y

...
λy1 . . . yp .z· · ·

· · ·
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Normal Form Bisimulations (instead of Böhm trees)

Definition (Head Normal Form Simulation)

The relation R ∈ Λ× Λ is a head normal form simulation if:
whenever tRu we have that either:

▶ Normal forms: t →∗
h λx1 . . . xn.y t1 · · · tk and

u →∗
h λx1 . . . xn.y u1 · · · uk such that ti R ui for all i .

▶ or, Divergence: t is head diverging.

⊑B is defined by coinduction as the largest hnf simulation.

Preorders match: t ⊑B u iff BT(t) ≤⊥ BT(u)
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Böhm trees up to η equivalence

BT(I) = λx .x BT(1) = λx .λy .x

y

BT(J) = λx .λy0.x

λy1.y0

λy2.y1

Theorem (Hyland75/Wadsworth76)

For all λ-terms t, u, we have t ⊑ctx u if and only if t ⊑Bη∞ u.
Therefore t ≡ctx u if and only if t =Bη∞ u.
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Interaction ⇒ Böhm

▶ Interaction refines Contextual:
If t ⊑int u then t ⊑ctx u

▶ Interaction does not allow any kind of eta:
If t ⊑int u and t ⊑Bη∞ u then t ⊑B u [Checkers Böhm out]

▶ Hyland & Wadsworth:
If t ⊑ctx u then t ⊑Bη∞ u [Standard Böhm out]

Therefore ⊑int⊆⊑B.

20 / 32



White Contexts are Enough

One can define a restrained interaction preorder, where contexts are
all white:

t ⊑◦−int u if, for all contexts C , for all k such that C ◦⟨t•⟩ ⇓ k
h ,

then C ◦⟨u•⟩ ⇓ k
h ;

White contexts are, in particular, checkers contexts: ⊑int ⊆ ⊑◦−int

We show, by other means, that ⊑B ⊆ ⊑int.
Böhm-out contexts can be white contexts: ⊑◦−int ⊆ ⊑B
Hence, ⊑◦−int ⊆ ⊑B ⊆ ⊑int ⊆ ⊑◦−int.
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Interaction ⇐⇒ Böhm

We know that interaction equivalence may only equate at most
Böhm tree equivalent terms.
Now we will show that in fact ⊑int=⊑B.

Through Intersection Types !
Intersection Types

t ≡B u t ≡typ u

t ⊑B u t ⊑int−typ u t ⊑int u

In the literature

Quantitative properties
Tight technique

Interaction Böhm out technique
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Intersection Types for Plain λ-Calculus

Terms can multiple types:
x : β1 ∩ β2, . . . , y : α ⊢ t : α ∩ β

All terminating terms are typable:
x : β → α, x : β ⊢ xx : α

The application rule of intersection types:

Γ ⊢ t : [β1, . . . , βi ] ⊸ α ∆1 ⊢ u :β1 · · · ∆i ⊢ u :βi
Γ ⊎∆1 ⊎ · · · ⊎∆i ⊢ tu :α

@
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Intersection Types for the Checkers Calculus

Types L, L′ ::= A | M pq−→ L p, q ∈ {◦, •}
Multi types M,N ::= [L1, . . . , Ln] n ≥ 0

x : [L] ⊢0 x :L
ax

(Γi ⊢li t :Li )i∈I I finite

⊎i∈IΓi ⊢
∑

i∈I li t : [Li ]i∈I

many

Γ, x :M ⊢k t :L

Γ ⊢k λpx .t :M
pq−→ L

λ

Γ ⊢l t :M
pp⊥−−→ L′ ∆ ⊢h u :M

Γ ⊎∆ ⊢l+h+1 t ·p⊥ u :L
@

Γ ⊢l t :M
pp−→ L′ ∆ ⊢h u :M

Γ ⊎∆ ⊢l+h t ·p u :L
@τ

▶ t ⊑typ u if ∀(Γ, L, k) Γ ⊢k t :L =⇒ Γ ⊢k u :L
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Checkers Type Equivalence is an Equational Theory

1. Compatibility: if t ⊑typ u then C⟨t⟩ ⊑ctx C⟨u⟩ for all black and
white context C;
→ Straightforward, as types are defined compositionally.

