
Normal Form Bisimulations by Value

Beniamino Accattoli1, Adrienne Lancelot1 & Claudia Faggian2

1Inria & LIX, École Polytechnique
2IRIF, Université Paris Cité & CNRS

October 5th 2023 - Séminaire LoVe

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Programming Languages
Program equivalence in the λ-calculus

We are interested in studying program equivalence for functional
programming languages.

Via the lambda-calculus, seen as a mathematical model of
programming languages.

What makes two lambda terms equivalent?

Programming Languages
Two main paradigms

There are various notions of program equivalence which depends
on the various dialects of the λ-calculus.
And even more variants if we were to consider effects, or others additions to the

calculus.

I Call-by-Name is the variant most used in theoretical studies.

I Call-by-Value is a more accurate model of functional
programming languages.

Function arguments are evaluated first.

Programming Languages
Open terms

Programs are usually considered closed.
A term is closed if it has no free variables.

Closed terms are expressive enough to model all computable
functions.
But to study certain subjects, such as the implementation model of Coq, one needs

open terms.

Programming Languages
Call-by-Value theory

Call-by-Value was formalized by Plotkin [Plo75].

Its theory is well-behaved for closed terms, but is not very
satisfactory on open terms.

In the literature, there are some propositions to enhance the open
Call-by-Value setting – usually extensions of Plotkin’s CbV:

I Moggi’s work on computational lambda-calculus (with lets)
[Mog89].

I Open Call-by-Value. A recent advance towards a generalized
theory, related with Linear Logic [AG16].
An operational characterization for meaningless and meaningful terms?

Programming Languages
Meaningless and meaningful terms

In lambda-calculus, not all divergent terms diverge in the same way.

I Meaningful. Core example : Fix-points operators, Y and Θ
Some terms may be divergent but still meaningful, by producing increasing

information.

I Meaningless. All terms equivalent to δδ are meaningless.
Convoluted definition...

In Call-by-Name, meaningful = solvable (head normalizable).
In Plotkin’s Call-by-Value, meaningful 6= ??-normalizable:

ΩL = (λx .δ)(yy)δ is a meaningless normal form.

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Equivalence of Programs
Contextual Equivalence

Two terms that behave the same in any given environment, are
contextually equivalent.

I A natural notion.

I In practice, not usable.
Unable to prove contextual equivalence for the fixed point combinators.

I Which depends on the definition of dialect.
Call-by-Name and Call-by-Value have different notions of contextual equivalence.

Equivalence of Programs
Generalities

What are equivalent programs ?

Three important properties for a relation R on terms:

Equivalence Reflexivity Symmetry Transitivity

Compatibility t R u ⇒ C 〈t〉 R C 〈u〉

Adequacy t R u ⇒ t ⇓ iff u ⇓

Conversion t =β u ⇒ t R u

If a relation is compatible and adequate, then it is included in contextual equivalence.

If an equivalence relation is compatible and includes conversion, then it is an

equational theory.

Equivalence of Programs
Normal Form Bisimilarity

Normal form bisimilarity [San94] can be seen as a technique to
prove contextual equivalence.

Normal form bisimilarity states program equivalence for λ-terms by
looking at the structure of their normal forms.
As an example, in Call-by-Value, we relate λx .t and λx .t′ by relating t and t′

This is also called open bisimilarity because we need to deal with
open terms.
Which is inherent when inspecting the body of functions, that is, moving from an

closed term λx .t to a open term t.

Equivalence of Programs
Normal Form Bisimilarity

normal form bisimilarity ⊆ contextual equivalence

I Similarly written programs behave the same in any
environment.

I The converse is not obvious and will depend on how normal
form bisimilarities inspect normal forms.

Normal Form Bisimulations by Name
Standard normal form bisimulations

In Call-by-Name, normal form bisimulations have been introduced
by Sangiorgi [San94], coming from Pi-calculus bisimulations.

I Refined by Lassen [Las99] and related with Böhm and
Lévy-Longo trees

I Identify meaningless because they use (weak) head reduction

I Adding η-equivalence, yields a fully abstract program
equivalence. (Nakajima trees)

Normal Form Bisimulations by Value
State-of-the-art normal form bisimulations by value

In the literature, a Call-by-Value normal form bisimilarity1 has been
developed by Lassen [Las05], based on Plotkin’s CbV calculus.

