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Lambda Calculus

In the beginning there was the Lambda Calculus

Then people asked ”What are equivalent lambda terms?”
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Partial Recursive Functions

In the beginning there were also Partial Recursive Functions

And people knew what was the right preorder on partial functions

f ≤prf g if ∀n ∈ N, f (n) = ⊥ or f (n) =N g(n)

f⊥ : n 7→ ⊥ is the minimum computable function for ≤prf
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The Lambda-Calculus
Computable functions inside lambda

Q1: What is the lambda term that represents undefined (⊥) ?
Answer: possibly Ω := δδ

Q2: If one is concerned with program equivalence, what is the
class of undefined lambda terms ?
Answer: any term equivalent with Ω
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The Lambda-Calculus
Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?
The story of solvability is partially inspired by that question.

Undefined is.. β-diverging unsolvable inscrutable1

Eq. Theory Inconsistent / Consistent 2 Consistent

Induced Eq. Theory: the smallest equational theory equating
undefined terms

Consistency: not equating everything

1synonym of non potentially valuable
2Why? Genericity Lemma
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The Lambda-Calculus
Undefinedness, Operationally

What should represent undefined in the lambda-calculus?

Undefined is.. β-diverging head-diverging whead-diverging

Eq. Theory Inconsistent / Consistent 3 Consistent

In Call-by-Name, there is an operational characterization of
solvability.

t is solvable ⇐⇒ t is head-normalizing
t is scrutable ⇐⇒ t is weakhead-normalizing

3Why? Genericity Lemma
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The Call-by-Value Lambda-Calculus
Undefinedness, a Mess

What should represent undefined in the Call-by-Value
lambda-calculus?

Undefined is.. βv -diverging unsolvable inscrutable

Eq. Theory Inconsistent / Inconsistent /4 Consistent 5

No operational characterization. Open terms cause problems!

Ωnf = (λx .δ)(yy)δ is an inscrutable βv -normal form.

We can recover operational characterizations in refinements of
Plotkin’s CbV lambda-calculus.

4Why? Short answer: all values should be defined. Long answer: [AG22]
5But no Genericity Lemma!
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Barendregt’s Genericity
Intuitively

Given t a term, if for some u in U (the set of undefined terms)

t
u

*

β n

then for all s

t
s

*

β n
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Barendregt’s Genericity
Intuitively

Given C a context, if for some u in U

C
u

*

β n

then for all s

C
s

*

β n
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Barendregt’s Genericity
Statement

Heavy Genericity: let u be head-diverging and C such that
C 〈u〉 →∗β n where n is β-normal then C 〈s〉 →∗β n for all s ∈ Λ.

Heavy Genericity

Consistency Maximality

Consistency: ∃T such that Maximality: ∃T maximal:
for all u undefined we have that if there exists T ′ such that

T ` u = Ω T ( T ′ then
and T is consistent T ′ is inconsistent
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Light Genericity
We want to consider a lighter genericity statement:

I Use a simpler reduction than →β

I Do not compare normal forms

Four reasons why:

I Powerful enough

Light Genericity

Consistency Maximality

I Modular
It shall look the same for any reduction strategy–in particular CbN and CbV

I Connection with contextual equivalence

I Not looking at full normal forms will allow us to dualize the
statement to co-genericity
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Proving Light Genericity

Light Genericity is a good property, rather than a lemma.

I It is very close to what is called sensible theories

I Any good model should satisfy light genericity

So, how do we prove it?

I We present multiple proof techniques (denotational,
bisimulations-al & operational).
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(Closed) Contextual Preorder
and induced equivalence

The (closed) contextual preorder associated to a reduction →s is
defined as:

I t -s
C u if for all closing6 contexts C , C 〈t〉 is s-normalizing

implies C 〈u〉 is s-normalizing.

(Closed) contextual equivalence 's
C is defined as the symmetric

closure of the preorder.

The two reductions we are interested in are the head CbN
reduction and the weak CbV reduction and their associated
(closed) contextual preorders.

6i.e. C〈t〉 and C〈u〉 are closed terms
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Open Contextual Preorder
and induced equivalence

The open contextual preorder associated to a reduction →s is
defined as:

I t -s
CO u if for all contexts C , C 〈t〉 is s-normalizing implies

C 〈u〉 is s-normalizing.

