Mirroring Call-by-Need, or Values Acting Silly

Beniamino Accattolil, Adrienne Lancelot!?

Ynria & LIX, Ecole Polytechnique
2|RIF, Université Paris Cité & CNRS

June 6th 2024 — GT Syntax Meets Semantics

1/31

Outline

Evaluation Strategies

2/31

Call-by-Name and Call-by-Value

Evaluation strategies describe how to compute.

p-Reduction by Name: (Ax.t)u —3 t{x<u}

B-Reduction by Value: (Ax.t)v —g, t{x<v}

For values v that are answers, i.e. computations that ended.

3/31

Call-by-Name vs. Call-by-Value

Let double := x — x + x. How do you calculate double(2 + 3)?

Call-by-Name Call-by-Value

double(2 + 3)

— T

(2+3)+(2+3) double(5)
54 (2+3)
5+5
10
Feed any argument Only feed functions
to any function with values

4/31

Call-by-Name vs. Call-by-Value

Computations may never end: Q := (Ax.xx)(Ax.xx)

5/31

Call-by-Name vs. Call-by-Value

Computations may never end: Q := (Ax.xx)(Ax.xx)

However, consider a constant function always_1: x +— 1.
How to compute always_1(€2)?

Call-by-Name Call-by-Value

always_1(Q)

T

1 always_1(Q)
Feed any argument Only feed functions
to any function with values

5/31

Call-by-Name vs. Call-by-Value

Call-by-Name and Call-by-Value compute quite differently.
Efficiency: Call-by-Value computes faster than Call-by-Name.

Erasability: Call-by-Value gets stuck on erasable arguments.

6/31

Call-by-Name vs. Call-by-Value

Call-by-Name and Call-by-Value compute quite differently.
Efficiency: Call-by-Value computes faster than Call-by-Name.
Erasability: Call-by-Value gets stuck on erasable arguments.

Efficiency and Erasability can be combined:

6/31

Evaluation Strategies combining Name and Value

Duplication by Name

Duplication by Value

Erasure by Name

Erasure by Value

7/31

Evaluation Strategies combining Name and Value

Duplication by Name

Duplication by Value

Erasure by Name

Call-by-Name

Erasure by Value

Call-by-Value

7/31

Evaluation Strategies combining Name and Value

Duplication by Name

Duplication by Value
Wise Duplication

Erasure by Name
Wise Erasure

Call-by-Name

Call-by-Need

Erasure by Value

Call-by-Value

7/31

Evaluation Strategies combining Name and Value

Duplication by Name
Silly Duplication

Duplication by Value
Wise Duplication

Erasure by Name
Wise Erasure

Call-by-Name

Call-by-Need

Erasure by Value
Silly Erasure

Call-by-Silly

Call-by-Value

7/31

Evaluation Strategies

Duplication by Name:

Duplication by Value:

Erasure by Name:

Erasure by Value:

. duplication and erasure rules

(Ax.t)u —g t{x<u}

(Ax.t)v =5 t{x<v}

(Ax.t)u =5 t{x<u}

(Ax.t)v =g t{x<v}

where x € fv(t)

where x € fv(t)

where x & fv(t)

where x & fv(t)

8/31

Mirroring Call-by-Need

Contributions

Main results about Call-by-Silly:
P> Rewriting Properties and Multi Types

» CbSilly induces the same contextual equivalence than CbV

> Quantitative study of types: Call-by-Silly really is inefficient

9/31

Mirroring Call-by-Need, Or Values Acting Silly

Contributions

Main results about Call-by-Silly:
> Multi Types

» CbSilly induces the same contextual equivalence than CbV

» Mirroring the main theorem about CbNeed
» A proof method for CbV contextual equivalence
» CbV contextual equivalence is blind wrto efficiency

9/31

Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

(1,9)

I =cbn (AX.I)Q =cpv Q2

I #con Q #cpv I

10/31

Contextual Equivalences

CbN Contextual Equivalence CbV Contextual Equivalence

CbNeed Contextual Equivalence CbSilly Contextual Equivalence

(1,9)

I =cobn ()\X.I)Q =cpv Q2

I #con Q #cpv I

10/31

Outline

Silly Substitution Calculus

11/31

Micro-steps

TERMS t,u,s

VALUES v,V

SuB. Ctxs S,5
WEAK CONTEXTS w

(Ax.t)u
e X [xu]
t[xv]

m
e
Hrgev

x| Ax.t | tu | t[x<u]

Ax.t

() | Slxeu]

() [We [tW [txW] | Wix<u]

t[xu]
e U [x]

t if x ¢ fv(t)

—y Is the weak contextual closure of iy, ¢, and Fgcy.

