Light Genericity

Beniamino Accattoli¹, Adrienne Lancelot¹²

¹Inria & LIX, École Polytechnique ²IRIF, Université Paris Cité & CNRS

April 10th 2024 - FoSSaCS 2024

Outline

Computable Functions & the Lambda Calculus

- From Barendregt's Genericity to Light Genericity
- Light Genericity & Contextual Preorders
- Call-by-Name Light Genericity
- Call-by-Value Light Genericity
- **Co-Genericity**
- Conclusion

Partial Recursive Functions model which mathematical functions are computable.

There is a natural extensional preorder on partial functions

$$f \leq_{\scriptscriptstyle \mathrm{PRF}} g ext{ if } orall n \in \mathbb{N}, \ f(n) = \bot ext{ or } f(n) =_{\mathbb{N}} g(n)$$

 $f_{\perp}: n \mapsto \perp$ is the minimum PRF function for \leq_{PRF}

PRF do not look at how to compute, hence the preorder can only be extensional.

Instead, in the lambda calculus, how to compute is a critical concept.

There are a rich number of possible equivalences (or preorders) of lambda terms, both extensional or intensional.

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents **undefined**? A computation that never ends? Ω !

Now, what is the equivalence class of **undefined**/ Ω ?

Undefined represents a computation that never ends.

• **undefined** terms = β -diverging terms?

Surprisingly, this would lead to an inconsistency.

If all β -diverging terms are equated in an equational theory, then this theory equates all terms.

β -diverging terms may be very different

Indeed, let us look at two $\beta\text{-diverging terms}$

fix and Ω \downarrow_{β} \downarrow_{β} Ω $\lambda f.f(fix f)$ \downarrow_{eta} $\downarrow_{\beta} \Omega$ $\lambda f.f(f(fix f))$ $\downarrow_{eta} \Omega$ $\downarrow_{\beta} \\ \lambda f.f \ (f \ (f \ (fix \ f)))$ $\lambda f.f \left(f \left(f \left(f \ldots \right) \right) \right)$ \downarrow_{β} $\downarrow_{eta} \Omega$ \downarrow_{B} ÷

Recursion does not carry the same meaning as looping on itself.

Instead, one might consider a more restrained reduction

undefined terms = head-diverging terms?

The equational theory that identifies **head**-diverging terms is consistent.

>> This theory does not equate all terms.

 β -diverging terms may be very different

Fixpoint combinators are **head**-normalizing.

Recursion and looping are nicely separated by head reduction.

Consistency

A relation $\mathcal{R} \subseteq \Lambda \times \Lambda$ is consistent if there exists $t, u \in \Lambda$ such that $(t, u) \notin \mathcal{R}$.

An equational theory is an equivalence relation $=_{\mathcal{T}}$ such that:

- Stability by Computation: if $t \rightarrow_{\beta} u$ then $t =_{\mathcal{T}} u$
- Stability by Contexts: if $t =_{\mathcal{T}} u$ then $\forall C, C \langle t \rangle =_{\mathcal{T}} C \langle u \rangle$.

To validate the choice of undefined terms: Is there a consistent equational theory where undefined terms are collapsed?

What is Genericity?

Undefined terms are black holes for the evaluation process.

If a program awaits the evaluation of an undefined sub-term

Then it will be unable to produce a result

What is Genericity?

Genericity somehow specifies this fact dually: If a program terminates while there were **undefined** sub-terms, then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

Anything can simulate the *generic* **undefined** sub-terms in a terminating term.

Outline

Computable Functions & the Lambda Calculus

- From Barendregt's Genericity to Light Genericity
- Light Genericity & Contextual Preorders
- Call-by-Name Light Genericity
- Call-by-Value Light Genericity
- **Co-Genericity**
- Conclusion

Genericity à la Barendregt & Consequences

Heavy Genericity: let *u* be head-diverging and *C* such that $C\langle u \rangle \rightarrow^*_{\beta} n$ where *n* is β -normal then $C\langle s \rangle \rightarrow^*_{\beta} n$ for all $s \in \Lambda$.

Heavy Genericity \implies Collapsibility

Collapsibility: there exists an equational theory \mathcal{T} such that undefined terms are equated in \mathcal{T} and \mathcal{T} is consistent

Light Genericity

However, **Heavy Genericity** is very powerful and not all aspects are needed for the proof of **Collapsibility**.

