
Interaction Equivalence

Beniamino Accattoli1, Adrienne Lancelot12,
Giulio Manzonetto2, Gabriele Vanoni2

1Inria & LIX, École Polytechnique
2Université Paris Cité, CNRS, IRIF

January 24th – POPL 2025

1 / 17

Program Equivalences

When are two programs equivalent?

In the λ-calculus, natural equivalences arise by identifying terms
with the same (possibly infinite) normal form (aka Böhm tree
equivalence).

This is not enough, some programs behave in the same way but do
not have exactly the same (infinite) normal form.

2 / 17

Contextual Equivalence

t u

When are two λ-terms equivalent? [Mor68]

t ≡ctx u if for all contexts C . [C ⟨t⟩ ⇓ ⇔ C ⟨u⟩ ⇓]

Head contextual equivalence is an equational theory,
where O := having a head normal form.

1. Equivalence Relation;

2. Context-Closed:

if t ≡ctx u then ∀C , C ⟨t⟩ ≡ctx C ⟨u⟩;
3. Invariance:

if t =β u then t ≡ctx u.

3 / 17

Contextual Equivalence

C

t
i

C

u
i

When are two λ-terms equivalent? [Mor68]

t ≡ctx u if for all contexts C . [C ⟨t⟩ ⇓ ⇔ C ⟨u⟩ ⇓]

Head contextual equivalence is an equational theory,
where O := having a head normal form.

1. Equivalence Relation;

2. Context-Closed:

if t ≡ctx u then ∀C , C ⟨t⟩ ≡ctx C ⟨u⟩;
3. Invariance:

if t =β u then t ≡ctx u.

3 / 17

Contextual Equivalence

C

t
i o1 ∈ O

C

u
i o2 ∈ O

When are two λ-terms equivalent? (It depends on the
Observables) [Mor68]

t ≡ctx u if for all contexts C . [C ⟨t⟩ ⇓O ⇔ C ⟨u⟩ ⇓O]

Head contextual equivalence is an equational theory,
where O := having a head normal form.

1. Equivalence Relation;
2. Context-Closed:

if t ≡ctx u then ∀C , C ⟨t⟩ ≡ctx C ⟨u⟩;
3. Invariance:

if t =β u then t ≡ctx u.
3 / 17

Contextual Equivalence

C

t
i o1 ∈ O

C

u
i o2 ∈ O

When are two λ-terms equivalent? (It depends on the
Observables) [Mor68]

t ≡ctx u if for all contexts C . [C ⟨t⟩ ⇓O ⇔ C ⟨u⟩ ⇓O]

Head contextual equivalence is an equational theory,
where O := having a head normal form.

1. Equivalence Relation;
2. Context-Closed:

if t ≡ctx u then ∀C , C ⟨t⟩ ≡ctx C ⟨u⟩;
3. Invariance:

if t =β u then t ≡ctx u.
3 / 17

Sands’ improvement & cost equivalence

Sands’ cost equivalence [San99] is defined as:

t ≡cost u if ∀C , ∀k ≥ 0 . [C ⟨t⟩⇓k
O ⇔ C ⟨u⟩⇓k

O]

Again, we specify to the λ-calculus, where O :=⇓h .

Not an equational theory!
I =β I I but I ̸≡cost II

4 / 17

Sands’ improvement & cost equivalence

Sands’ cost equivalence [San99] is defined as:

t ≡cost u if ∀C , ∀k ≥ 0 . [C ⟨t⟩⇓k
O ⇔ C ⟨u⟩⇓k

O]

Again, we specify to the λ-calculus, where O :=⇓h .

Not an equational theory!
I =β I I but I ̸≡cost II

4 / 17

The best of both worlds?
Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a
context modulo the internal dynamics?

Our contribution: a framework to identify
internal and interaction steps for the
untyped λ-calculus
→ checkers λ-calculus

5 / 17

The best of both worlds?
Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a
context modulo the internal dynamics?

P

C

Q

Ck k

P ≃ Q

Our contribution: a framework to identify
internal and interaction steps for the
untyped λ-calculus
→ checkers λ-calculus

5 / 17

The best of both worlds?
Can we build a cost-sensitive equational theory?

How can we measure the interaction between a program and a
context modulo the internal dynamics?