12/31

Micro-steps

TERMS t,u,s == x| Ax.t]tu]|t[x<u]
VALUES v,V = Ax.t
SuB. Ctxs S,5 == ()| S[x<u]
WEAK CONTEXTS W o= ()| Wt | tW | t[x«W] | W[x«u]

(Ax.t)u —n t[x<u]
W{x)x—u] ey W(u)lxd]
txev] gyt if x & fy(t)

—y Is the weak contextual closure of iy, ¢, and Fgcy.

12/31

Micro-steps

TERMS t,u,s =

VALUES v,V =

SuB. Ctxs S,S =
WEAK CONTEXTS W .=
S(Ax.t)u oy

W) xeu] e,
tx=S(v)] ey

x| Ax.t | tu | t[x<u]

Ax.t

() | Slxeu]

() [We [tW [txW] | Wix<u]

S(t[xu)
W (u)[xu]
S(t) if x ¢ fv(t)

—y Is the weak contextual closure of iy, ¢, and Fgcy.

12/31

The Silly Extra Copy

Let double := x — x + x. How to silly compute double(2 + 3)7

double(2 + 3)
<+
X+ x [x<2+4 3]

—

(24 3) + x [x<2+ 3] X+ (24 3) [x<2+ 3]

(243)+(2+3) [x<2+73]
3
54+ (2+3) [x<2+3]
3
545 [x<2+ 3]
3
10 [x<2+ 3]
4 computing the silly extra copy
10 [x«<5]

4 garbage collector
10

13/31

Outline

Silly Multi Types

14/31

Silly Multi Types

LINEAR TYPES L, = norm|M—L
Murtt TYPES M, N == [Li]ie; where [is a finite set
GENERIC TYPES T,T" == L|M
- ax (F,- Ft: L,‘),‘e/
. . man
x: [x:L Wi/l b t:[Lilies Y
 axy r=t:M—L At u: MU [norm]
F Ax.t:norm TOA-w L
FrEte:L MEt:L AF u:T(x)W [norm]
F\x F Ax.t:T(x)—L (T\X) WA F t[x<u]: L

15/31

Silly Multi Types

LINEAR TYPES L,L' = norm|M—L
Murtt TYPES M, N == [Lj]lies where [is a finite set
GENERIC TYPES T,T7" == L|M
- ax (T Fme) 2 1) ey
. o1 . many
x:[L] F x:L Wie/T; Fier miXier &) ¢ [Lilies
00 axy Mme) ¢ ML A M) M [norm]
5% Ax.t inorm FwA Lmim tere) 4
rEme ¢ A\ reme) ¢ ARy I(x) W [norm]
M\ F™e) Ax.t: T(x)—L (T \x) WA FmEmete) tie g L

15/31

Example of type derivation

n = norm

FII:[[]J-L FII:L FII:n FII:n
FAy.yy : [[L]—L, L,n]—L FII: [[L]=L,L,n]W[n]
F(Ay.yy)(II): L

16/31

Silly Multi Types and the SSC

Proposition (Quantitative subject reduction for Weak SSC)
Let > T H™€)¢ - | be a derivation.

1. Multiplicative: if t —yu u then m > 1 and there exists
p> THE™E Y | withm> m'.

2. Exponential: if t —ye u then e > 1 and there exists
p> THE™E) | withe > €.

3. GC by value: if t —ygcy U then there exists p> T Flme)
with |T| > |p].

17/31

Silly Multi Types and the SSC

Theorem
Let t be a term.

