Mirroring Call-by-Need, or Values Acting Silly

Beniamino Accattoli¹, Adrienne Lancelot¹²

¹Inria & LIX, École Polytechnique ²IRIF, Université Paris Cité & CNRS

July 1st 2025 - Journées PPS

Outline

Evaluation Strategies

Silly Substitution Calculus

Silly Multi Types

Call-by-Value and Operational Equivalence

Conclusion

Call-by-Name and Call-by-Value

Evaluation strategies describe how to compute.

 β -Reduction by Name: $(\lambda x.t)u \mapsto_{\beta} t\{x \leftarrow u\}$

 β -Reduction by Value: $(\lambda x.t) \mathbf{v} \mapsto_{\beta_{\mathbf{v}}} t\{x \leftarrow \mathbf{v}\}$

For values v that are *answers*, i.e. computations that ended.

Call-by-Name vs. Call-by-Value

Computations may never end: $\Omega := (\lambda x.xx)(\lambda x.xx)$

Let a constant function $always_1 : x \mapsto 1$. How to compute $always_1(\Omega)$?

Call-by-Name vs. Call-by-Value

Computations may never end: $\Omega := (\lambda x.xx)(\lambda x.xx)$

```
Let a constant function always_1 : x \mapsto 1.
How to compute always_1(\Omega)?
```


Call-by-Name and Call-by-Value compute quite differently. **Efficiency:** Call-by-Value computes *faster* than Call-by-Name. **Erasability:** Call-by-Value gets stuck on *erasable* arguments. Efficiency and Erasability can be combined: Call-by-Need! Call-by-Name and Call-by-Value compute quite differently.

Efficiency: Call-by-Value computes *faster* than Call-by-Name.

Erasability: Call-by-Value gets stuck on *erasable* arguments.

Efficiency and Erasability can be combined: Call-by-Need!

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value Silly Erasure	Call-by-Silly	Call-by-Value

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value Silly Erasure	Call-by-Silly	Call-by-Value

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value Silly Erasure	Call-by-Silly	Call-by-Value

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value <i>Silly Erasure</i>	Call-by-Silly	Call-by-Value

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value <i>Silly Erasure</i>	Call-by-Silly	Call-by-Value

Evaluation Strategies: duplication and erasure rules

$$\mathsf{Duplication} \,\, \mathsf{by} \,\, \mathsf{Name:} \quad (\lambda x.t) u \mapsto_\beta t\{x {\leftarrow} u\} \quad \mathsf{where} \,\, x \in \mathtt{fv}(t)$$

Duplication by Value: $(\lambda x.t) \mathbf{v} \mapsto_{\beta} t\{x \leftarrow \mathbf{v}\}$ where $x \in fv(t)$

Erasure by Name:
$$(\lambda x.t)u \mapsto_{\beta} t\{x \leftarrow u\}$$
 where $x \notin fv(t)$

Erasure by Value: $(\lambda x.t)\mathbf{v} \mapsto_{\beta} t\{x \leftarrow \mathbf{v}\}$ where $x \notin fv(t)$

Mirroring Call-by-Need, Or Values Acting Silly Contributions

Main results about Call-by-Silly:

- - Rewriting Properties and Multi Types
- CbSilly induces the same contextual equivalence than CbV
 - Mirroring the main theorem about CbNeed
 - Helpful to prove CbV contextual equivalence
 - CbV contextual equivalence is blind wrto efficiency

Quantitative study of types: Call-by-Silly really is inefficient

Mirroring Call-by-Need, Or Values Acting Silly Contributions

Main results about Call-by-Silly:

CbSilly induces the same contextual equivalence than CbV
 Mirroring the main theorem about CbNeed
 Helpful to prove CbV contextual equivalence
 CbV contextual equivalence is blind wrto efficiency

Through Intersection Types!

 \rightsquigarrow Quantitative Knowledge

Outline

Evaluation Strategies

Silly Substitution Calculus

Silly Multi Types

Call-by-Value and Operational Equivalence

Conclusion

Silly Substitution Calculus

$$\begin{array}{rrrr} (\lambda x.t)u &\mapsto_{\mathtt{m}} & t[x \leftarrow u] \\ \dots x \dots [x \leftarrow u] &\mapsto_{\mathtt{e}} & \dots u \dots [x \leftarrow u] \\ t[x \leftarrow v] &\mapsto_{\mathtt{gcv}} & t & \text{if } x \notin \mathtt{fv}(t) \end{array}$$

 $ightarrow_{sil}$ is the weak contextual closure of $\mapsto_{\mathtt{m}}$, $\mapsto_{\mathtt{e}_W}$ and $\mapsto_{\mathtt{gcv}}$.

