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Call-by-Name and Call-by-Value

Evaluation strategies describe how to compute.

β-Reduction by Name: (λx .t)u 7→β t{x�u}

β-Reduction by Value: (λx .t)v 7→βv t{x�v}

For values v that are answers, i.e. computations that ended.
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Call-by-Name vs. Call-by-Value
Let double := x 7→ x + x . How do you calculate double(2 + 3)?

Call-by-Name Call-by-Value

double(2 + 3)

(2 + 3) + (2 + 3) double(5)

5 + (2 + 3)

5 + 5

10

Feed any argument Only feed functions
to any function with values
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Call-by-Name vs. Call-by-Value

Computations may never end: Ω := (λx .xx)(λx .xx)

Let a constant function always 1 : x 7→ 1.
How to compute always 1(Ω)?

Call-by-Name Call-by-Value

always 1(Ω)

1 always 1(Ω)

Feed any argument Only feed functions
to any function with values
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Call-by-Name vs. Call-by-Value

Call-by-Name and Call-by-Value compute quite differently.

Efficiency: Call-by-Value computes faster than Call-by-Name.

Erasability: Call-by-Value gets stuck on erasable arguments.

Efficiency and Erasability can be combined: Call-by-Need!
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Evaluation Strategies combining Name and Value

Duplication by Name
Silly Duplication

Duplication by Value
Wise Duplication

Erasure by Name
Wise Erasure

Call-by-Name Call-by-Need

Erasure by Value
Silly Erasure

Call-by-Silly Call-by-Value
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Evaluation Strategies: duplication and erasure rules

Duplication by Name: (λx .t)u 7→β t{x�u} where x ∈ fv(t)

Duplication by Value: (λx .t)v 7→β t{x�v} where x ∈ fv(t)

Erasure by Name: (λx .t)u 7→β t{x�u} where x ̸∈ fv(t)

Erasure by Value: (λx .t)v 7→β t{x�v} where x ̸∈ fv(t)
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Mirroring Call-by-Need, Or Values Acting Silly
Contributions

Main results about Call-by-Silly:

▶ Rewriting Properties and Multi Types

▶ CbSilly induces the same contextual equivalence than CbV
▶ Mirroring the main theorem about CbNeed
▶ Helpful to prove CbV contextual equivalence
▶ CbV contextual equivalence is blind wrto efficiency

▶ Quantitative study of types: Call-by-Silly really is inefficient
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Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

((λx .I)Ω, I)

((λx .I)Ω,Ω)

(I,Ω)

I =CbN (λx .I)Ω =CbV Ω

I ̸=CbN Ω ̸=CbV I
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Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

CbNeed Contextual Equivalence CbSilly Contextual Equivalence

Kesner [FoSSaCS 2016] This Paper

Through Intersection Types!
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Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

CbNeed Contextual Equivalence CbSilly Contextual Equivalence

Kesner [FoSSaCS 2016] This Paper

Through Non Idempotent Intersection Types!

⇝ Quantitative Knowledge
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Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

CbNeed Contextual Equivalence CbSilly Contextual Equivalence

Kesner [FoSSaCS 2016] This Paper

Through Intersection Types!

⇝ Quantitative Knowledge

For Ctx Equivalence:
Duplication does not matter, Erasure matters.
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Silly Substitution Calculus

Terms t, u, s ::= x | λx .t | tu | t[x�u]
Values v , v ′ ::= λx .t

Sub. Ctxs S , S ′ ::= ⟨·⟩ | S [x�u]
Weak contexts W ::= ⟨·⟩ |Wt | tW | t[x�W ] |W [x�u]

(λx .t)u 7→m t[x�u]
... x ...[x�u] 7→e ... u ...[x�u]

t[x�v ] 7→gcv t if x /∈ fv(t)

→sil is the weak contextual closure of 7→m, 7→eW and 7→gcv.
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The Silly Extra Copy
Let double := x 7→ x + x . How to silly compute double(2 + 3)?

double(2 + 3)

x + x [x�2 + 3]

(2 + 3) + x [x�2 + 3] x + (2 + 3) [x�2 + 3]

(2 + 3) + (2 + 3) [x�2 + 3]

(2 + 3) + (2 + 3) [x�5] 5 + (2 + 3) [x�2 + 3]

... 5 + 5 [x�2 + 3] . . .