Open contextual equivalence 's
CO is defined as the symmetric

closure of the open preorder.

In Call-by-Name, head open contextual equivalence is exactly the
theory H∗.
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Light Genericity
Minimum terms for the contextual preorder

For a reduction →s, we can state light genericity:

Light Genericity:
let u be s-diverging and C such that C 〈u〉 is s-normalizing

then C 〈t〉 is s-normalizing for all t ∈ Λ.

Or more concisely:

Light Genericity: s-diverging terms are minimum terms for the
open contextual preorder associated to s.
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Equational theories
Or rather inequational theories

Definition (Inequational s-theory)

Let s be a reduction. An inequational s-theory ≤s
T is a

compatible7 pre-order on terms containing s-conversion.

Closed/Open s-contextual preorders are s-inequational theories.
The non-trivial point is that they contain s-conversion.

7Stable by contextual closure: t ≤s
T u =⇒ ∀C , C〈t〉 ≤s

T C〈u〉
19 / 40
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Inequational theories
Generalization of sensible and semi-sensible

An inequational s-theory ≤s
T is called:

I Consistent: whenever it does not relate all terms;

I s-ground: if s-diverging terms are minimum terms for ≤s
T ;

I s-adequate: if t ≤s
T u and t is s-normalizing entails u is

s-normalizing.

Groundness and Adequacy correspond (in CbN) with the
order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for ≤s
T are s-diverging.
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Maximality

For s ∈ {head CbN, weak CbV}, we can state maximality
uniformly.
The proof is not uniform as it relies on critical solvability/scrutability concepts.

Theorem
Maximality of -s

CO: -
s
CO is a maximal consistent inequational

s-theory, i.e.

if -s
CO ( R then R is inconsistent.

An elegant proof that closed and open contextual equivalence
coincides follows: -s

CO⊆-s
C and -s

C is consistent, hence -s
CO=-s

C
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Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.

CbN Light Genericity: head-diverging terms are minimum for the
head open contextual preorder.

We can unfold the statement:

CbN Light Genericity: let u be head-diverging and C such that
C 〈u〉 is head-normalizing then C 〈t〉 is head-normalizing for all

t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

23 / 40



Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.

CbN Light Genericity: head-diverging terms are minimum for the
head open contextual preorder.

We can unfold the statement:

CbN Light Genericity: let u be head-diverging and C such that
C 〈u〉 is head-normalizing then C 〈t〉 is head-normalizing for all

t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

23 / 40



Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.

CbN Light Genericity: head-diverging terms are minimum for the
head open contextual preorder.

We can unfold the statement:

CbN Light Genericity: let u be head-diverging and C such that
C 〈u〉 is head-normalizing then C 〈t〉 is head-normalizing for all

t ∈ Λ.

Main difficulty: reasoning with contexts and reduction.

23 / 40



Direct proof of Light Genericity

Takahashi proves Barendregt’s genericity with a very short proof
[Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!

We adapt Takahashi’s trick to give a direct proof of light
genericity!
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Takahashi’s Trick

Takahashi’s trick Light genericity as substitution implies light
genericity!

Light genericity as substitution: let u be s-diverging and t such
that t{x�u} is s-normalizing then t{x�s} is s-normalizing for all
s ∈ Λ.
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Takahashi’s Trick in CbN
Proof: [Hyp: C 〈u〉 is h-normalizing]
Let fv(u) ∪ fv(s) = {x1, . . . , xk}, and y a fresh variable.
I ū := λx1. . . . λxk .u is a closed term.
I Consider t := C 〈yx1 . . . xk〉, and note that:

t{y�ū} = C 〈ūx1 . . . xk〉 = C 〈(λx1. . . . λxk .u)x1 . . . xk〉 →k
β

C 〈u〉.
I u is h-diverging implies that ū is also h-diverging.
I (Head Normalization Theorem) C 〈u〉 is h-normalizing then so

is t{y�ū}
By light genericity as substitution, t{y�s ′} is h-normalizing for
every s ′.
In particular, take s ′ := s̄ = λx1. . . . λxk .s:

t{y�s̄}

C〈s〉 n

β∗ h∗
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t{y�ū} = C 〈ūx1 . . . xk〉 = C 〈(λx1. . . . λxk .u)x1 . . . xk〉 →k
β

C 〈u〉.
I u is h-diverging implies that ū is also h-diverging.
I (Head Normalization Theorem) C 〈u〉 is h-normalizing then so

is t{y�ū}
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Confluence of β
Head normal forms are stable by β
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Light Genericity in CbN

Light Genericity

Consistency Maximality

We use the head open contextual preorder -h
CO to prove both.