2. Invariance: if t =β u then t ⊑typ u.
→ Subject Reduction/expansion! Crucially quantities are
preserved only for silent steps
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Good Properties of Checkers Intersection Types

▶ Subject Reduction and Expansion:
If t→hτu then for all (Γ, L), Γ ⊢k t :L ⇐⇒ Γ ⊢k u :L
If t →h u then for all (Γ, L), Γ ⊢k t :L ⇐⇒ Γ ⊢k−1 u :L

▶ Intuition: t ⇓ k
h ⇐⇒ ∃Γ, L, Γ ⊢k t :L

Not true! It’s only an upper bound

x : [0
◦•−→ L] ⊢0 x :0

◦•−→ L
ax

⊢0 I• :0
many

x : [0
◦•−→ L] ⊢1 x • I• :L

@
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Tightness of Intersection Types
▶ But sometimes the bound is exact:

x : [0
••−→ L] ⊢0 x :0

••−→ L
ax

⊢0 I• :0
many

x : [0
••−→ L] ⊢0 x • I• :L

@τ

▶ Built-in Tightness: for all colored head-normal form h, there
exists (Γ, L) such that Γ ⊢0 h :L

▶ t ⇓ k
h ⇐⇒ ∃ tight Γ, L, Γ ⊢k t :L

Thm: Checkers Type is included in Checkers Contextual, ⊑typ⊆⊑ctx

Proof.
Suppose t ⊑typ u. Let C such that C⟨t⟩ ⇓ k

h .
By tightness, there exists Γ, L such that Γ ⊢k C⟨t⟩ :L.
By compatibility of ⊑typ, Γ ⊢k C⟨u⟩ :L.
By tightness (of Γ, L), we have that C⟨u⟩ ⇓ k

h .
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Böhm ⇒ Type

t ⊑B u ⇒ t• ⊑typ u•

t• ⊑typ u•:
for all (π, Γ, L, k) such that π : Γ ⊢k t• :L ⇒ there exists π′ such
that π′ : Γ ⊢k u• :L

Proof.
By induction on (the size of) the type derivation π.
It is crucial that the type derivation of the normal form of t• is
smaller.

Non Idempotent Intersection Types!
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Summing Up

t ≡B u t ≡typ u

t ⊑B u t• ⊑typ u• t ⊑int u

t• ⊑◦−int u•

In the literature

Quantitative properties
Tight technique

White contexts are B & W ContextsInteraction Böhm out technique
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Optimize the number of interactions
▶ Interaction Preorder:

t ⊑int u [u simulates t] if,

∀ colored C, ∀k, [ C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k

h ];
▶ Interaction Improvement:

t ⊑int·imp u [u improves t] if,

∀ colored C, ∀k , [ C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k ′

h with k ′ ≤ k ];

▶ It does not change the induced equivalence relation.

η-reduction may improve terms, but η-expanding them can never
lead to improvement:

λy .xy ⊑int·imp x but x ̸⊑int·imp λy .xy

Future work: characterize exactly the interaction improvement.

⊑int ⊆
?

⊑int·imp ⊊ ⊑ctx

⊑B ⊊ ⊊ ⊑Bη∞
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⊑int ⊆
?

⊑int·imp ⊊ ⊑ctx

⊑B ⊊ ⊑B+ηred ⊊ ⊑Bη∞
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Checkers Types are η-flawed

Our current proof technique cannot go through: Checkers
Intersection Types do not support η-reduction.

x : [0
◦•−→ L] ⊢0 x :0

◦•−→ L ⊢0 y :0

x : [0
◦•−→ L] ⊢1 x • y :L

x : [0
◦•−→ L] ⊢1 λ•y .x • y :0 •p−→ L

but x : [0
◦•−→ L] ̸⊢k x :0

•p−→ L
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Conclusion

▶ Checkers Calculus: a new framework to represent interaction
between programs

▶ Interaction Equivalence: a cost-sensitive equational theory

▶ The first contextual characterization of Böhm tree equivalence
without non determinism in evaluation contexts! (and simple)

Future work:

▶ Work it out in Call-by-Value/Need, and in effectful extensions
λf .f () ≡ctx λf .f () ; f ()

▶ How does it relate to Game Semantics? to process calculi?

▶ What does our interaction cost represent?
Communication complexity?

Thank you!
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