1. Correctness: if t> T F(™e)¢ - [then t € SN,.

2. Quantitative info: if t> T H™) ¢t [andd:t—=nisa
normalizing sequence then |d|m < m and |d|ye < e.

3. Completeness: if t =, n and n is a weak normal form then
there exists m> It : norm.

18/31

Outline

Call-by-Value and Operational Equivalence

19/31

Closed Call-by-Value

TERMS t,u,s == x| Ax.t|tu

VALUES v,V = Ax.t

t—p, t t—p, t
(Ax.t)v =g, t{xv} tu—p, t'u ut—g, ut’

20/31

Silly Multi Types and Closed CbV

Theorem
Let t be a closed \-term.

1. Correctness: if t> F™t : L then there are an abstraction v
and a reduction sequence d: t —7% v with [d| < m.

2. Completeness: if there exists a value v and a reduction
sequence d: t —>Z§V v then m> kt : norm.

TFAE, for a closed term t:
» Typability in Silly Multi Types: m> kit : L
» CbV normalization: d: t —>}§v v
» CbSilly normalization: d : t =} n

21/31

Contextual Equivalences

Definition (Contextual Equivalence)

We define contextual equivalence ~¢- for a rewriting relation —:

t ~c¢ t' if for all C contexts such that C(t) and C(t’) are closed
terms, C(t) is —s-normalizing iff C(t') is —¢-normalizing.

Let us consider :@V, Plotkin's CbV contextual equivalence induced
by —3, and ~M the contextual equivalence induced by —.

22/31

CbV and Silly induce the same contextual equivalence

Theorem
~Bv__ _silly
~c~=c
Proof.
t :[év t = For all C contexts such that C(t) and C(t') are
closed terms, C(t) is —3,-normalizing

iff C(t') is —,-normalizing.
[On closed terms, — g,-normalization is equivalent to Silly typability]

= For all C contexts such that C(t) and C(t') are
closed terms, 7> FC(t) : L
iff 7> FC(t') - L.
[(On all terms,) Silly typability is equivalent to silly —y-normalization]

= For all C contexts such that C(t) and C(t’) are
closed terms, C(t) is —y-normalizing
iff C(t') is —y-normalizing.
= ol
[23731

CbSilly helps to prove CbV contextual equivalence

Let i any normal norm that does not look like an abstraction, for
example i = yI.
Consider the four following terms:

(Ax.xx) i (Ax.xi) i (Ax.ii) i ii

24/31

CbSilly helps to prove CbV contextual equivalence

Let i any normal norm that does not look like an abstraction, for
example i = yI.
Consider the four following terms:

(Ax.xx) i (Ax.xi) i (Ax.ii) i ii

How to prove these terms are CbV contextually equivalent?

> (Ax.xx) i, (Ax.xi) i and (Ax.ii) i all reduce to the same silly
normal form Ji[x«i]
> (Ax.xx) i =y (Ax.xi) i =y (Ax.01) I =y ii[x<i]

» Proposition: if t =, u then t ~ S’”y

> (Axox) i =2 (Axxi) i =2 ()\X.//) i o jilxed]

24/31

CbSilly helps to prove CbV contextual equivalence

Let i any normal norm that does not look like an abstraction, for
example i = yI.
Consider the four following terms:

(Ax.xx) i (Ax.xi) i (Ax.ii) i ii

How to prove these terms are CbV contextually equivalent?

> (Ax.xx) i, (Ax.xi) i and (Ax.ii) i all reduce to the same silly
normal form Ji[x«i]
> (Ax.xx) i =y (Ax.xi) i =y (Ax.01) I =y ii[x<i]

» Proposition: if t =, u then t ~ S’”y

> (Axox) i =2 (Axxi) i =2 ()\X.//) i o jilxed]

24/31

Outline

Conclusion

25/31

Conclusion
In the paper:

» Introduce a degenerated reduction, call-by-silly

» Mirroring the main theorem about CbN and CbNeed:
call-by-silly and call-by-value generate the same contextual
equivalence

> New Proof Method fo CbV contextual equivalence:
convertibility in call-by-silly

P> Tight types and maximality: the type system exactly measures
the reduction length of a call-by-silly strategy. We can also
show thanks to the type system that this strategy is maximal
in some sense.