10 [x�2 + 3]

... 10 [x�5]

10

computing the silly extra copy

garbage collector
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Please wait while I compute 2 + 3 again
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Silly Multi Types

Linear types L, L′ ::= norm | M→L
Multi types M,N ::= [Li ]i∈I where I is a finite set

Generic types T ,T ′ ::= L | M

ax
x : [L] ⊢ x : L

(Γi ⊢ t : Li )i∈I many
⊎i∈IΓi ⊢ t : [Li ]i∈I

axλ⊢ λx .t : norm
Γ ⊢ t :M→L ∆ ⊢ u :M ⊎ [norm]

@
Γ ⊎∆ ⊢ tu : L

Γ ⊢ t : L
λ

Γ \\x ⊢ λx .t : Γ(x)→L

Γ ⊢ t : L ∆ ⊢ u : Γ(x) ⊎ [norm]
ES

(Γ \\x) ⊎∆ ⊢ t[x�u] : L
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Example of type derivation

n := norm

⊢⊢⊢λy .yy : [[L]→L, L, n]→L

⊢⊢⊢II : [L]→L ⊢⊢⊢II : L ⊢⊢⊢II : n ⊢⊢⊢II : n

⊢⊢⊢II : [[L]→L, L, n] ⊎ [n]

⊢⊢⊢(λy .yy)(II) : L
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Silly Multi Types and the SSC

Through standard methods for non idempotent intersection types,
we get that typability is equivalent to silly termination.

Theorem
Let t be a term.

1. Correctness: if π ▷ Γ ⊢⊢⊢t : L then t is →sil-normalizing.

2. Completeness: if t is →sil-normalizing then there exists
π ▷ Γ ⊢⊢⊢t : norm.

19 / 29
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Closed Call-by-Value

Terms t, u, s ::= x | λx .t | tu
Values v , v ′ ::= λx .t

(λx .t)v →βv t{x�v}
t →βv t ′

tu →βv t ′u

t →βv t ′

ut →βv ut ′
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Silly Multi Types and Closed CbV

Theorem
Let t be a closed term.

1. Correctness: if π ▷ ⊢⊢⊢t : L then t is →βv -normalizing.

2. Completeness: if t is →βv -normalizing then there exists
π ▷ ⊢⊢⊢t : norm.

TFAE, for a closed term t:

▶ Typability in Silly Multi Types: π ▷ ⊢⊢⊢t : L

▶ CbV normalization: t →∗
βv

v

▶ CbSilly normalization: t →∗
sil v
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Contextual Equivalences

Definition (Contextual Equivalence)

We define contextual equivalence ≃s
C for a rewriting relation →s :

t ≃C t ′ if for all C contexts such that C ⟨t⟩ and C ⟨t ′⟩ are closed
terms, C ⟨t⟩ is →s -normalizing iff C ⟨t ′⟩ is →s -normalizing.

Let us consider ≃βv

C , Plotkin’s CbV contextual equivalence induced

by →βv and ≃silly
C , the contextual equivalence induced by →sil.
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CbV and Silly induce the same contextual equivalence

Theorem
≃βv

C =≃silly
C

Proof.
t ≃βv

C t ′ ⇐⇒ For all C contexts such that C ⟨t⟩ and C ⟨t ′⟩ are
closed terms, C ⟨t⟩ is →βv -normalizing

iff C ⟨t ′⟩ is →βv -normalizing.

[On closed terms, →βv -normalization is equivalent to Silly typability]

⇐⇒ For all C contexts such that C ⟨t⟩ and C ⟨t ′⟩ are
closed terms, π ▷ ⊢⊢⊢C ⟨t⟩ : L

iff π′ ▷ ⊢⊢⊢C ⟨t ′⟩ : L′.
[(On all terms,) Silly typability is equivalent to silly →sil-normalization]

⇐⇒ For all C contexts such that C ⟨t⟩ and C ⟨t ′⟩ are
closed terms, C ⟨t⟩ is →sil-normalizing

iff C ⟨t ′⟩ is →sil-normalizing.

