Light Genericity

Beniamino Accattoli ${ }^{1}$, Adrienne Lancelot ${ }^{12}$

${ }^{1}$ Inria \& LIX, École Polytechnique
${ }^{2}$ IRIF, Université Paris Cité \& CNRS

February 22nd 2024 - séminaire PPS

Outline

The Lambda-Calculus \& Computable Functions
From Barendregt's Genericity to Light Genericity

Light Genericity \& Contextual Preorders

Call-by-Name Light Genericity
Call-by-Value Light Genericity

Co-Genericity

Conclusion

Lambda Calculus

In the beginning there was the Lambda Calculus
Then people asked "What are equivalent lambda terms?"

Lambda Calculus

In the beginning there was the Lambda Calculus
Then people asked "What are equivalent lambda terms?"

Partial Recursive Functions

In the beginning there were also Partial Recursive Functions
And people knew what was the right preorder on partial functions

$$
f \leq_{\mathrm{PRF}} g \text { if } \forall n \in \mathbb{N}, f(n)=\perp \text { or } f(n)=\mathbb{N} g(n)
$$

$f_{\perp}: n \mapsto \perp$ is the minimum computable function for \leq_{PRF}

Partial Recursive Functions

In the beginning there were also Partial Recursive Functions
And people knew what was the right preorder on partial functions

$$
f \leq_{\text {PRF }} g \text { if } \forall n \in \mathbb{N}, f(n)=\perp \text { or } f(n)=_{\mathbb{N}} g(n)
$$

$f_{\perp}: n \mapsto \perp$ is the minimum computable function for $\leq_{\text {PRF }}$

Partial Recursive Functions

In the beginning there were also Partial Recursive Functions
And people knew what was the right preorder on partial functions

$$
f \leq_{\mathrm{PRF}} g \text { if } \forall n \in \mathbb{N}, f(n)=\perp \text { or } f(n)=_{\mathbb{N}} g(n)
$$

$f_{\perp}: n \mapsto \perp$ is the minimum computable function for $\leq_{\text {PRF }}$

The Lambda-Calculus

Computable functions inside lambda

Q1: What is the lambda term that represents undefined (\perp) ?
Answer: possibly $\Omega:=\delta \delta$
Q2: If one is concerned with program equivalence, what is the class of undefined lambda terms ?

Answer: any term equivalent with Ω

The Lambda-Calculus

Computable functions inside lambda

Q1: What is the lambda term that represents undefined (\perp) ? Answer: possibly $\Omega:=\delta \delta$

Q2: If one is concerned with program equivalence, what is the class of undefined lambda terms ?
Answer: any term equivalent with Ω

The Lambda-Calculus

Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?

Induced Eq. Theory: the smallest equational theory equating undefined terms

Consistency: not equating everything

The Lambda-Calculus

Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?

Induced Eq. Theory: the smallest equational theory equating undefined terms

Consistency: not equating everything

The Lambda-Calculus

Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?
The story of solvability is partially inspired by that question.

Undefined is..	β-diverging	unsolvable	inscrutable 1
Eq. Theory	Inconsistent © $(+$	Consistent 2	Consistent

Induced Eq. Theory: the smallest equational theory equating undefined terms

Consistency: not equating everything

[^0]
The Lambda-Calculus

Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?
The story of solvability is partially inspired by that question.

Undefined is..	β-diverging	unsolvable	inscrutable 1
Eq. Theory	Inconsistent $\cdot($	Consistent 2	Consistent

Induced Eq. Theory: the smallest equational theory equating undefined terms

Consistency: not equating everything

[^1]
The Lambda-Calculus

Undefinedness, via Solvability

What should represent undefined in the lambda-calculus?
The story of solvability is partially inspired by that question.

Undefined is..	β-diverging	unsolvable	inscrutable 1
Eq. Theory	Inconsistent $)^{(\cdot}$	Consistent 2	Consistent 2

Induced Eq. Theory: the smallest equational theory equating undefined terms

Consistency: not equating everything

[^2]
The Lambda-Calculus

Undefinedness, Operationally

What should represent undefined in the lambda-calculus?