Light Genericity \implies Collapsibility

We want to consider a lighter genericity statement:

- Use a simpler reduction than \rightarrow_{β}
- Do not compare normal forms

This Paper

A simplified form of genericity

- Explored in Call-by-Name and also in Call-by-Value
- ▶ Our development somehow abstracts the reduction strategy, \rightarrow_s instead of \rightarrow_{CbN} or \rightarrow_{CbV}
- Highlighting the connection with program equivalences (or rather program *preorders*)

Light Genericity

For a reduction \rightarrow_s , we can state light genericity:

Light Genericity: let u be s-diverging and C such that $C\langle u \rangle$ is s-normalizing then $C\langle t \rangle$ is s-normalizing for all $t \in \Lambda$.

Which **directly implies** that s-diverging terms are minimum terms for the contextual preorder associated to s.

If *u* is s-diverging, then $\forall s, u \preceq^{s}_{C} s$

Light vs. Heavy Genericity

Heavy Genericity: let *u* be head-diverging and *C* such that $C\langle u \rangle \rightarrow^*_{\beta} n$ where *n* is β -normal then $C\langle s \rangle \rightarrow^*_{\beta} n$ for all $s \in \Lambda$.

Light Genericity: let *u* be s-diverging and *C* such that $C\langle u \rangle$ is s-normalizing then $C\langle t \rangle$ is s-normalizing for all $t \in \Lambda$.

Outline

Computable Functions & the Lambda Calculus

From Barendregt's Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

(Closed) Contextual Preorder

and induced equivalence

The (closed) **contextual preorder** associated to a reduction \rightarrow_s is defined as:

t ≾^s_C u if for all closing¹ contexts C, C⟨t⟩ is s-normalizing implies C⟨u⟩ is s-normalizing.

(Closed) contextual equivalence $\simeq_{\mathcal{C}}^{\mathbf{s}}$ is defined as the symmetric closure of the preorder.

Light Genericity implies that s-diverging terms are minimum terms for the contextual preorder associated to s.

¹i.e. $C\langle t \rangle$ and $C\langle u \rangle$ are closed terms

Open Contextual Preorder

and induced equivalence

The open contextual preorder associated to a reduction \rightarrow_s is defined as:

t ≾^s_{CO} u if for all contexts C, C⟨t⟩ is s-normalizing implies C⟨u⟩ is s-normalizing.

Light Genericity exactly states that s-diverging terms are minimum terms for the open contextual preorder associated to s.

>> **Do open and closed preorders coincide?** In the paper, we answer that question in both Call-by-Name and Call-by-Value

Outline

Computable Functions & the Lambda Calculus

From Barendregt's Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.

CbN Light Genericity: head-diverging terms are minimum for the head open contextual preorder.

Which unfolds to:

CbN Light Genericity: let *u* be head-diverging and *C* such that $C\langle u \rangle$ is head-normalizing then $C\langle t \rangle$ is head-normalizing for all $t \in \Lambda$.

Main difficulty: reasoning with contexts and reduction.

Light Genericity in Call-by-Name

Takahashi proves heavy genericity with a very short proof [Tak94] and gives as a corollary light genericity.

Key idea: Reason with substitutions instead of contexts!

In the paper, we adapt **Takahashi's technique** to give a direct proof of light genericity.

Light genericity as substitution: let *u* be s-diverging and *t* such that $t\{x \leftarrow u\}$ is s-normalizing then $t\{x \leftarrow s\}$ is s-normalizing for all $s \in \Lambda$.

Light Genericity in CbN

Light Genericity \implies Collapsibility

We use the head open contextual preorder \leq_{CO}^{h} to prove it.

- It is consistent to collapse head-diverging terms:

 ^h_{CO} equates head-diverging terms (by light genericity)
 and
 (b is a set (5 (b (0)))
 - $\precsim_{\mathcal{CO}}^{h}$ is consistent $(\mathbb{I} \not\preceq_{\mathcal{CO}}^{h} \Omega)$

Outline

Computable Functions & the Lambda Calculus

From Barendregt's Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

Computable Functions & Lambda Calculus

Computable functions embed in the call-by-value lambda calculus.