Eager Normal Form Bisimilarity 'enf

I Validates Moggi’s laws (It ≡lid t for all t)
I(yy) 'enf yy , ...

I Differentiates between different meaningless terms
ΩL 6'enf Ω

The second point is the starting point of our work: to create a
normal form bisimilarity that identifies meaningless terms.

Going back to Pi-calculus, it is possible to characterize Lassen’s
Enf in Pi [DHS22].

1But this nf bisimilarity is not defined as CbN bisimilarities are.

Normal Form Bisimulations by Value
Four program equivalences

Overview: How to adapt normal form bisimulations to
Call-by-Value ?

I (Natural) Naive CbV Normal Form Bisimilarity

I (State-of-the-art) Lassen’s Eager Normal Form Bisimilarity

I (New) Net Bisimilarity

I (Goal) Relational Semantics: Type Equivalence

Contributions
Naive normal form bisimilarity

By rephrasing Call-by-Name weak head normal form bisimulations
(that is Sangiorgi’s open bisimulation or Lévy-Longo bisimulation)
in Call-by-Value, we get:

Naive Call-by-Value Normal Form Bisimulation 'nai

I Usable for some infinitary normal forms
Curry’s and Turing’s fix-points combinators are naive CbV normal form bisimilar

I Not much more...
I(yy) 6'nai yy , ΩL 6'nai Ω, I(I(yy)) 6'nai I(yy), ...

Contributions
Net Bisimilarity

We developed a new CbV normal form bisimilarity, relying on the
theory of Open Call-by-Value.
More precisely, the Value Substitution Calculus [AP12].

Net Bisimilarity 'net

I By construction, it identifies all meaningless terms.
ΩL 'net Ω

I It does not subsume Lassen’s enf bisimilarity.
I(yy) 6'net (yy)

Contributions
Technical Proof

Soundness wrto Contextual Equivalence

A crucial point is to prove compatibility.
Compatibility t R u ⇒ C〈t〉 R C〈u〉

I Lassen’s method:
Based on Howe’s method, used in another paper [Las99] by Lassen about

call-by-name normal form bisimilarities.

Introduce a contextual closure, then prove the contextual
closure of a bisimulation is a bisimulation! By coinduction,
the contextual closure of the bisimilarity coincides with the
bisimilarity.

Normal Form Bisimulations by Value
Soundness and Incompleteness wrto Contextual Equivalence

Both 'enf and 'net are included strictly in contextual equivalence.

'enf

'net

CbN Duplication'CbV
C

(CbN duplication) δ(yy) 'CbV
C (yy)(yy)

Normal Form Bisimulations by Value
Soundness and Incompleteness wrto Relational Semantics

Both bisimilarities are also included in the equational theory
induced by Ehrhard’s Call-by-Value relational semantics. Types
here refer to intersection types, which are a syntactic presentation
of the denotational –relational– semantics.

'enf

'type

'net

CbN Duplication'CbV
C

Type Equivalence 'type

Contribution
Results

The two bisimilarities are orthogonal.

I Lassen’s enf bisimilarity validates the identity rule.
I(t) 'enf t for any term t

I Net bisimilarity identifies meaningless terms.
ΩL 'net Ω

Moggi’s laws or theory of Open Call-By-Value, but not both.

Mixing both could mean matching type equivalence!

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

General Notions
Call-by-Value

We refer to the following calculus as Plotkin’s Call-by-Value.

Terms t, u ::= v | tu
Values v , v ′ ::= x | λx .t

The CbV reduction restricts β-redexes to abstractions applied to
values.

Weak Contexts E ::= 〈·〉 | Et | tE

Weak reduction →w is defined by Weak contextual closure of the
top-level rule 7→βv .

βv -reduction Contextual closure
(λx .t)v 7→βv t{x�v} E 〈t〉 →w E 〈t ′〉 if t 7→βv t ′

General Notions
Contextual Equivalence

For a reduction →, we define big-step evaluation ⇓ by:

I if t →k n and n is a normal form, then t ⇓k n.

I if t diverges, t 6⇓ .