I It is consistent to collapse unsolvable terms:
(by light genericity) -h

CO equates unsolvable terms and -h
CO

is consistent (I 6-h
CO Ω)

I -h
CO is maximal:

(by light genericity) any larger theory is inconsistent

I -h
CO coincides with -h

C (by maximality)
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I -h
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Call-by-Value Light Genericity
Call-by-Value problems

Spoiler: it won’t work

At least not using Plotkin’s calculus

Ωnf = ((λx .δ)(yz))δ is meaningless!

Open and closed CbV contextual equivalences do not coincide:

Ωnf 'pv
C Ω but Ωnf 6'pv

CO Ω
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Change Call-by-Value
The good call-by-value contextual equivalence is Plotkin’s closed.

'v
C :='pv

C ='vsc
C ='vsc

CO

We use a nicer calculus (the Value Substitution Calculus [AP12])
that knows how to deal with open terms, but retains the same
closed contextual equivalence.

Undefined terms are exactly vsc-diverging terms.8

There, we can show:

I Light Genericity: vsc-diverging terms are minimum for -vsc
CO

I Consistency: -vsc
CO equates diverging terms and is consistent

I Maximality: -vsc
CO is a maximal inequational theory

I Closed and Open coincide: -vsc
C =-vsc

CO
8weak vsc-diverging
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Proofs of Call-by-Value Light Genericity

How to prove light genericity?

I Direct proof: Takahashi’s trick adapts, but not very smoothly.

I Using a good model of CbV: relational semantics [Ehr12]

I Applicative similarity or any program preorder that is included
in -s

CO and has diverging terms as minimums.
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Characterization of minimum terms

For s ∈ {head , vsc}:

Light genericity says:

t is s-diverging =⇒ t is a minimum for -s
CO

Adequacy (t R u and t is s-normalizing then u is s-normalizing)
implies the converse implication.

t is s-diverging ⇐⇒ t is a minimum for -s
CO
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Well, what about maximums?

t is ?? ⇐⇒ t is a maximum for -s
CO

I Call-by-Name: no maximum elements

I Call-by-Value: super terms!

Co-genericity states that super terms are maximum for -s
CO
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Super terms

A term t is s-super if, coinductively, t →∗s λx .u and u is s-super.

Intuitively, t infinitely normalizes to λx1. λx2. ... λxk . ...

Ωλ := (λx .λy .xx)(λx .λy .xx) is a call-by-value super term
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Co-genericity

In call-by-value:

Co-genericity

Consistency’

Again, we use the open call-by-value contextual preorder -v
CO to

prove it.

I It is consistent to equate super terms, as -v
CO does it and is

consistent.

I It is consistent to equate diverging terms and to equate super
terms, as -v

CO does it and is consistent.
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Proofs of co-genericity

How to prove co-genericity ?

I Direct proof: Takahashi’s trick adapts, and the proof is easier
than for light genericity.

I Using a good model of CbV? relational semantics [Ehr12] do
not work, as s-super terms are not maximum elements!

I Applicative similarity or any program preorder that is included
in -s

CO and has super terms as maximums9.

9I don’t think I know of any other one
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Conclusion

I Light genericity is a modular concept that is strong enough
to imply the two main consequences of Barendregt’s
genericity.

I It is naturally dualizable as co-genericity. Both concepts are
inspired and tied with contextual preorders.

I An application of light genericity and maximality is an elegant
proof of the fact that closed and open contextual equivalences
coincide.

A question remains: we named the two genericity statements
Heavy and Light, but we don’t know whether one implies the other
or not.
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Bottom (and Top?) line

Thank you!
To appear in FoSSaCS24 & technical report: https://hal.science/hal-04406343

...
...

...

⊥

>

λx1. . . . λxk .⊥

λx .⊥

⊥

CbN CbV
Contextual preorder for lambda terms

⊥ := equivalence class of Ω 40 / 40
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