Silly Substitution Calculus

$$\begin{array}{rcl} \text{Terms} & t, u, s & ::= & x \mid \lambda x.t \mid tu \mid t[x \leftarrow u] \\ \text{Values} & v, v' & ::= & \lambda x.t \\ \text{Sub. CTXS} & S, S' & ::= & \langle \cdot \rangle \mid S[x \leftarrow u] \\ \text{Weak contexts} & W & ::= & \langle \cdot \rangle \mid Wt \mid tW \mid t[x \leftarrow W] \mid W[x \leftarrow u] \end{array}$$

$$\begin{array}{rcl} (\lambda x.t)u &\mapsto_{\mathtt{m}} & t[x \leftarrow u] \\ W\langle\!\langle x \rangle\!\rangle [x \leftarrow u] &\mapsto_{\mathtt{e}_W} & W\langle\!\langle u \rangle\!\rangle [x \leftarrow u] \\ t[x \leftarrow v] &\mapsto_{\mathtt{gcv}} & t & \mathrm{if} \; x \notin \mathtt{fv}(t) \end{array}$$

 $\rightarrow_{\texttt{sil}}$ is the weak contextual closure of $\mapsto_{\texttt{m}}, \mapsto_{\texttt{e}_{W}} \texttt{and} \mapsto_{\texttt{gcv}}.$

Silly Substitution Calculus

$$\begin{array}{rcl} \text{Terms} & t, u, s & ::= & x \mid \lambda x.t \mid tu \mid t[x \leftarrow u] \\ \text{Values} & v, v' & ::= & \lambda x.t \\ \text{Sub. CTXs} & S, S' & ::= & \langle \cdot \rangle \mid S[x \leftarrow u] \\ \text{Weak contexts} & W & ::= & \langle \cdot \rangle \mid Wt \mid tW \mid t[x \leftarrow W] \mid W[x \leftarrow u] \end{array}$$

$$\begin{array}{rcl} S\langle \lambda x.t\rangle u &\mapsto_{\mathtt{m}} & S\langle t[x\leftarrow u]\rangle \\ W\langle\!\!\langle x\rangle\!\!\rangle[x\leftarrow u] &\mapsto_{\mathtt{e}_W} & W\langle\!\!\langle u\rangle\!\!\rangle[x\leftarrow u] \\ t[x\leftarrow S\langle v\rangle] &\mapsto_{\mathtt{gcv}} & S\langle t\rangle & \text{if } x \notin \mathtt{fv}(t) \end{array}$$

 $\rightarrow_{\texttt{sil}}$ is the weak contextual closure of $\mapsto_{\texttt{m}}, \mapsto_{\texttt{e}_{W}} \texttt{and} \mapsto_{\texttt{gcv}}.$

The Silly Extra Copy

Let *double* := $x \mapsto x + x$. How to silly compute *double*(2 + 3)?

Please wait while I compute 2 + 3 again

Outline

Evaluation Strategies

Silly Substitution Calculus

Silly Multi Types

Call-by-Value and Operational Equivalence

Conclusion

Silly Multi Types

LINEAR TYPES $L, L' ::= \text{norm} | M \rightarrow L$ MULTI TYPES $M, N ::= [L_i]_{i \in I}$ where I is a finite set GENERIC TYPES T, T' ::= L | M

$$\frac{\overline{x:[L] \vdash x:L}}{F \mid \forall x:L} ax \qquad \frac{(\Gamma_i \vdash t:L_i)_{i \in I}}{\exists_{i \in I} \Gamma_i \vdash t:[L_i]_{i \in I}} many \qquad \frac{\Gamma \vdash t:M \rightarrow L}{\exists_{i \in I} \Gamma_i \vdash t:L} \Delta \vdash u:M \uplus [norm]}{\Gamma \uplus \Delta \vdash tu:L} @$$

$$\frac{\Gamma \vdash t:L}{\Gamma \mid \forall x \vdash \lambda x.t:\Gamma(x) \rightarrow L} \lambda = \frac{\Gamma \vdash t:L}{(\Gamma \mid \forall x) \uplus \Delta \vdash t[x \leftarrow u]:L} ES$$

Example of type derivation

n := norm

Through standard methods for non idempotent intersection types, we get that typability is equivalent to silly termination.