Definition (Contextual Equivalence)

We define contextual equivalence 'C as follows:

t 'C t ′ if for all C closing2 contexts of t and t ′,
C 〈t〉 ⇓ ⇐⇒ C 〈t ′〉 ⇓ .

More precisely, we consider 'CbV
C where the evaluation is ⇓CbV associated with the

weak reduction →w.

2C〈t〉 and C〈t′〉 are closed terms

Normal Form Bisimulations by Name
Weak head normal form bisimulations

A relation R is a weak head normal form bisimulation if, whenever
t R t ′ then one of the following cases hold:

(wh 1) t and t ′ have no →wh -normal forms.

(wh 2) t →∗wh λx .t1 and t ′ →∗wh λx .t ′1 with t1 R t ′1

(wh 3) t →∗wh x t1 . . . tk and t ′ →∗wh x t ′1 . . . t
′
k with (ti R t ′i)i≤k

(wh 3.1) t →∗wh x and t ′ →∗wh x

(wh 3.2) t →∗wh n u and t ′ →∗wh n′ u′

with n R n′ and u R u′

Normal Form Bisimulations by Name
Weak head normal form bisimulations

A relation R is a weak head normal form bisimulation if, whenever
t R t ′ then one of the following cases hold:

(wh 1) t and t ′ have no →wh -normal forms.

(wh 2) t →∗wh λx .t1 and t ′ →∗wh λx .t ′1 with t1 R t ′1

(wh 3) t →∗wh x t1 . . . tk and t ′ →∗wh x t ′1 . . . t
′
k with (ti R t ′i)i≤k

(wh 3.1) t →∗wh x and t ′ →∗wh x

(wh 3.2) t →∗wh n u and t ′ →∗wh n′ u′

with n R n′ and u R u′

Naive CbV normal form bisimilarity

A relation R is a naive Call-by-Value normal form bisimulation if,
whenever t R t ′ then one of the following cases hold:

(nai 1) t 6⇓w and t ′ 6⇓w

(nai 2) t ⇓w x and t ′ ⇓w x

(nai 3) t ⇓w λx .t1 and t ′ ⇓w λx .t ′1
with t1 R t ′1

(nai 4) t ⇓w n1n2 and t ′ ⇓w n′1n
′
2

with n1 R n′1 and n2 R n′2

Naive CbV normal form bisimilarity is defined by co-induction, as
the largest net bisimulation.

Naive CbV Normal Form Bisimilarity
What for?

I Accounts for infinitary behavior.
The fix-points operators are naively bisimilar.

I Does not fit in any improvement of Call-by-Value for open
terms
I (Moggi) I(yy) 6'nai yy
I (Meaningless) ΩL 6'nai Ω

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Lassen’s Enf Bisimilarity
Left Weak Call-by-Value reduction

Lassen uses a restriction on Plotkin’s Call-by-Value Weak
reduction, which we call →las.

(xx)(δδ) is a normal form for →las but (xx)(δδ)→w (xx)(δδ)

Lassen differentiates between meaningless terms.

Left Normal Forms

We define precisely this reduction Lassen’s Left reduction, noted
→las.

Left Contexts L ::= 〈·〉 | vL | Lt

Rule at Top Level Left Contextual closure
(λx .t)v 7→βv t{x�v} L〈t〉 →las L〈u〉 if t 7→βv u

Lassen defines a left normal forms grammar.

Lemma (Lassen)

Terms are either values or admit a unique decomposition L〈vv〉.

Left Normal Forms n ::= v | L〈xv〉

Lassen’s Enf Bisimilarity
Eager normal form simulation

A relation R between λ-terms is an eager normal form (enf)
bisimulation [Las05] if, whenever t R t ′ then one of the following
clauses holds:

(enf 1) t 6⇓las and t ′ 6⇓las

(enf 2) t ⇓las x and t ′ ⇓las x

(enf 3) t ⇓las λx .t1 and t ′ ⇓las λx .t ′1
with t1 R t ′1

(enf 4) t ⇓las L〈xv〉 and t ′ ⇓las L′〈xv’〉
with v R v’ and L〈z〉 R L′〈z〉
where z is not free in L or L′

Lassen’s Enf Bisimilarity
Enf bisimilarity

Enf bisimilarity, noted 'enf , is defined by co-induction as the
largest enf bisimulation.

We say that t and t ′ are enf bisimilar whenever t 'enf t ′.

