
Light Genericity

Beniamino Accattoli1, Adrienne Lancelot12

1Inria & LIX, École Polytechnique
2IRIF, Université Paris Cité & CNRS

April 10th 2024 - FoSSaCS 2024

1 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

2 / 45

Partial Recursive Functions

Partial Recursive Functions model which mathematical functions
are computable.

There is a natural extensional preorder on partial functions

f ≤prf g if ∀n ∈ N, f (n) = ⊥ or f (n) =N g(n)

f⊥ : n 7→ ⊥ is the minimum PRF function for ≤prf

3 / 45

Lambda Calculus

PRF do not look at how to compute, hence the preorder can only
be extensional.

Instead, in the lambda calculus, how to compute is a critical
concept.

There are a rich number of possible equivalences (or preorders) of
lambda terms, both extensional or intensional.

4 / 45

Computable Functions & Lambda Calculus

Partial recursive functions embed in the lambda calculus.

What is the lambda term that represents undefined?
A computation that never ends? Ω!

Now, what is the equivalence class of undefined/Ω ?

5 / 45

A first naive attempt

Undefined represents a computation that never ends.

I undefined terms = β-diverging terms?

Surprisingly, this would lead to an inconsistency.

If all β-diverging terms are equated in an equational theory, then
this theory equates all terms.

6 / 45

β-diverging terms may be very different

Indeed, let us look at two β-diverging terms

fix and Ω
↓β ↓β

λf .f (fix f) Ω
↓β ↓β

λf .f (f (fix f)) Ω
↓β ↓β

λf .f (f (f (fix f))) Ω
↓β ↓β

λf .f (f (f (f . . .))) Ω
↓β ↓β
...

...

Recursion does not carry the same meaning as looping on itself.

7 / 45

A second attempt

Instead, one might consider a more restrained reduction

I undefined terms = head-diverging terms?

The equational theory that identifies head-diverging terms is
consistent.

>> This theory does not equate all terms.

8 / 45

β-diverging terms may be very different

Fixpoint combinators are head-normalizing.

fix and Ω
↓h ↓h

λf .f (fix f) Ω
6↓h ↓h

...

Recursion and looping are nicely separated by head reduction.

9 / 45

Consistency

A relation R ⊆ Λ× Λ is consistent if there exists t, u ∈ Λ such that
(t, u) 6∈ R.

An equational theory is an equivalence relation =T such that:

I Stability by Computation: if t →β u then t =T u

I Stability by Contexts: if t =T u then ∀C , C 〈t〉 =T C 〈u〉.

To validate the choice of undefined terms: Is there a
consistent equational theory where undefined terms are collapsed?

10 / 45

What is Genericity?
Undefined terms are black holes for the evaluation process.

u u1
n un * ...

If a program awaits the evaluation of an undefined sub-term

...
t
u

t
u1

Then it will be unable to produce a result

t
u

t
u1

n

t
un * ...

11 / 45

What is Genericity?

Genericity somehow specifies this fact dually:
If a program terminates while there were undefined sub-terms,
then it never entered the black hole.

Genericity says: (n is a normal form and s is any term)

If

t
u *n Then

t
s *n

Anything can simulate the generic undefined sub-terms in a
terminating term.

12 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

13 / 45

Genericity à la Barendregt & Consequences

Heavy Genericity: let u be head-diverging and C such that
C 〈u〉 →∗β n where n is β-normal then C 〈s〉 →∗β n for all s ∈ Λ.

Heavy Genericity =⇒ Collapsibility

Collapsibility: there exists an equational theory T such that
undefined terms are equated in T and T is consistent

14 / 45

Light Genericity

However, Heavy Genericity is very powerful and not all aspects
are needed for the proof of Collapsibility.

Light Genericity =⇒ Collapsibility

We want to consider a lighter genericity statement:

I Use a simpler reduction than →β

I Do not compare normal forms

15 / 45

This Paper

I A simplified form of genericity

I Explored in Call-by-Name and also in Call-by-Value

I Our development somehow abstracts the reduction strategy,
→s instead of →CbN or →CbV

I Highlighting the connection with program equivalences (or
rather program preorders)

16 / 45

Light Genericity

For a reduction →s, we can state light genericity:

Light Genericity:
let u be s-diverging and C such that C 〈u〉 is s-normalizing

then C 〈t〉 is s-normalizing for all t ∈ Λ.

Which directly implies that s-diverging terms are minimum terms
for the contextual preorder associated to s.

If u is s-diverging, then ∀s, u -s
C s

17 / 45

Light vs. Heavy Genericity

Heavy Genericity: let u be head-diverging and C such that
C 〈u〉 →∗β n where n is β-normal then C 〈s〉 →∗β n for all s ∈ Λ.

Heavy Genericity

Collapsibility:

Light Genericity

Light Genericity: let u be s-diverging and C such that C 〈u〉 is
s-normalizing then C 〈t〉 is s-normalizing for all t ∈ Λ.