Undefined is..	β-diverging	head-diverging	whead-diverging
Eq. Theory	Inconsistent ©	Consistent 3	Consistent

In Call-by-Name, there is an operational characterization of solvability.

$$
\begin{array}{ll}
t \text { is solvable } & \Longleftrightarrow t \text { is head-normalizing } \\
t \text { is scrutable } & \Longleftrightarrow t \text { is weakhead-normalizing }
\end{array}
$$

The Call-by-Value Lambda-Calculus

Undefinedness, a Mess

What should represent undefined in the Call-by-Value lambda-calculus?

Undefined is..	β_{v}-diverging	unsolvable	inscrutable
Eq. Theory	Inconsistent (\cdot)	Inconsistent $:^{4}$	Consistent ${ }^{5}$

[^3]
The Call-by-Value Lambda-Calculus

Undefinedness, a Mess

What should represent undefined in the Call-by-Value lambda-calculus?

Undefined is..	β_{v}-diverging	unsolvable	inscrutable
Eq. Theory	Inconsistent (\cdot)	Inconsistent $(2)^{4}$	Consistent ${ }^{5}$

No operational characterization. Open terms cause problems!

$$
\Omega_{n f}=(\lambda x . \delta)(y y) \delta \text { is an inscrutable } \beta_{v} \text {-normal form. }
$$

We can recover operational characterizations in refinements of Plotkin's CbV lambda-calculus.

[^4]
Outline

The Lambda-Calculus \& Computable Functions

From Barendregt's Genericity to Light Genericity

Light Genericity \& Contextual Preorders
Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity

Conclusion

Barendregt's Genericity

Intuitively
Given t a term, if for some u in \mathcal{U} (the set of undefined terms)

then for all s

Barendregt's Genericity

Intuitively
Given t a term, if for some u in \mathcal{U} (the set of undefined terms)

then for all s

Barendregt's Genericity

Intuitively
Given t a term, if for some u in \mathcal{U} (the set of undefined terms)

then for all s

Barendregt's Genericity

Intuitively
Given t a term, if for some u in \mathcal{U} (the set of undefined terms)

then for all s

Barendregt's Genericity

Intuitively
Given C a context, if for some u in \mathcal{U}

then for all s

Barendregt's Genericity

Statement

Heavy Genericity: let u be head-diverging and C such that $C\langle u\rangle \rightarrow_{\beta}^{*} n$ where n is β-normal then $C\langle s\rangle \rightarrow_{\beta}^{*} n$ for all $s \in \Lambda$.

Barendregt's Genericity

Statement

Heavy Genericity: let u be head-diverging and C such that $C\langle u\rangle \rightarrow_{\beta}^{*} n$ where n is β-normal then $C\langle s\rangle \rightarrow_{\beta}^{*} n$ for all $s \in \Lambda$.

Barendregt's Genericity

Statement

Heavy Genericity: let u be head-diverging and C such that $C\langle u\rangle \rightarrow_{\beta}^{*} n$ where n is β-normal then $C\langle s\rangle \rightarrow_{\beta}^{*} n$ for all $s \in \Lambda$.

Consistency: $\exists \mathcal{T}$ such that for all u undefined we have that

$$
\mathcal{T} \vdash u=\Omega
$$

and \mathcal{T} is consistent

Maximality: $\exists \mathcal{T}$ maximal: if there exists \mathcal{T}^{\prime} such that
$\mathcal{T} \subsetneq \mathcal{T}^{\prime}$ then
\mathcal{T}^{\prime} is inconsistent

Light Genericity

We want to consider a lighter genericity statement:

- Use a simpler reduction than \rightarrow_{β}
- Do not compare normal forms

Four reasons why:

- Powerful enough

Consistency Maximality

- Modular

It shall look the same for any reduction strategy-in particular CbN and CbV

- Connection with contextual equivalence
- Not looking at full normal forms will allow us to dualize the statement to co-genericity

Light Genericity

We want to consider a lighter genericity statement:

- Use a simpler reduction than \rightarrow_{β}
- Do not compare normal forms

Four reasons why:

- Powerful enough

Light Genericity

- Modular

It shall look the same for any reduction strategy-in particular CbN and CbV

- Connection with contextual equivalence
- Not looking at full normal forms will allow us to dualize the statement to co-genericity

Proving Light Genericity

Light Genericity is a good property, rather than a lemma.

- It is very close to what is called sensible theories
- Any good model should satisfy light genericity

So, how do we prove it?