Theorem
I Enf bisimilarity is compatible

I ∀t, t ′, t 'enf t ′ ⇒ t 'C t ′

As an extension of 'nai , enf bisimilarity accounts for infinitary
behavior.
Turing’s and Curry’s fix-points combinators are enf bisimilar.

Examples of enf bisimilar terms
Moggi’s laws

The following equations of Moggi’s untyped computational
λ-calculus (without lets) are satisfied by enf bisimilarity:

I (id) (λx .x)t ≡lid t

I (assoc) (λx .t)((λy .u)s) ≡ass (λy .(λx .t)u)s) if y 6∈ fv(u)

I (let.1) tu ≡lad (λx .xu)t if x 6∈ fv(u)

I (let.2) vt ≡rad (λx .vx)t if x 6∈ fv(v).

Shortcomings of enf bisimilarity

Enf bisimilarity is not complete with respect to contextual
equivalence ('CbV

C).

I (extensionality) y 6'enf λx .yx
This is fixed by Lassen by adding ηv equivalence to enf.

I (meaningless left3) (xx)(δδ) 6'enf δδ

I (meaningless) (λx .δ)(yy)δ 6'enf δδ

3Here this meaningless term is normal because of Lassen’s choice to reduce
left to right, not because Call-by-Value evaluation is stuck

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Value Substitution Calculus
An Open Call-by-Value Viewpoint

The Value Substitution Calculus (VSC) was introduced by
Accattoli and Paolini [AP12].

It is a presentation of Open Call-by-Value [AG16].

It has a well-behaved rewriting theory and an ability to circumvent
stuck redexes.

Value Substitution Calculus
A calculus with explicit substitutions

Terms t, u, s ::= v | tu | t[x�u]
Values v ::= x | λx .t

Explicit substitutions are sometimes written as let x = u in t.

We consider Weak VSC, which is given using contextual closure
over the evaluation contexts – weak contexts extended for the new
construct of explicit substitutions.

E ::= 〈·〉 | tE | Et | E [x�u] | t[x�E]

Value Substitution Calculus
Reduction in two steps

There are two reduction rules: the multiplicative →m rule and the
exponential →e rule.

Simplified Rules
(λx .t)u →m t[x�u]
t[x�v]→e t{x�v}

The βv -reduction is fractioned: II →βv I but II →m x [x�I]→e I

Value Substitution Calculus
Reduction at a distance

We refer to Weak VSC as VSC, and note the reduction →vsc.

Substitution Contexts are lists of substitutions:

S ::= 〈·〉 | S [x�u]

Actual reduction rules are at a distance.

Reduction Rules
S〈λx .t〉u →m S〈t[x�u]〉
t[x�S〈v〉]→e S〈t{x�v}〉

Value Substitution Calculus
Reduction at a distance

Distance = Needed Permutations to unstuck redexes

(λx1.(λx .t))(yu)v →m (λx .t)[x1�yu]v →m t[x�v][x1�yu]→e . . .

(λx .t)((λx2.v)(zu))→m (λx .t)(v [x2�zu])→m t[x�v [x2�zu]]
→e t{x�v}[x2�zu]→vsc . . .

Value Substitution Calculus
VSC has a powerful reduction

ΩL = (λx .δ)(yy)δ →m δ[x�yy]δ →m zz [z�δ][x�yy]

→e δδ[x�yy]→m→e δδ[x�yy]→m→e . . .

ΩR = δ((λx .δ)(yy))→m δ(δ[x�yy])→m zz [z�δ[x�yy]]

→e δδ[x�yy]→m→e δδ[x�yy]→m→e . . .

Theorem (Operational Characterization of Meaninglessness
[AP12])

A term t is meaningless iff t 6⇓vsc .

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Naive CbV-VSC normal form bisimilarity

A relation R is a naive CbV-VSC normal form bisimulation if,
whenever t R t ′ then one of the following cases hold:

(nai 1) t 6⇓vsc and t ′ 6⇓vsc

(nai 2) t ⇓vsc x and t ′ ⇓vsc x

(nai 3) t ⇓vsc λx .t1 and t ′ ⇓vsc λx .t ′1
with t1 R t ′1

(nai 4) t ⇓vsc n1n2 and t ′ ⇓vsc n′1n
′
2

with n1 R n′1 and n2 R n′2

(nai 5) t ⇓vsc n1[x�n2] and t ′ ⇓vsc n′1[x�n′2]
with n1 R n′1 and n2 R n′2

Naive CbV-VSC normal form bisimilarity is defined by co-induction,
as the largest naive CbV-VSC bisimulation.