Future work:
» Refining CbV contextual equivalence to forbid silly
duplications and be aware of efficiency

> Categorical or Game Semantics for CbSilly and CbNeed?
26 /31

Thank you for your attention!

Duplication by Name
Silly Duplication

Duplication by Value
Wise Duplication

Erasure by Name
Wise Erasure

Call-by-Name

Call-by-Need

Erasure by Value
Silly Erasure

Call-by-Silly

Call-by-Value

27/31

The problem with variable as values

X[zeww] ygevi— x|y <z][zeww] —e, X[y —ww][z—ww]

28/31

The problem with variable as values

X[zeww] ygevi— x|y <z][zeww] —e, X[y —ww][z—ww]

Similar issues arise in CbNeed:

x(Az.wx)[x<y]ly<I] x(Az.wx)[x<I][y<I]

¢

y(Az.wx)[x<y]ly<I] > I(Az.wx)[x<y][y<I] I(\z. WX)[:«—I] [y<1I]

28/31

Why Silly Types do not work for Open CbV

For n > 1, we have the following derivation for the source term
z((Ax.y)u) in the silly type system:

— ax -
y:[AlFy:A 7y > [+ u:norm y : [norm] - y :norm
many A -
y:[AlF Ax.y :0—A [+ u:[norm| y i [norm] F Ax.y : 0—norm
[¢]
(e [ALT = (Axy)u:A)iza, n y:[norm], I = (Ax.y)u:n
Tz D> L. y i [A", norn], I F (Ax.y)u: [A", norm]

z:[[A", norm]—B], y : [A", norn], I z((Ax.y)u): B

where 7, > ... stands for:

m, > z:[[A"]=B]F z:[A"] =B

The term (Ax.zy)u, instead, can only be typed as follows, the key
point being that "1 is replaced by I':

ax ax
(v [AlFy:A)i=1,..., n y : [norm] + y :norm
ax many
z:[[A"]—=B] F z:[A"]—=B y :[A", norm] y : [A", norn]
z:[[A"]—=B],y:[A",norm] - zy: B > [Hu
z:[[A"]—+B],y:[A",norn] F Ax.zy :0—B I+ u:[no

z:[[A"]—B],y:[A",norn], I F (Ax.zy)u: B

29/31

The Call-by-Silly Strategy

CALL-BY-NAME STRATEGY —,

—n = N{—n)
NAME cTXs N,N’ == ()| Nt| N[zt] —ne 1= N{ey)
ROOT GC tlzes] gt if z ¢ fu(t) —nge = N(—gc)
—n = —an U —me U —ngey
CALL-BY-SILLY STRATEGY —ry
=y = Y ()
ANSWERS a,d’ ::=v | a[r—d'] Sygev = Y (gey)
Aux. cTxs A, A" == () | alz<A] | Alzt] —yew = Aley)
SILLY cTXs Y)Y’ = A(N) “yen = Y(ey)
—y = Pyn U Dyey U yen U “ygey

Figure 4 The call-by-name and call-by-silly strategies.

30/31

The Call-by-Silly Strategy: example

CBN EVALUATION:
(A\y.yy)(11)

—ym yyly<II] —ryen (I1)yly+I1]

—ym (efreI])yly<II] —yen (I[zeI])yly«II]

=y z[zey][zeT][y<1]] —yew Ylzey] [z I][y+II]
—yen II[zey][zI][y<1I]

= 2 [<I)[zey] [z I)[y<1I] —yen I[2/<I][zey][zI][y<1I]

CBS EXTENSION:
—yeyy L[Z/I][z<II)[z<I|[y<1I]
Sy T2 T][se 2/ [T [1] [y I1] yon [T][ze- 12") [T)fy11]
o 1L I oDy 22 1] —yen L2 Tz 12 1] [z T [y I[1]

31/31

	Evaluation Strategies
	Silly Substitution Calculus
	Silly Multi Types
	Call-by-Value and Operational Equivalence
	Conclusion
	Appendix