- We present multiple proof techniques (denotational, bisimulations-al \& operational).

Proving Light Genericity

Light Genericity is a good property, rather than a lemma.

- It is very close to what is called sensible theories
- Any good model should satisfy light genericity

So, how do we prove it?

- We present multiple proof techniques (denotational, bisimulations-al \& operational).

Outline

> The Lambda-Calculus \& Computable Functions

> From Barendregt's Genericity to Light Genericity

Light Genericity \& Contextual Preorders

Call-by-Name Light Genericity
Call-by-Value Light Genericity

Co-Genericity

Conclusion
$15 / 40$

(Closed) Contextual Preorder

and induced equivalence

The (closed) contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \precsim_{\mathcal{C}} \mathbf{s} u$ if for all closing ${ }^{6}$ contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.
(Closed) contextual equivalence $\simeq_{\mathcal{C}}^{\mathfrak{S}}$ is defined as the symmetric closure of the preorder

The two reductions we are interested in are the head CbN reduction and the weak CbV reduction and their associated (closed) contextual preorders.
${ }^{6}$ i.e. $C\langle t\rangle$ and $C\langle u\rangle$ are closed terms

(Closed) Contextual Preorder

and induced equivalence

The (closed) contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \precsim_{\mathcal{C}}^{\mathrm{s}} u$ if for all closing ${ }^{6}$ contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.
(Closed) contextual equivalence $\simeq_{\mathcal{C}}^{s}$ is defined as the symmetric closure of the preorder.

The two reductions we are interested in are the head CbN reduction and the weak CbV reduction and their associated (closed) contextual preorders.
${ }^{6}$ i.e. $C\langle t\rangle$ and $C\langle u\rangle$ are closed terms

(Closed) Contextual Preorder

and induced equivalence

The (closed) contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \precsim_{\mathcal{C}}^{\mathrm{s}} u$ if for all closing ${ }^{6}$ contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.
(Closed) contextual equivalence $\simeq_{\mathcal{C}}^{s}$ is defined as the symmetric closure of the preorder.

The two reductions we are interested in are the head CbN reduction and the weak CbV reduction and their associated (closed) contextual preorders.
${ }^{6}$ i.e. $C\langle t\rangle$ and $C\langle u\rangle$ are closed terms

Open Contextual Preorder

and induced equivalence

The open contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \underset{\sim}{\mathfrak{C} O} u$ if for all contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.

Open contextual equivalence $\simeq \simeq_{\mathcal{C} O}^{s}$ is defined as the symmetric closure of the open preorder.

In Call-by-Name, head open contextual equivalence is exactly the theory \mathcal{H} *.

Open Contextual Preorder

and induced equivalence

The open contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \underset{\sim}{\mathfrak{C} O} u$ if for all contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.

Open contextual equivalence $\simeq_{\mathcal{C} O}^{s}$ is defined as the symmetric closure of the open preorder.

In Call-by-Name, head open contextual equivalence is exactly the theory \mathcal{H} *.

Open Contextual Preorder

and induced equivalence

The open contextual preorder associated to a reduction \rightarrow_{s} is defined as:

- $t \underset{\sim}{\mathcal{C}} \mathrm{C} u$ if for all contexts $C, C\langle t\rangle$ is s-normalizing implies $C\langle u\rangle$ is s-normalizing.

Open contextual equivalence $\simeq_{\mathcal{C} O}^{s}$ is defined as the symmetric closure of the open preorder.

In Call-by-Name, head open contextual equivalence is exactly the theory \mathcal{H}.

Light Genericity

Minimum terms for the contextual preorder

For a reduction \rightarrow_{s}, we can state light genericity:

Light Genericity:

let u be s-diverging and C such that $C\langle u\rangle$ is s-normalizing then $C\langle t\rangle$ is s-normalizing for all $t \in \Lambda$.

Or more concisely:
Light Genericity: s-diverging terms are minimum terms for the
open contextual preorder associated to s.

Light Genericity

Minimum terms for the contextual preorder

For a reduction \rightarrow_{s}, we can state light genericity:

Light Genericity:

let u be s-diverging and C such that $C\langle u\rangle$ is s-normalizing then $C\langle t\rangle$ is s-normalizing for all $t \in \Lambda$.