Theorem

Let t be a term.

- 1. Correctness: if $\pi \triangleright \Gamma \vdash t : L$ then $t \text{ is } \rightarrow_{sil}$ -normalizing.
- 2. Completeness: if t is \rightarrow_{sil} -normalizing then there exists $\pi \triangleright \Gamma \vdash t : \text{norm.}$

Outline

Evaluation Strategies

Silly Substitution Calculus

Silly Multi Types

Call-by-Value and Operational Equivalence

Conclusion

Closed Call-by-Value

TERMS
$$t, u, s ::= x | \lambda x.t | tu$$

VALUES $v, v' ::= \lambda x.t$

$$\frac{t \to_{\beta_v} t'}{(\lambda x.t)v \to_{\beta_v} t\{x \leftarrow v\}} \quad \frac{t \to_{\beta_v} t'}{tu \to_{\beta_v} t'u} \quad \frac{t \to_{\beta_v} t'}{ut \to_{\beta_v} ut'}$$

Silly Multi Types and Closed CbV

Theorem

Let t be a closed term.

- 1. Correctness: if $\pi \triangleright \vdash t : L$ then $t \text{ is } \rightarrow_{\beta_v}$ -normalizing.
- 2. Completeness: if t is \rightarrow_{β_v} -normalizing then there exists $\pi \triangleright \vdash t : \text{norm.}$

TFAE, for a closed term *t*:

- ► Typability in Silly Multi Types: $\pi \triangleright \vdash t : L$
- ► CbV normalization: $t \rightarrow^*_{\beta_v} v$
- CbSilly normalization: $t \rightarrow^*_{sil} v$

Silly Multi Types and Closed CbV

Theorem

Let t be a closed term.

- 1. Correctness: if $\pi \triangleright \vdash t : L$ then t is \rightarrow_{β_v} -normalizing.
- 2. Completeness: if t is \rightarrow_{β_v} -normalizing then there exists $\pi \triangleright \vdash t : \text{norm.}$

TFAE, for a closed term t:

- Typability in Silly Multi Types: $\pi \triangleright \vdash t : L$
- CbV normalization: $t \rightarrow^*_{\beta_v} v$
- CbSilly normalization: $t \rightarrow^*_{sil} v$

Definition (Contextual Equivalence)

We define contextual equivalence \simeq_C^s for a rewriting relation \rightarrow_s :

 $t \simeq_C t'$ if for all C contexts such that $C\langle t \rangle$ and $C\langle t' \rangle$ are closed terms, $C\langle t \rangle$ is \rightarrow_s -normalizing iff $C\langle t' \rangle$ is \rightarrow_s -normalizing.

Let us consider $\simeq_C^{\beta_v}$, Plotkin's CbV contextual equivalence induced by \rightarrow_{β_v} and \simeq_C^{silly} , the contextual equivalence induced by \rightarrow_{sil} . CbV and Silly induce the same contextual equivalence

- Theorem $\simeq_{C}^{\beta_{v}} = \simeq_{C}^{silly}$ Proof. $t \simeq_{C}^{\beta_{v}} t' \iff$
- For all C contexts such that $C\langle t \rangle$ and $C\langle t' \rangle$ are closed terms, $C\langle t \rangle$ is \rightarrow_{β_v} -normalizing iff $C\langle t' \rangle$ is \rightarrow_{β_v} -normalizing.

[On closed terms, \rightarrow_{β_v} -normalization is equivalent to Silly typability]

$$\iff \qquad \text{For all } C \text{ contexts such that } C\langle t \rangle \text{ and } C\langle t' \rangle \text{ are } \\ \text{closed terms, } \pi \triangleright \vdash C\langle t \rangle : L \\ \text{iff } \pi' \triangleright \vdash C\langle t' \rangle : L'. \end{cases}$$

[(On all terms,) Silly typability is equivalent to silly \rightarrow_{sil} -normalization]

$$\begin{array}{ll} \Longleftrightarrow & \mbox{For all } C \mbox{ contexts such that } C\langle t \rangle \mbox{ and } C\langle t' \rangle \mbox{ are } \\ & \mbox{ closed terms, } C\langle t \rangle \mbox{ is } \rightarrow_{\tt sil} - \mbox{ normalizing } \\ & \mbox{ iff } C\langle t' \rangle \mbox{ is } \rightarrow_{\tt sil} - \mbox{ normalizing.} \\ & & \mbox{ } t \simeq_C^{silly} t' \end{array}$$

24 / 29
CbSilly helps to prove CbV contextual equivalence

Let *i* any normal norm that does not look like an abstraction, for example i = yI. Consider the four following terms:

$$(\lambda x.xx)i$$
 $(\lambda x.xi)i$ $(\lambda x.ii)i$ ii

How to prove these terms are CbV contextually equivalent?