Composition of PRF is by definition call-by-value! Given $f, g : \mathbb{N} \to \mathbb{N} \uplus \{\bot\}, f \circ g$ is defined as:

$$f \circ g(n) := egin{cases} ot & ext{if } g(n) = ot \ f(m) & ext{if } g(n) = m \end{cases}$$

In call-by-name, one cannot define $\overline{f \circ g} = \overline{f}\overline{g}$ because of this. Let $f := m \mapsto 1$ and $g := n \mapsto \bot$

$$f\overline{g}=(\lambda x.1)\overline{g}
ightarrow_{eta} 1$$

and
but $f\circ g$ is extensionally equivalent to $n\mapsto ota$

Call-by-Value undefined terms

What is the lambda term that represents **undefined** in call-by-value?

 Ω again!

What is the equivalence class of **undefined**/ Ω ?

- β_v -diverging terms? No, fi_{x_v} and Ω are different
- **head**-diverging terms? No, $\lambda x.\Omega$ and Ω are different
- weak-head-diverging terms? No, $x\Omega$ and Ω are equivalent
- weak-diverging terms? Yes, on closed terms

Open terms in Call-by-Value

Call-by-Value has been formalized by Plotkin [Plo75], but Plotkin's Call-by-Value theory is only satisfactory on closed terms.

 $\Omega_{nf} = (\lambda x.\Omega)(yz)$ is a meaningless normal form!

• **undefined** terms = **Pweak**-diverging terms? Does not work on open terms, Ω and Ω_{nf} are equivalent.

(Plotkin's CbV) open and closed contextual preorders do not agree:

$$\Omega_{nf} \simeq^{\rho_v}_{\mathcal{C}} \Omega$$
 but $\Omega_{nf} \not\simeq^{\rho_v}_{\mathcal{CO}} \Omega$

Moving on to Open Call-by-Value

The good call-by-value contextual equivalence is Plotkin's closed.

$$\simeq_{\mathcal{C}}^{\mathsf{v}} := \simeq_{\mathcal{C}}^{\mathsf{p}_{\mathsf{v}}} = \simeq_{\mathcal{C}}^{\mathsf{vsc}}$$

We use a nicer calculus (the Value Substitution Calculus [AP12] that is closely related to Linear Logic and Proof Nets) that knows how to deal with open terms, but retains the same closed contextual equivalence.

undefined terms = VSCweak-diverging terms? Yes

Additionally, open and closed contextual preorders coincide for the VSC.

$$\simeq_{\mathcal{C}}^{\mathsf{v}} := \simeq_{\mathcal{C}}^{\mathsf{p}_{\mathsf{v}}} = \simeq_{\mathcal{C}}^{\mathsf{vsc}} = \simeq_{\mathcal{CO}}^{\mathsf{vsc}}$$

Call-by-Value Light Genericity & Collapsibility

Using this open calculus, we can show:

• Light Genericity: VSCweak-diverging terms are minimum for $\stackrel{\prec vsc}{\sim}_{\mathcal{CO}}^{vsc}$

• Collapsibility: \leq_{CO}^{vsc} equates diverging terms and is consistent Hence, we also have collapsibility in Plotkin's closed contextual preorder.

Proofs of Call-by-Value Light Genericity

How to prove light genericity?

- Direct proof: Takahashi's technique adapts, but not very smoothly.
- Using a good model of CbV: relational semantics [Ehr12]
- ► Applicative similarity or any program preorder that is included in ^s_{CO} and has diverging terms as minimums.

Outline

Computable Functions & the Lambda Calculus

From Barendregt's Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

Characterization of minimum terms

Light genericity says:

t is s-diverging $\implies t$ is a minimum for $\preceq^{s}_{\mathcal{CO}}$

Adequacy ($t \mathcal{R} u$ and t is s-normalizing then u is s-normalizing) implies the converse implication.

t is s-diverging $\iff t$ is a minimum for $\precsim_{\mathcal{CO}}^{s}$

Well, what about maximums?

t is ?? \iff *t* is a maximum for \preceq^{s}_{CO}

Call-by-Name: no maximum elements

The hammer proof is that call-by-name contextual preorder is characterized by program preorders that do not have maximums!

Nakajima trees, applicative bisimilarity...

Well, what about maximums?

t is ?? \iff *t* is a maximum for \preceq_{CO}^{s}

Call-by-Value: super terms!