P

C

Q

Ck k

P ≃ Q

Our contribution: a framework to identify
internal and interaction steps for the
untyped λ-calculus
→ checkers λ-calculus

5 / 17

What should be the meaning of a program

Interaction Equivalence is an equational theory!

P

C

Q

Ck k

P ≃ Q

▶ Duality between Program/Context reminiscent of Game
Semantics

▶ Modeling communication P |C akin to π-calculus and LTS

”The meaning of a program should express its history of access to
resources which are not local to it.” – Milner 1975

6 / 17

Inspecting Black Boxes
Contextual equivalences are hard to check! ∀-quantifier

Intensional equivalences are easy to check!
→ Böhm tree equivalence, normal form bisimilarity, set of
approximants, etc.

Second contribution:
interaction equivalence is exactly Böhm tree equivalence

Also answering an open question in the λ-calculus: which contextual
equivalence can match Böhm tree equivalence?

7 / 17

Inspecting Black Boxes
Contextual equivalences are hard to check! ∀-quantifier

Intensional equivalences are easy to check!
→ Böhm tree equivalence, normal form bisimilarity, set of
approximants, etc.

Second contribution:
interaction equivalence is exactly Böhm tree equivalence

⇔
BT (t) = λx1 . . . xk.x = BT (u)t u

y . . .

... λz.zInteraction Equivalence

Also answering an open question in the λ-calculus: which contextual
equivalence can match Böhm tree equivalence?

7 / 17

Inspecting Black Boxes
Contextual equivalences are hard to check! ∀-quantifier

Intensional equivalences are easy to check!
→ Böhm tree equivalence, normal form bisimilarity, set of
approximants, etc.

Second contribution:
interaction equivalence is exactly Böhm tree equivalence

⇔
BT (t) = λx1 . . . xk.x = BT (u)t u

y . . .

... λz.zInteraction Equivalence

Also answering an open question in the λ-calculus: which contextual
equivalence can match Böhm tree equivalence?

7 / 17

The Checkers λ-Calculus

8 / 17

The Checkers λ-Calculus

Λ ∋ t, u := x | λx .t | tu
Λ•◦ ∋ t, u := x | λ•x .t | t • u

| λ◦x .t | t ◦ u

Silent Steps:
(λ•x .t) • u 7→βτ t{x := u}
(λ◦x .t) ◦ u 7→βτ t{x := u}

Interaction Steps:
(λ•x .t) ◦ u 7→β t{x := u}
(λ◦x .t) • u 7→β t{x := u}

Intuition: C
◦⟨t•⟩

9 / 17

The Checkers λ-Calculus

Λ ∋ t, u := x | λx .t | tu
Λ•◦ ∋ t, u := x | λ•x .t | t • u

| λ◦x .t | t ◦ u

Silent Steps:
(λ•x .t) • u 7→βτ t{x := u}
(λ◦x .t) ◦ u 7→βτ t{x := u}

Interaction Steps:
(λ•x .t) ◦ u 7→β t{x := u}
(λ◦x .t) • u 7→β t{x := u}

Intuition: C
◦⟨t•⟩

9 / 17

The Checkers λ-Calculus

Λ ∋ t, u := x | λx .t | tu
Λ•◦ ∋ t, u := x | λ•x .t | t • u

| λ◦x .t | t ◦ u

Silent Steps:
(λ•x .t) • u 7→βτ t{x := u}
(λ◦x .t) ◦ u 7→βτ t{x := u}

Interaction Steps:
(λ•x .t) ◦ u 7→β t{x := u}
(λ◦x .t) • u 7→β t{x := u}

Intuition: C
◦⟨t•⟩

9 / 17

Interaction Cost?

Counting interactions depends on the reduction sequence.

(λ•x .x • x) • (I◦ • I•)

(λ•x .x • x) • I• (I◦ • I•) • (I◦ • I•)

I• • I•

1 interaction step 1 silent step

1 silent step 2 interaction step

The checkers calculus is confluent but does not preserve interaction
steps.

We consider the head interaction cost :

t ⇓ k
h means t head-normalizes with k interaction steps

10 / 17

Counting Interactions in Contextual Equivalence

We define quantitative contextual relations for the checkers calculus.
Let t, t′ ∈ Λ•◦

▶ Quantitative Contextual Equivalence:
t ≡ctx u if,

∀ colored C, ∀k, [C⟨t⟩ ⇓ k
h ⇐⇒ C⟨u⟩ ⇓ k

h];

▶ Quantitative Contextual Preorder:
t ⊑ctx u [u simulates t] if,

∀ colored C, ∀k , [C⟨t⟩ ⇓ k
h =⇒ C⟨u⟩ ⇓ k

h];

Key Point: we ignore silent steps and count interaction steps.