Naive CbV-VSC normal form bisimilarity
Examples and shortcoming

I All meaningless terms are naive CbV-VSC bisimilar.

I However, this naive attempt is still too rigid:
I Does not validate Moggi’s identity rule

x [x�t] 6'nai t

I And does not allow permutation between applications and
explicit substitutions
xI[x�yI] 6'nai x [x�yI]I

Value Substitution Calculus & Proof Nets
Structural Equivalence

The VSC was introduced to study the relationship between CbV
and Linear Logic.
From this correspondance yields a program equivalence:

(Structural Equivalence) t ≡str u if ProofNet(t) = ProofNet(u)

Structural Equivalence is equivalent to a syntactic axiomatization:

(ts)[x�u] ≡σ1 t[x�u]s if x 6∈ fv(s)
(ts)[x�u] ≡exσ3 ts[x�u] if x 6∈ fv(t)

t[x�u][y�s] ≡ass t[x�u[y�s]] if y 6∈ fv(t)
t[y�s][x�u] ≡com t[x�u][y�s] if x 6∈ fv(s) and y 6∈ fv(u)

4

4≡str is the smallest equivalence relation, which includes these equalities
and that is compatible.

Value Substitution Calculus & Proof Nets
Structural Equivalence

The VSC was introduced to study the relationship between CbV
and Linear Logic.
From this correspondance yields a program equivalence:

(Structural Equivalence) t ≡str u if ProofNet(t) = ProofNet(u)

Structural Equivalence is equivalent to a syntactic axiomatization:

(ts)[x�u] ≡σ1 t[x�u]s if x 6∈ fv(s)
(ts)[x�u] ≡exσ3 ts[x�u] if x 6∈ fv(t)

t[x�u][y�s] ≡ass t[x�u[y�s]] if y 6∈ fv(t)
t[y�s][x�u] ≡com t[x�u][y�s] if x 6∈ fv(s) and y 6∈ fv(u)

4

4≡str is the smallest equivalence relation, which includes these equalities
and that is compatible.

Net bisimilarity

A relation R is a net bisimulation if, whenever t R t ′ then one of
the following cases hold:

(nai 1) t 6⇓vsc and t ′ 6⇓vsc

(nai 2) t ⇓vsc x and t ′ ⇓vsc x

(nai 3) t ⇓vsc λx .t1 and t ′ ⇓vsc λx .t ′1
with t1 R t ′1

(nai 4) t ⇓vsc n1n2 and t ′ ⇓vsc n′ ≡str n′1n
′
2

with n1 R n′1 and n2 R n′2

(nai 5) t ⇓vsc n1[x�n2] and t ′ ⇓vsc n′ ≡str n′1[x�n′2]
with n1 R n′1 and n2 R n′2

Net bisimilarity is defined by co-induction, as the largest net
bisimulation.

Net Bisimilarity is Compatible
Proof

Lemma
Structural equivalence ≡str verifies:

1. Strong commutation: if t ≡str u and t →vsc t
′ then

u →vsc u
′ and t ′ ≡str u

′.

2. Substitutivity: if t ≡str u then t{x�v} ≡str u{x�v} for all
values v .

Theorem

1. Net bisimilarity is compatible.

2. Net bisimilarity is included in contextual equivalence.

Actually, we prove compatibility for any abstract ≡M which
strongly commutes with →vsc and is substitutive.

Net Bisimilarity is Compatible
Proof

Lemma
Structural equivalence ≡str verifies:

1. Strong commutation: if t ≡str u and t →vsc t
′ then

u →vsc u
′ and t ′ ≡str u

′.

2. Substitutivity: if t ≡str u then t{x�v} ≡str u{x�v} for all
values v .

Theorem

1. Net bisimilarity is compatible.

2. Net bisimilarity is included in contextual equivalence.

Actually, we prove compatibility for any abstract ≡M which
strongly commutes with →vsc and is substitutive.