Co-genericity: super terms are maximum for \leq_{CO}^{s}

Super terms

A term t is s-super if, coinductively, $t \rightarrow_{s}^{*} \lambda y.u$ and u is s-super. Intuitively, t infinitely normalizes to $\lambda y_{1}.\lambda y_{2}...\lambda y_{k}...$ An example:

$$\Omega_{\lambda} := (\lambda x. \lambda y. xx) (\lambda x. \lambda y. xx)$$
 \downarrow
 $\lambda y. \Omega_{\lambda}$

Co-genericity

In call-by-value:

Co-genericity \implies **Co-Collapsibility**

Co-Collapsibility: there exists an equational theory \mathcal{T} such that super terms are equated in \mathcal{T} and \mathcal{T} is consistent

The open call-by-value contextual preorder $\precsim_{\mathcal{CO}}^{\nu}$ suffices. It is consistent to equate diverging terms and to equate super terms, as $\precsim_{\mathcal{CO}}^{\nu}$ does it and is consistent.

Proofs of co-genericity

How to prove co-genericity ?

- Direct proof: Takahashi's technique adapts, and the proof is easier than for light genericity.
- Using a good model of CbV? relational semantics [Ehr12] do not work, as s-super terms are not maximum elements in the model!
- ► Applicative similarity or any program preorder that is included in ^s_{CO} and has super terms as maximums².

²I don't know of any other one

Outline

Computable Functions & the Lambda Calculus

- From Barendregt's Genericity to Light Genericity
- Light Genericity & Contextual Preorders
- Call-by-Name Light Genericity
- Call-by-Value Light Genericity
- **Co-Genericity**

Conclusion

Conclusion

- Light genericity is a modular concept that is strong enough to imply Collapsibility, the main consequence of Barendregt's genericity.
- It is naturally dualizable as co-genericity. Both concepts are inspired and tied with contextual preorders.

Also in the paper:

- another consequence of genericity is the Maximality of the open contextual preorder (any larger theory is inconsistent)
- Which in turns provides an elegant proof of the fact that closed and open contextual equivalences coincide.

A question remains: we named the two genericity statements Heavy and Light, but we don't know whether one implies the other or not.

Bottom (and Top?) line

Thank you!

 $\bot:= \mathsf{equivalence\ class\ of}\ \Omega$

Beniamino Accattoli and Luca Paolini.

Call-by-value solvability, revisited.

In Tom Schrijvers and Peter Thiemann, editors, *Functional and Logic Programming - 11th International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings,* volume 7294 of *Lecture Notes in Computer Science*, pages 4–16. Springer, 2012.

Thomas Ehrhard.

Collapsing non-idempotent intersection types.

In Patrick Cégielski and Arnaud Durand, editors, *Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France*, volume 16 of *LIPIcs*, pages 259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

G.D. Plotkin.

Call-by-name, call-by-value and the λ -calculus. Theoretical Computer Science, 1(2):125–159, 1975.

A simple proof of the genericity lemma, pages 117–118. Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

Equational theories

Or rather inequational theories

Definition (Inequational s-theory)

Let s be a reduction. An inequational s-theory $\leq^s_{\mathcal{T}}$ is a compatible³ preorder on terms containing s-conversion.

Closed/Open s-contextual preorders are s-inequational theories. The non-trivial point is that they contain s-conversion.

³Stable by contextual closure: $t \leq^{s}_{\mathcal{T}} u \implies \forall C, \ C \langle t \rangle \leq^{s}_{\mathcal{T}} C \langle u \rangle$

Inequational theories

Generalization of sensible and semi-sensible

An inequational s-theory \leq^{s}_{T} is called:

- Consistent: whenever it does not relate all terms;
- ▶ s-ground: if s-diverging terms are minimum terms for $\leq_{\mathcal{T}}^{s}$;
- s-adequate: if t ≤^s_T u and t is s-normalizing entails u is s-normalizing.

Groundness and Adequacy correspond (in CbN) with the order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for \leq^{s}_{T} are s-diverging.

Maximality

For $\mathbf{s} \in \{\text{head CbN}, \, \text{weak CbV}\},$ we can state maximality uniformly.

The proof is not uniform as it relies on critical solvability concepts.

Theorem

Maximality of $\precsim_{CO}^s: \precsim_{CO}^s$ is a maximal consistent inequational s-theory, i.e.

if $\preceq^{s}_{CO} \subsetneq \mathcal{R}$ then \mathcal{R} is inconsistent.

An elegant proof that closed and open contextual equivalence coincides follows: $\preceq^{s}_{C\mathcal{O}} \subseteq \preceq^{s}_{\mathcal{C}}$ and $\preceq^{s}_{\mathcal{C}}$ is consistent, hence $\preceq^{s}_{\mathcal{CO}} = \preceq^{s}_{\mathcal{C}}$