11 / 17

Counting Interactions in Contextual Equivalence

We define quantitative contextual relations for the checkers calculus.
Let t, t′ ∈ Λ•◦

▶ Quantitative Contextual Equivalence:
t ≡ctx u if,

∀ colored C, ∀k, [C⟨t⟩ ⇓ k
h ⇐⇒ C⟨u⟩ ⇓ k

h];

▶ Quantitative Contextual Preorder:
t ⊑ctx u [u simulates t] if,

∀ colored C, ∀k , [C⟨t⟩ ⇓ k
h =⇒ C⟨u⟩ ⇓ k

h];

Key Point: we ignore silent steps and count interaction steps.

11 / 17

Interaction Equivalence

Λ◦•Λ

Λ• Λ◦λx.x

λx.xx
λ•x.x • x

λ•x.x

λ◦x.x ◦ x

λ◦x.x

λ◦x.x • x

λ•x.x ◦ x

t 7→ t•

t ⊑int u if t• ⊑ctx u•

Note that contexts have both black or white constructors.

12 / 17

Interaction Equivalence is an Equational Theory

1. Equivalence Relation;

2. Context-Closed: if t ⊑int u then ∀C , C ⟨t⟩ ⊑int C ⟨u⟩;
→ Straightforward, as C⟨C •⟩ is a colored context.

3. Invariance: if t =β u then t ⊑int u.
→ As in the plain case, it requires some work: rewriting
theorems between head and beta and specialized to the
checkers calculus.
For the interaction part, note that t• =βτ u•.

13 / 17

Interaction Equivalence is an Equational Theory

1. Equivalence Relation;

2. Context-Closed: if t ⊑int u then ∀C , C ⟨t⟩ ⊑int C ⟨u⟩;
→ Straightforward, as C⟨C •⟩ is a colored context.

3. Invariance: if t =β u then t ⊑int u.
→ As in the plain case, it requires some work: rewriting
theorems between head and beta and specialized to the
checkers calculus.
For the interaction part, note that t• =βτ u•.

13 / 17

But... What terms are interaction (in)equivalent?

Interaction equivalence is not stable by η-equivalence!
η-equivalence: λx .tx =η t if x ̸∈ fv(t)

I := λx .x ̸≡int λx .λy .xy =: 1

▶ The separating context C := ⟨·⟩ ◦ z ◦ w distinguishes 1 and I:

1• ◦ z ◦ w

(λ•y .z • y) ◦ w z • w

I• ◦ z ◦ w z ◦ w

̸=

h

•η h

h

The interaction preorder strictly refines the contextual preorder.

t =β u =⇒ t ⊑int u =⇒
̸⇐

t ⊑ctx u

14 / 17

But... What terms are interaction (in)equivalent?

Interaction equivalence is not stable by η-equivalence!
η-equivalence: λx .tx =η t if x ̸∈ fv(t)

I := λx .x ̸≡int λx .λy .xy =: 1

▶ The separating context C := ⟨·⟩ ◦ z ◦ w distinguishes 1 and I:

1• ◦ z ◦ w

(λ•y .z • y) ◦ w z • w

I• ◦ z ◦ w z ◦ w

̸=

h

•η h

h

The interaction preorder strictly refines the contextual preorder.

t =β u =⇒ t ⊑int u =⇒
̸⇐

t ⊑ctx u

14 / 17

But... What terms are interaction (in)equivalent?

Interaction equivalence is not stable by η-equivalence!
η-equivalence: λx .tx =η t if x ̸∈ fv(t)

I := λx .x ̸≡int λx .λy .xy =: 1

▶ The separating context C := ⟨·⟩ ◦ z ◦ w distinguishes 1 and I:

1• ◦ z ◦ w

(λ•y .z • y) ◦ w z • w

I• ◦ z ◦ w z ◦ w

̸=

h

•η h

h

The interaction preorder strictly refines the contextual preorder.

t =β u =⇒ t ⊑int u =⇒
̸⇐

t ⊑ctx u

14 / 17

Characterizing the Interaction Preorder

The interaction preorder is characterized by the preorder induced by
Böhm trees ⊑B.