Or more concisely:
Light Genericity: s-diverging terms are minimum terms for the open contextual preorder associated to s.

Equational theories

Or rather inequational theories

Definition (Inequational s-theory)
Let s be a reduction. An inequational s-theory $\leq_{\mathcal{T}}^{\mathrm{s}}$ is a compatible ${ }^{7}$ pre-order on terms containing s-conversion.

Closed/Open s-contextual preorders are s-inequational theories.
The non-trivial point is that they contain s-conversion.
${ }^{7}$ Stable by contextual closure: $t \leq_{\mathcal{T}}^{\mathrm{s}} u \Longrightarrow \forall C, C\langle t\rangle \leq_{\mathcal{T}}^{\mathrm{s}} C\langle u\rangle$

Equational theories

Or rather inequational theories

> Definition (Inequational s-theory)
> Let s be a reduction. An inequational s-theory $\leq_{\mathcal{T}}^{\mathrm{s}}$ is a compatible ${ }^{7}$ pre-order on terms containing s-conversion.

Closed/Open s-contextual preorders are s-inequational theories.
The non-trivial point is that they contain s-conversion.
${ }^{7}$ Stable by contextual closure: $t \leq_{\mathcal{T}}^{\mathrm{s}} u \Longrightarrow \forall C, C\langle t\rangle \leq_{\mathcal{T}}^{\mathrm{s}} C\langle u\rangle$

Inequational theories

Generalization of sensible and semi-sensible

An inequational s-theory $\leq_{\mathcal{T}}^{\mathbf{s}}$ is called:

- Consistent: whenever it does not relate all terms;
- s-ground: if s-diverging terms are minimum terms for $\leq_{\mathcal{T}}^{\mathrm{s}}$;
- s-adequate: if $t \leq_{\mathcal{T}}^{\mathbf{s}} u$ and t is s-normalizing entails u is s-normalizing.

Groundness and Adequacy correspond (in CbN) with the
order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for $\leq \frac{\mathcal{T}}{\boldsymbol{s}}$ are s-diverging.

Inequational theories

Generalization of sensible and semi-sensible

An inequational s-theory $\leq_{\mathcal{T}}^{\mathbf{s}}$ is called:

- Consistent: whenever it does not relate all terms;
- s-ground: if s-diverging terms are minimum terms for $\leq_{\mathcal{T}}^{\mathrm{s}}$;
- s-adequate: if $t \leq_{\mathcal{T}}^{\mathbf{s}} u$ and t is s-normalizing entails u is s-normalizing.

Groundness and Adequacy correspond (in CbN) with the order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for $\leq \frac{\mathcal{T}}{\boldsymbol{s}}$ are s-diverging.

Inequational theories

Generalization of sensible and semi-sensible

An inequational s-theory $\leq_{\mathcal{T}}^{\mathbf{s}}$ is called:

- Consistent: whenever it does not relate all terms;
- s-ground: if s-diverging terms are minimum terms for $\leq_{\mathcal{T}}^{\mathrm{s}}$;
- s-adequate: if $t \leq_{\mathcal{T}}^{\mathbf{s}} u$ and t is s-normalizing entails u is s-normalizing.

Groundness and Adequacy correspond (in CbN) with the order-variants of sensible and semi-sensible theories.

Adequacy implies: minimum terms for $\leq_{\mathcal{T}}^{\mathrm{s}}$ are s -diverging.

Maximality

For $s \in\{$ head CbN, weak CbV $\}$, we can state maximality uniformly.

The proof is not uniform as it relies on critical solvability/scrutability concepts.
Theorem
Maximality of $\precsim{ }_{\mathcal{C} O}^{s}: ~ \precsim \mathcal{C} \mathcal{O}$ is a maximal consistent inequational s-theory, i.e.

$$
\text { if } \precsim \mathfrak{C} \mathcal{C} \subsetneq \mathcal{R} \text { then } \mathcal{R} \text { is inconsistent. }
$$

An elegant proof that closed and open contextual equivalence coincides follows: $\precsim \mathcal{C} \mathcal{S} \subseteq \preceq{ }_{\mathcal{C}}$ and $\precsim \mathrm{S}$ is consistent, hence $\precsim \mathfrak{C} \mathcal{S}=\precsim \mathcal{C}$

Maximality

For $s \in\{$ head CbN, weak CbV $\}$, we can state maximality uniformly.