≡M-mirrored normal form bisimilarity

A relation R is a ≡M -mirrored normal form bisimulation if,
whenever t R t ′ then one of the following cases hold:

(nai 1) t 6⇓vsc and t ′ 6⇓vsc

(nai 2) t ⇓vsc x and t ′ ⇓vsc x

(nai 3) t ⇓vsc λx .t1 and t ′ ⇓vsc λx .t ′1
with t1 R t ′1

(nai 4) t ⇓vsc n1n2 and t ′ ⇓vsc n′ ≡M n′1n
′
2

with n1 R n′1 and n2 R n′2

(nai 5) t ⇓vsc n1[x�n2] and t ′ ⇓vsc n′ ≡M n′1[x�n′2]
with n1 R n′1 and n2 R n′2

≡M -mirrored normal form bisimilarity is defined by co-induction, as
the largest ≡M -mirrored bisimulation.

Net bisimilarities
Examples of bisimilar terms

Net bisimilarity extends 'nai bisimilarity, and identifies meaningless
terms.

I (meaningful) Yv 'net Θv

As did Lassen, we manage to equate the fixed point combinators.

I (meaningless)
While Lassen differentiated between meaningless terms, net bisimilarity equates

them.

I (meaningless left) (xx)(δδ) 'net δδ
I (meaningless) ΩL 'net ΩR 'net Ω = δδ

I (proof nets) Net bisimilarity validates structural equivalence.
xI[x�yI] 'net x [x�yI]I

Net bisimilarity
Shortcomings

Net bisimilarity does not subsume Lassen’s enf bisimilarity, and is
still far away from full abstraction.

I (id) (λx .x)(yy) 6=net yy
While this equation is validated by enf bisimilarity as part of Moggi’s equations.

I (duplication) (xx)[x�yy] 6=net (yy)(yy)
As for enf, duplication is not accounted for by net bisimilarity.

Net Bisimilarity and the Identity Rule

A first step to be able to include Lassen’s Enf in Net Bisimilarity is
to include the identity rule (It ≡lid t).

Current technique to add ≡str does not adapt:
contextual ≡lid does not strongly commute with →vsc

yv [y�x [x�t]] ≡lid yv [y�t]
↓vsc �

��↓vsc
xv [x�t] = yv [y�t]

On the other hand, improving enf to match net is not easy.
It is not even easy to define enf with weak reduction instead of left to right.

Enf and Net bisimilarities are orthogonal, and there does not seem
to be an easy way to mix them.

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

From Operational to Denotational
Relational Semantics

We investigate Ehrhard’s CbV relational model, which is not fully
abstract for contextual equivalence, as it does not satisfy
duplication.

The model induces an equational theory on terms (identifying
terms with the same interpretation).

This equational theory does not have a syntactic characterization
but it can still be studied via non idempotent intersection types.

Multi Types by Value
”Typing” system

Linear Types L, L′ ::= M (N
Multi Types M,N ::= [L1, . . . , Ln] n ≥ 0

x : [L] ` x : L
ax

Γ, x :M ` t :N

Γ ` λx .t :M (N
λ

Γ ` t : [M (N] ∆ ` u :M

Γ]∆ ` tu :N
@

Γ, x :M ` t :N ∆ ` u :M

Γ]∆ ` t[x�u] :N
es

(Γi ` v : Li)i∈I I finite⊎
i∈I Γi ` v :

⊎
i∈I [Li]

many

Figure: Call-by-Value Multi Type System for VSC.

Type Equivalence

Definition (Type equivalence)

Two terms t and t ′ are type equivalent, t 'type t ′ if:

∀Γ,M Γ ` t :M ⇐⇒ Γ ` t ′ :M

Universal quantification :(

Theorem

1. Compatibility: if t 'type t ′ then, for all C , C 〈t〉 'type C 〈t ′〉.
2. Soundness: if t 'type t ′ then t 'CbV

C t ′.

Type Equivalence vs. Enf and Net

Proposition

Enf and net bisimilarities are included in Type Equivalence.

'enf

'net

ηv equivalence'type

(Extensionality) λy .vy ≡ηv v

Type Equivalence vs. Enf and Net

Proposition

Enf and net bisimilarities are included in Type Equivalence.