To prove that ⊑B = ⊑int, we develop interaction-based refinements
of standard techniques for the λ-calculus:

t ⊑B u t ⊑int u

Interaction Böhm-out

Black and White Intersection types

15 / 17

Optimize the number of interactions
▶ Interaction Preorder:

t ⊑int u [u simulates t] if,

∀ colored C, ∀k, [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k

h];
▶ Interaction Improvement:

t ⊑int·imp u [u improves t] if,

∀ colored C, ∀k , [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k ′

h with k ′ ≤ k];

▶ It does not change the induced equivalence relation.

η-reduction may improve terms, but η-expanding them can never
lead to improvement:

λy .xy ⊑int·imp x but x ̸⊑int·imp λy .xy

Future work: characterize exactly the interaction improvement.

⊑int ⊆
?

⊑int·imp ⊊ ⊑ctx

⊑B ⊆ ⊊ ⊑Bη∞

16 / 17

Optimize the number of interactions
▶ Interaction Preorder:

t ⊑int u [u simulates t] if,

∀ colored C, ∀k, [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k

h];
▶ Interaction Improvement:

t ⊑int·imp u [u improves t] if,

∀ colored C, ∀k , [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k ′

h with k ′ ≤ k];

▶ It does not change the induced equivalence relation.

η-reduction may improve terms, but η-expanding them can never
lead to improvement:

λy .xy ⊑int·imp x but x ̸⊑int·imp λy .xy

Future work: characterize exactly the interaction improvement.

⊑int ⊆
?

⊑int·imp ⊊ ⊑ctx

⊑B ⊆ ⊊ ⊑Bη∞

16 / 17

Optimize the number of interactions
▶ Interaction Preorder:

t ⊑int u [u simulates t] if,

∀ colored C, ∀k, [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k

h];
▶ Interaction Improvement:

t ⊑int·imp u [u improves t] if,

∀ colored C, ∀k , [C⟨t•⟩ ⇓ k
h =⇒ C⟨u•⟩ ⇓ k ′

h with k ′ ≤ k];

▶ It does not change the induced equivalence relation.

η-reduction may improve terms, but η-expanding them can never
lead to improvement:

λy .xy ⊑int·imp x but x ̸⊑int·imp λy .xy

Future work: characterize exactly the interaction improvement.

⊑int ⊆
?

⊑int·imp ⊊ ⊑ctx

⊑B ⊆ ⊑B +ηred ⊊ ⊑Bη∞

16 / 17

Conclusion

▶ Checkers Calculus: a new framework to represent interaction
between programs

▶ Interaction Equivalence: a cost-sensitive equational theory

▶ The first contextual characterization of Böhm tree equivalence
without non determinism in evaluation contexts! (and simple)

Future work:

▶ Work it out in Call-by-Value/Need, and in effectful extensions
λf .f () ≡ctx λf .f () ; f ()

▶ How does it relate to Game Semantics? to process calculi?

▶ What does our interaction cost represent?
Communication complexity?

Thank you!

17 / 17

Conclusion

▶ Checkers Calculus: a new framework to represent interaction
between programs

▶ Interaction Equivalence: a cost-sensitive equational theory

▶ The first contextual characterization of Böhm tree equivalence
without non determinism in evaluation contexts! (and simple)

Future work:

▶ Work it out in Call-by-Value/Need, and in effectful extensions
λf .f () ≡ctx λf .f () ; f ()

▶ How does it relate to Game Semantics? to process calculi?

▶ What does our interaction cost represent?
Communication complexity?

Thank you!

17 / 17

Conclusion

▶ Checkers Calculus: a new framework to represent interaction
between programs

▶ Interaction Equivalence: a cost-sensitive equational theory

▶ The first contextual characterization of Böhm tree equivalence
without non determinism in evaluation contexts! (and simple)

Future work:

▶ Work it out in Call-by-Value/Need, and in effectful extensions
λf .f () ≡ctx λf .f () ; f ()

▶ How does it relate to Game Semantics? to process calculi?

▶ What does our interaction cost represent?
Communication complexity?

Thank you!

17 / 17

James Hiram Morris.
Lambda-calculus Models of Programming Languages.
PhD thesis, Massachusetts Institute of Technology, 1968.

David Sands.
Improvement theory and its applications, page 275–306.
Cambridge University Press, USA, 1999.

17 / 17