The proof is not uniform as it relies on critical solvability/scrutability concepts.
Theorem
Maximality of $\precsim{ }_{\mathcal{C} O}^{s}: ~ \precsim \mathcal{C} \mathcal{O}$ is a maximal consistent inequational s-theory, i.e.

$$
\text { if } \precsim \mathfrak{C} \mathcal{C} \subsetneq \mathcal{R} \text { then } \mathcal{R} \text { is inconsistent. }
$$

An elegant proof that closed and open contextual equivalence

Outline

The Lambda-Calculus \& Computable FunctionsFrom Barendregt's Genericity to Light Genericity
Light Genericity \& Contextual Preorders
Call-by-Name Light Genericity
Call-by-Value Light Genericity
Co-Genericity
Conclusion
$22 / 40$

Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.
CbN Light Genericity: head-diverging terms are minimum for the head open contextual preorder.

We can unfold the statement:
CbN Light Genericity: let u be head-diverging and C such that $C\langle u\rangle$ is head-normalizing then $C\langle t\rangle$ is head-normalizing for all

Main difficulty: reasoning with contexts and reduction.

Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.
CbN Light Genericity: head-diverging terms are minimum for the head open contextual preorder.

We can unfold the statement:
CbN Light Genericity: let u be head-diverging and C such that $C\langle u\rangle$ is head-normalizing then $C\langle t\rangle$ is head-normalizing for all $t \in \Lambda$.

Main difficulty: reasoning with contexts and reduction.

Light Genericity in Call-by-Name

Light Genericity in Call-by-Name is stated using head reduction.
CbN Light Genericity: head-diverging terms are minimum for the head open contextual preorder.

We can unfold the statement:
CbN Light Genericity: let u be head-diverging and C such that $C\langle u\rangle$ is head-normalizing then $C\langle t\rangle$ is head-normalizing for all

$$
t \in \Lambda .
$$

Main difficulty: reasoning with contexts and reduction.

Direct proof of Light Genericity

Takahashi proves Barendregt's genericity with a very short proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!
We adapt Takahashi's trick to give a direct proof of light genericity!

Direct proof of Light Genericity

Takahashi proves Barendregt's genericity with a very short proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!
We adapt Takahashi's trick to give a direct proof of light genericity!

Direct proof of Light Genericity

Takahashi proves Barendregt's genericity with a very short proof [Tak94] and gives as a corollary light genericity.

Key idea/trick: Reason with substitutions instead of contexts!
We adapt Takahashi's trick to give a direct proof of light genericity!

Takahashi's Trick

Takahashi's trick Light genericity as substitution implies light genericity!

Light genericity as substitution: let u be s-diverging and t such that $t\{x \leftarrow u\}$ is s-normalizing then $t\{x \leftarrow s\}$ is s-normalizing for all $s \in \Lambda$.

Takahashi's Trick

Takahashi's trick Light genericity as substitution implies light genericity!

Light genericity as substitution: let u be s-diverging and t such that $t\{x \leftarrow u\}$ is s-normalizing then $t\{x \leftarrow s\}$ is s-normalizing for all $s \in \Lambda$.

Takahashi's Trick in CbN

Proof: [Hyp: $C\langle u\rangle$ is h-normalizing]
Let $\mathrm{fv}(u) \cup \mathrm{fv}(s)=\left\{x_{1}, \ldots, x_{k}\right\}$, and y a fresh variable.

- $\bar{u}:=\lambda x_{1} \ldots \lambda x_{k} \cdot u$ is a closed term.
- Consider $t:=C\left\langle y x_{1} \ldots x_{k}\right\rangle$, and note that:

$$
\begin{aligned}
t\{y \leftarrow \bar{u}\}=C\left\langle\bar{u} x_{1} \ldots x_{k}\right\rangle= & C\left\langle\left(\lambda x_{1} \ldots \lambda x_{k} \cdot u\right) x_{1} \ldots x_{k}\right\rangle \rightarrow_{\beta}^{k} \\
& C\langle u\rangle .
\end{aligned}
$$

- u is h-diverging implies that \bar{u} is also h-diverging.
- (Head Normalization Theorem) $C\langle u\rangle$ is h-normalizing then so is $t\{y \leftarrow \bar{u}\}$
By light genericity as substitution, $t\left\{y \leftarrow s^{\prime}\right\}$ is h-normalizing for every s^{\prime}.
In particular, take $s^{\prime}:=\bar{s}=\lambda x_{1} \ldots \lambda x_{k} . s$:

Takahashi's Trick in CbN

Proof: [Hyp: $C\langle u\rangle$ is h-normalizing]
Let $\mathrm{fv}(u) \cup \mathrm{fv}(s)=\left\{x_{1}, \ldots, x_{k}\right\}$, and y a fresh variable.