18 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

19 / 45

(Closed) Contextual Preorder
and induced equivalence

The (closed) contextual preorder associated to a reduction →s is
defined as:

I t -s
C u if for all closing1 contexts C , C 〈t〉 is s-normalizing

implies C 〈u〉 is s-normalizing.

(Closed) contextual equivalence 's
C is defined as the symmetric

closure of the preorder.

Light Genericity implies that s-diverging terms are minimum
terms for the contextual preorder associated to s.

1i.e. C〈t〉 and C〈u〉 are closed terms
20 / 45

Open Contextual Preorder
and induced equivalence

The open contextual preorder associated to a reduction →s is
defined as:

I t -s
CO u if for all contexts C , C 〈t〉 is s-normalizing implies

C 〈u〉 is s-normalizing.

Light Genericity exactly states that s-diverging terms are
minimum terms for the open contextual preorder associated to s.

>> Do open and closed preorders coincide? In the paper, we
answer that question in both Call-by-Name and Call-by-Value

21 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

22 / 45

Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.

CbN Light Genericity: head-diverging terms are minimum for the
head open contextual preorder.

Which unfolds to:

CbN Light Genericity: let u be head-diverging and C such that
C 〈u〉 is head-normalizing then C 〈t〉 is head-normalizing for all

t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

23 / 45

Light Genericity in Call-by-Name

Takahashi proves heavy genericity with a very short proof [Tak94]
and gives as a corollary light genericity.

Key idea: Reason with substitutions instead of contexts!

In the paper, we adapt Takahashi’s technique to give a direct
proof of light genericity.

Light genericity as substitution: let u be s-diverging and t such
that t{x�u} is s-normalizing then t{x�s} is s-normalizing for all

s ∈ Λ.

24 / 45

Light Genericity in CbN

Light Genericity =⇒ Collapsibility

We use the head open contextual preorder -h
CO to prove it.

I It is consistent to collapse head-diverging terms:
-h
CO equates head-diverging terms (by light genericity)

and
-h
CO is consistent (I 6-h

CO Ω)

25 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

26 / 45

Computable Functions & Lambda Calculus

Computable functions embed in the call-by-value lambda calculus.

Composition of PRF is by definition call-by-value!
Given f , g : N→ N] {⊥}, f ◦ g is defined as:

f ◦ g(n) :=

{
⊥ if g(n) = ⊥
f (m) if g(n) = m

In call-by-name, one cannot define f ◦ g = f g because of this.
Let f := m 7→ 1 and g := n 7→ ⊥

f g = (λx .1)g →β 1
and

but f ◦ g is extensionally equivalent to n 7→ ⊥

27 / 45

Call-by-Value undefined terms

What is the lambda term that represents undefined in
call-by-value?
Ω again!

What is the equivalence class of undefined/Ω ?

I βv -diverging terms? No, fixv and Ω are different

I head-diverging terms? No, λx .Ω and Ω are different

I weak-head-diverging terms? No, xΩ and Ω are equivalent

I weak-diverging terms? Yes, on closed terms

28 / 45

Open terms in Call-by-Value

Call-by-Value has been formalized by Plotkin [Plo75], but Plotkin’s
Call-by-Value theory is only satisfactory on closed terms.

Ωnf = (λx .Ω)(yz) is a meaningless normal form!

I undefined terms = Pweak-diverging terms? Does not work
on open terms, Ω and Ωnf are equivalent.

(Plotkin’s CbV) open and closed contextual preorders do not agree:

Ωnf 'pv
C Ω but Ωnf 6'pv

CO Ω

29 / 45

Moving on to Open Call-by-Value

The good call-by-value contextual equivalence is Plotkin’s closed.

'v
C :='pv

C ='vsc
C

We use a nicer calculus (the Value Substitution Calculus [AP12]
that is closely related to Linear Logic and Proof Nets) that knows
how to deal with open terms, but retains the same closed
contextual equivalence.

I undefined terms = VSCweak-diverging terms? Yes

Additionally, open and closed contextual preorders coincide for the
VSC.

'v
C :='pv

C ='vsc
C ='vsc

CO

30 / 45

Call-by-Value Light Genericity & Collapsibility

Using this open calculus, we can show:

I Light Genericity: VSCweak-diverging terms are minimum for
-vsc
CO

I Collapsibility: -vsc
CO equates diverging terms and is consistent

Hence, we also have collapsibility in Plotkin’s closed contextual
preorder.

31 / 45

Proofs of Call-by-Value Light Genericity

How to prove light genericity?

I Direct proof: Takahashi’s technique adapts, but not very
smoothly.

I Using a good model of CbV: relational semantics [Ehr12]

I Applicative similarity or any program preorder that is included
in -s

CO and has diverging terms as minimums.