⇐⇒ t ≃silly
C t ′
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CbSilly helps to prove CbV contextual equivalence

Let i any normal norm that does not look like an abstraction, for
example i = yI.
Consider the four following terms:

(λx .xx) i (λx .xi) i (λx .ii) i ii

How to prove these terms are CbV contextually equivalent?

▶ (λx .xx) i , (λx .xi) i and (λx .ii) i all reduce to the same silly
normal form ii [x�i ]

▶ (λx .xx) i =sil (λx .xi) i =sil (λx .ii) i =sil ii [x�i ]

▶ Proposition: if t =sil u then t ≃silly
C u

▶ (λx .xx) i ≃silly
C (λx .xi) i ≃silly

C (λx .ii) i ≃silly
C ii [x�i ]

▶ (λx .xx) i ≃βv

C (λx .xi) i ≃βv

C (λx .ii) i ≃βv

C ii [x�i ]
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Conclusion
In the paper:

▶ Introduce a degenerated reduction, call-by-silly

▶ Mirroring the main theorem about CbN and CbNeed:
call-by-silly and call-by-value generate the same contextual
equivalence

▶ Helps to prove CbV contextual equivalence: convertibility in
call-by-silly

▶ Tight types and maximality: the type system exactly measures
the reduction length of a call-by-silly strategy. We can also
show thanks to the type system that this strategy is maximal
in some sense.

Future work:

▶ Refining CbV contextual equivalence to forbid silly
duplications and be aware of efficiency

▶ Categorical or Game Semantics for CbSilly and CbNeed?
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Please wait while I compute 2 + 3 again
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Thank you for your attention!

Duplication by Name
Silly Duplication

Duplication by Value
Wise Duplication

Erasure by Name
Wise Erasure

Call-by-Name Call-by-Need

Erasure by Value
Silly Erasure

Call-by-Silly Call-by-Value

Please wait while I compute 2 + 3 again
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The problem with variable as values

x [z�ww ] wgcv← x [y�z ][z�ww ]→eW x [y�ww ][z�ww ]

Similar issues arise in CbNeed:

x(λz .wx)[x�y ][y�I] x(λz .wx)[x�I][y�I]

I(λz .wx)[x�I][y�I]y(λz .wx)[x�y ][y�I] I(λz .wx)[x�y ][y�I]
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Why Silly Types do not work for Open CbV
For n ≥ 1, we have the following derivation for the source term
z((λx .y)u) in the silly type system:

πz ▷ . . .

ax
y : [A] ⊢ y : A

λ
y : [A] ⊢ λx.y : 0→A

πu ▷ Γ ⊢ u : norm
many

Γ ⊢ u : [norm]
@

(y : [A], Γ ⊢ (λx.y)u : A)i=1,...,n

ax
y : [norm] ⊢ y : norm

λ
y : [norm] ⊢ λx.y : 0→norm

πu ▷ Γ ⊢ u : norm
many

Γ ⊢ u : [norm]
@

y : [norm], Γ ⊢ (λx.y)u : norm
many

y : [An, norm], Γn+1 ⊢ (λx.y)u : [An, norm]
@

z : [[An, norm]→B], y : [An, norm], Γn+1 ⊢ z((λx.y)u) : B

where πz ▷ . . . stands for:
ax

πz ▷ z : [[An]→B] ⊢ z : [An]→B

The term (λx .zy)u, instead, can only be typed as follows, the key
point being that Γn+1 is replaced by Γ:

ax
z : [[An ]→B] ⊢ z : [An ]→B

ax
(y : [A] ⊢ y : A)i=1,...,n

ax
y : [norm] ⊢ y : norm

many
y : [An, norm] ⊢ y : [An, norm]

@
z : [[An ]→B], y : [An, norm] ⊢ zy : B

λ
z : [[An ]→B], y : [An, norm] ⊢ λx.zy : 0→B

πu ▷ Γ ⊢ u : norm
many

Γ ⊢ u : [norm]
@

z : [[An ]→B], y : [An, norm], Γ ⊢ (λx.zy)u : B
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The Call-by-Silly Strategy
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The Call-by-Silly Strategy: example
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