- (λx.xx) i, (λx.xi) i and (λx.ii) i all reduce to the same silly normal form ii[x←i]
- $\blacktriangleright (\lambda x.xx) i =_{sil} (\lambda x.xi) i =_{sil} (\lambda x.ii) i =_{sil} ii[x \leftarrow i]$
- **Proposition:** if $t =_{sil} u$ then $t \simeq_C^{silly} u$
- $(\lambda x.xx) i \simeq_{C}^{silly} (\lambda x.xi) i \simeq_{C}^{silly} (\lambda x.ii) i \simeq_{C}^{silly} ii[x \leftarrow i]$ $(\lambda x.xx) i \simeq_{C}^{\beta_{v}} (\lambda x.xi) i \simeq_{C}^{\beta_{v}} (\lambda x.ii) i \simeq_{C}^{\beta_{v}} ii[x \leftarrow i]$

CbSilly helps to prove CbV contextual equivalence

Let *i* any normal norm that does not look like an abstraction, for example i = yI. Consider the four following terms:

$$(\lambda x.xx)i$$
 $(\lambda x.xi)i$ $(\lambda x.ii)i$ ii

How to prove these terms are CbV contextually equivalent?

(λx.xx) i, (λx.xi) i and (λx.ii) i all reduce to the same silly normal form ii[x←i]

$$\blacktriangleright (\lambda x.xx) i =_{sil} (\lambda x.xi) i =_{sil} (\lambda x.ii) i =_{sil} ii[x \leftarrow i]$$

Proposition: if $t =_{sil} u$ then $t \simeq_C^{silly} u$

$$(\lambda x.xx) i \simeq_{C}^{silly} (\lambda x.xi) i \simeq_{C}^{silly} (\lambda x.ii) i \simeq_{C}^{silly} ii[x \leftarrow i]$$
$$(\lambda x.xx) i \simeq_{C}^{\beta_{v}} (\lambda x.xi) i \simeq_{C}^{\beta_{v}} (\lambda x.ii) i \simeq_{C}^{\beta_{v}} ii[x \leftarrow i]$$

CbSilly helps to prove CbV contextual equivalence

Let *i* any normal norm that does not look like an abstraction, for example i = yI. Consider the four following terms:

$$(\lambda x.xx)i$$
 $(\lambda x.xi)i$ $(\lambda x.ii)i$ iii

How to prove these terms are CbV contextually equivalent?

(λx.xx) i, (λx.xi) i and (λx.ii) i all reduce to the same silly normal form ii[x←i]

$$\blacktriangleright (\lambda x.xx) i =_{sil} (\lambda x.xi) i =_{sil} (\lambda x.ii) i =_{sil} ii[x \leftarrow i]$$

Proposition: if $t =_{sil} u$ then $t \simeq_C^{silly} u$

$$(\lambda x.xx) i \simeq_{C}^{silly} (\lambda x.xi) i \simeq_{C}^{silly} (\lambda x.ii) i \simeq_{C}^{silly} ii[x \leftarrow i] (\lambda x.xx) i \simeq_{C}^{\beta_{v}} (\lambda x.xi) i \simeq_{C}^{\beta_{v}} (\lambda x.ii) i \simeq_{C}^{\beta_{v}} ii[x \leftarrow i]$$

Outline

Evaluation Strategies

Silly Substitution Calculus

Silly Multi Types

Call-by-Value and Operational Equivalence

Conclusion

Conclusion

In the paper:

- Introduce a degenerated reduction, call-by-silly
- Mirroring the main theorem about CbN and CbNeed: call-by-silly and call-by-value generate the same contextual equivalence
- Helps to prove CbV contextual equivalence: convertibility in call-by-silly
- Tight types and maximality: the type system exactly measures the reduction length of a call-by-silly strategy. We can also show thanks to the type system that this strategy is maximal in some sense.