32 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

33 / 45

Characterization of minimum terms

Light genericity says:

t is s-diverging =⇒ t is a minimum for -s
CO

Adequacy (t R u and t is s-normalizing then u is s-normalizing)
implies the converse implication.

t is s-diverging ⇐⇒ t is a minimum for -s
CO

34 / 45

Well, what about maximums?

t is ?? ⇐⇒ t is a maximum for -s
CO

I Call-by-Name: no maximum elements

The hammer proof is that call-by-name contextual preorder is
characterized by program preorders that do not have maximums!

I Nakajima trees, applicative bisimilarity...

35 / 45

Well, what about maximums?

t is ?? ⇐⇒ t is a maximum for -s
CO

I Call-by-Value: super terms!

Co-genericity: super terms are maximum for -s
CO

36 / 45

Super terms

A term t is s-super if, coinductively, t →∗s λy .u and u is s-super.

Intuitively, t infinitely normalizes to λy1. λy2. ... λyk

An example:

Ωλ := (λx .λy .xx)(λx .λy .xx)
↓

λy .Ωλ

37 / 45

Co-genericity

In call-by-value:

Co-genericity =⇒ Co-Collapsibility

Co-Collapsibility: there exists an equational theory T such that
super terms are equated in T and T is consistent

The open call-by-value contextual preorder -v
CO suffices.

It is consistent to equate diverging terms and to equate super terms, as -v
CO does it

and is consistent.

38 / 45

Proofs of co-genericity

How to prove co-genericity ?

I Direct proof: Takahashi’s technique adapts, and the proof is
easier than for light genericity.

I Using a good model of CbV? relational semantics [Ehr12] do
not work, as s-super terms are not maximum elements in the
model!

I Applicative similarity or any program preorder that is included
in -s

CO and has super terms as maximums2.

2I don’t know of any other one
39 / 45

Outline

Computable Functions & the Lambda Calculus

From Barendregt’s Genericity to Light Genericity

Light Genericity & Contextual Preorders

Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

40 / 45

Conclusion

I Light genericity is a modular concept that is strong enough
to imply Collapsibility, the main consequence of Barendregt’s
genericity.

I It is naturally dualizable as co-genericity. Both concepts are
inspired and tied with contextual preorders.

Also in the paper:

I another consequence of genericity is the Maximality of the
open contextual preorder (any larger theory is inconsistent)

I Which in turns provides an elegant proof of the fact that
closed and open contextual equivalences coincide.

A question remains: we named the two genericity statements
Heavy and Light, but we don’t know whether one implies the other
or not.

41 / 45

Bottom (and Top?) line

Thank you!

...
...

...

⊥

>

λx1. . . . λxk .⊥

λx .⊥

⊥

CbN CbV
Contextual preorder for lambda terms

⊥ := equivalence class of Ω
42 / 45

Beniamino Accattoli and Luca Paolini.
Call-by-value solvability, revisited.
In Tom Schrijvers and Peter Thiemann, editors, Functional
and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings,
volume 7294 of Lecture Notes in Computer Science, pages
4–16. Springer, 2012.

Thomas Ehrhard.
Collapsing non-idempotent intersection types.
In Patrick Cégielski and Arnaud Durand, editors, Computer
Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6,
2012, Fontainebleau, France, volume 16 of LIPIcs, pages
259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2012.

G.D. Plotkin.
Call-by-name, call-by-value and the λ-calculus.
Theoretical Computer Science, 1(2):125–159, 1975.

42 / 45

Masako Takahashi.
A simple proof of the genericity lemma, pages 117–118.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

43 / 45

Equational theories
Or rather inequational theories

Definition (Inequational s-theory)

Let s be a reduction. An inequational s-theory ≤s
T is a

compatible3 preorder on terms containing s-conversion.

Closed/Open s-contextual preorders are s-inequational theories.
The non-trivial point is that they contain s-conversion.

3Stable by contextual closure: t ≤s
T u =⇒ ∀C , C〈t〉 ≤s

T C〈u〉
43 / 45

Inequational theories
Generalization of sensible and semi-sensible

An inequational s-theory ≤s
T is called:

I Consistent: whenever it does not relate all terms;

I s-ground: if s-diverging terms are minimum terms for ≤s
T ;

I s-adequate: if t ≤s
T u and t is s-normalizing entails u is

s-normalizing.

Groundness and Adequacy correspond (in CbN) with the
order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for ≤s
T are s-diverging.

44 / 45

Maximality

For s ∈ {head CbN, weak CbV}, we can state maximality
uniformly.
The proof is not uniform as it relies on critical solvability concepts.

Theorem
Maximality of -s

CO: -
s
CO is a maximal consistent inequational

s-theory, i.e.

if -s
CO (R then R is inconsistent.

An elegant proof that closed and open contextual equivalence
coincides follows: -s

CO⊆-s
C and -s

C is consistent, hence -s
CO=-s

C

45 / 45

	Computable Functions & the Lambda Calculus
	From Barendregt's Genericity to Light Genericity
	Light Genericity & Contextual Preorders
	Call-by-Name Light Genericity
	Call-by-Value Light Genericity
	Co-Genericity
	Conclusion
	Appendix