'enf

'net

ηv equivalence'type

(Extensionality) λy .vy ≡ηv v

An axiomatisation to type equivalence?

ηv is not a problem for enf (ηv -enf already exists)!
For net, the addition of ≡ηv requires that of ≡lid

'enf

'net

ηv equivalence'type

Conjecture: 'type = 'enf +'net + ηv

Outline

Programming Languages & Program Equivalence

Equivalence of Programs

Plotkin’s Style Call-by-Value

Lassen’s Call-by-Value Bisimilarity

An Open Call-by-Value Calculus: The Value Substitution Calculus

(New) Normal Form Bisimilarities

Type Equivalence

Conclusion and Discussion

Conclusion
Many Approaches to CbV Program Equivalence

We investigated and related three CbV normal form bisimulations
and one denotational equivalence.

I Naive CbV
as an adaptation of CbN nf-bisimulations

I Lassen’s Enf
state-of-the-art technique that does not comply with CbV meaninglessness

I Net, and other mirrored bisimulations
as Naive-ish bisimilarities for an extended CbV calculus - VSC

I Type Equivalence
a universally quantified program equivalence, that we want to axiomatize

Conclusion
A richer situation than in Call-by-Name

CbN-style approaches, even in richer settings, do not yield
complete CbV normal form bisimulations. Axiomatization is harder!

Call-by-Name contextual equivalence: head normal form
bisimulations up to η

Call-by-Value contextual equivalence: Naive CbV normal form
bisimulations up to ηv , identifying meaningless, ≡lid , ≡str ,
duplication, ...?
OR
Call-by-Value contextual equivalence: Naive CbV-VSC normal

form bisimulations up to ηv ,
(((

((((
((((identifying meaningless, ≡lid , ≡str ,

duplication, ...?

Thank you for your attention!
https://arxiv.org/abs/2303.08161

'enf

'type

'net

CbN Duplication'CbV
C

≡lid

≡str

≡⊥=βv

≡ηv

≡⊥ : identifying meaningless terms
≡lid : Moggi’s identity rule It ≡lid t
≡str : structural equivalence
=βv : βv -conversion
≡ηv : ηv -equivalence λx .yx ≡ηv y

https://arxiv.org/abs/2303.08161

Beniamino Accattoli and Giulio Guerrieri.
Open call-by-value.
In Atsushi Igarashi, editor, Programming Languages and
Systems - 14th Asian Symposium, APLAS 2016, Hanoi,
Vietnam, November 21-23, 2016, Proceedings, volume 10017
of Lecture Notes in Computer Science, pages 206–226, 2016.

Beniamino Accattoli and Giulio Guerrieri.
The theory of call-by-value solvability (long version).
CoRR, abs/2207.08697, 2022.

Beniamino Accattoli and Luca Paolini.
Call-by-value solvability, revisited.
In Tom Schrijvers and Peter Thiemann, editors, Functional
and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings,
volume 7294 of Lecture Notes in Computer Science, pages
4–16. Springer, 2012.

Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi.
Eager functions as processes.

Theor. Comput. Sci., 913:8–42, 2022.

Søren B Lassen.
Bisimulation in untyped lambda calculus:: Böhm trees and
bisimulation up to context.
Electronic Notes in Theoretical Computer Science,
20:346–374, 1999.

Soren Lassen.
Eager normal form bisimulation.
In Proceedings of the 20th Annual IEEE Symposium on Logic
in Computer Science, LICS ’05, page 345–354, USA, 2005.
IEEE Computer Society.

Eugenio Moggi.
Computational λ-Calculus and Monads.
In Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS ’89), Pacific Grove, California, USA,
June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989.

G.D. Plotkin.
Call-by-name, call-by-value and the λ-calculus.

Theoretical Computer Science, 1(2):125–159, 1975.

D. Sangiorgi.
The lazy lambda calculus in a concurrency scenario.
Information and Computation, 111(1):120–153, 1994.

	Programming Languages & Program Equivalence
	Equivalence of Programs
	Plotkin's Style Call-by-Value
	Lassen's Call-by-Value Bisimilarity
	An Open Call-by-Value Calculus: The Value Substitution Calculus
	(New) Normal Form Bisimilarities
	Type Equivalence
	Conclusion and Discussion
	Appendix