Future work:

- Refining CbV contextual equivalence to forbid silly duplications and be aware of efficiency
- Categorical or Game Semantics for CbSilly and CbNeed?

Call-by-Value (contextual equivalence)

Call-by-Silly

Please wait while I compute 2 + 3 again

Thank you for your attention!

	Duplication by Name Silly Duplication	Duplication by Value Wise Duplication
Erasure by Name Wise Erasure	Call-by-Name	Call-by-Need
Erasure by Value <i>Silly Erasure</i>	Call-by-Silly	Call-by-Value
LOADING		

Please wait while I compute 2 + 3 again

The problem with variable as values

$$x[z \leftarrow ww]_{wgcv} \leftarrow x[y \leftarrow z][z \leftarrow ww] \rightarrow_{e_W} x[y \leftarrow ww][z \leftarrow ww]$$

Similar issues arise in CbNeed:

 $\begin{array}{c} x(\lambda z.wx)[x \leftarrow y][y \leftarrow I] & \longrightarrow \\ \downarrow & \downarrow \\ y(\lambda z.wx)[x \leftarrow y][y \leftarrow I] & \longrightarrow \\ I(\lambda z.wx)[x \leftarrow y][y \leftarrow I] & I(\lambda z.wx)[x \leftarrow y][y \leftarrow I] \\ \end{array}$

The problem with variable as values

$$x[z \leftarrow ww]_{wgcv} \leftarrow x[y \leftarrow z][z \leftarrow ww] \rightarrow_{e_W} x[y \leftarrow ww][z \leftarrow ww]$$

Similar issues arise in CbNeed:

$$\begin{array}{c} x(\lambda z.wx)[x\leftarrow y][y\leftarrow I] & \longrightarrow \\ \downarrow & \downarrow \\ y(\lambda z.wx)[x\leftarrow y][y\leftarrow I] & \longrightarrow \\ I(\lambda z.wx)[x\leftarrow y][y\leftarrow I] & I(\lambda z.wx)[x\leftarrow y][y\leftarrow I] \\ \end{array}$$

Why Silly Types do not work for Open CbV

For $n \ge 1$, we have the following derivation for the source term $z((\lambda x.y)u)$ in the silly type system:

where $\pi_z \triangleright \ldots$ stands for:

$$\pi_z \triangleright z : [[A^n] \rightarrow B] \vdash z : [A^n] \rightarrow B$$

The term $(\lambda x.zy)u$, instead, can only be typed as follows, the key point being that Γ^{n+1} is replaced by Γ :

The Call-by-Silly Strategy

CALL-BY-NAME STRATEGY
$$\rightarrow_{n}$$

NAME CTXS $N, N' ::= \langle \cdot \rangle \mid Nt \mid N[x \leftarrow t]$
ROOT GC $t[x \leftarrow s] \mapsto_{gc} t$ if $x \notin fv(t)$
 $\rightarrow_{nc} := N \langle \mapsto_{e_{N}} \rangle$
 $\rightarrow_{ngc} := N \langle \mapsto_{gc} \rangle$
 $\rightarrow_{n} := \rightarrow_{nm} \cup \rightarrow_{ne} \cup \rightarrow_{ngcv}$

Call-by-silly strategy \rightarrow_y

Figure 4 The call-by-name and call-by-silly strategies.

The Call-by-Silly Strategy: example

CBS EXTENSION:

$$\begin{array}{c} \rightarrow_{\mathsf{ye}_{\mathsf{A}\mathsf{Y}}} \mathbf{1}[z \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}][y \leftarrow \mathbf{I}\mathbf{I}] \\ \rightarrow_{\mathsf{ym}} \mathbf{I}[z' \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}][y \leftarrow \mathbf{I}\mathbf{I}] \\ \rightarrow_{\mathsf{ym}} \mathbf{I}[z' \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}[z' \leftarrow \mathbf{I}][x \leftarrow \mathbf{I}][y \leftarrow \mathbf{I}\mathbf{I}] \\ \rightarrow_{\mathsf{ym}} \mathbf{I}[z' \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}[z' \leftarrow \mathbf{I}][z \leftarrow \mathbf{I}[z' \leftarrow \mathbf{I}]] \\ \end{array} \right)$$

T[1/2, T][1/2, TT][1/2, T][1/2, TT]