- $\bar{u}:=\lambda x_{1} \ldots \lambda x_{k} \cdot u$ is a closed term.
- Consider $t:=C\left\langle y x_{1} \ldots x_{k}\right\rangle$, and note that:

$$
\begin{aligned}
t\{y \leftarrow \bar{u}\}=C\left\langle\bar{u} x_{1} \ldots x_{k}\right\rangle= & C\left\langle\left(\lambda x_{1} \ldots \lambda x_{k} \cdot u\right) x_{1} \ldots x_{k}\right\rangle \rightarrow_{\beta}^{k} \\
& C\langle u\rangle .
\end{aligned}
$$

- u is h-diverging implies that \bar{u} is also h-diverging.
- (Head Normalization Theorem) $C\langle u\rangle$ is h-normalizing then so is $t\{y \leftarrow \bar{u}\}$
By light genericity as substitution, $t\left\{y \leftarrow s^{\prime}\right\}$ is h-normalizing for every s^{\prime}.
In particular, take $s^{\prime}:=\bar{s}=\lambda x_{1} \ldots \lambda x_{k} . s$:

Takahashi's Trick in CbN

Proof: [Hyp: $C\langle u\rangle$ is h-normalizing]
Let $\mathrm{fv}(u) \cup \mathrm{fv}(s)=\left\{x_{1}, \ldots, x_{k}\right\}$, and y a fresh variable.

- $\bar{u}:=\lambda x_{1} \ldots . . \lambda x_{k} \cdot u$ is a closed term.
- Consider $t:=C\left\langle y x_{1} \ldots x_{k}\right\rangle$, and note that:

$$
\begin{aligned}
t\{y \leftarrow \bar{u}\}=C\left\langle\bar{u} x_{1} \ldots x_{k}\right\rangle= & C\left\langle\left(\lambda x_{1} \ldots \lambda x_{k} \cdot u\right) x_{1} \ldots x_{k}\right\rangle \rightarrow_{\beta}^{k} \\
& C\langle u\rangle .
\end{aligned}
$$

- u is h-diverging implies that \bar{u} is also h-diverging.
- (Head Normalization Theorem) $C\langle u\rangle$ is h-normalizing then so is $t\{y \leftarrow \bar{u}\}$
By light genericity as substitution, $t\left\{y \leftarrow s^{\prime}\right\}$ is h-normalizing for every s^{\prime}.
In particular, take $s^{\prime}:=\bar{s}=\lambda x_{1} \ldots \lambda x_{k} . s$:

Confluence of β
Head normal forms are stable by β

Takahashi's Trick in CbN

Proof: [Hyp: $C\langle u\rangle$ is h-normalizing]
Let $\mathrm{fv}(u) \cup \mathrm{fv}(s)=\left\{x_{1}, \ldots, x_{k}\right\}$, and y a fresh variable.

- $\bar{u}:=\lambda x_{1} \ldots . . \lambda x_{k} \cdot u$ is a closed term.
- Consider $t:=C\left\langle y x_{1} \ldots x_{k}\right\rangle$, and note that:

$$
\begin{aligned}
t\{y \leftarrow \bar{u}\}=C\left\langle\bar{u} x_{1} \ldots x_{k}\right\rangle= & C\left\langle\left(\lambda x_{1} \ldots \lambda x_{k} \cdot u\right) x_{1} \ldots x_{k}\right\rangle \rightarrow_{\beta}^{k} \\
& C\langle u\rangle .
\end{aligned}
$$

- u is h-diverging implies that \bar{u} is also h-diverging.
- (Head Normalization Theorem) $C\langle u\rangle$ is h-normalizing then so is $t\{y \leftarrow \bar{u}\}$
By light genericity as substitution, $t\left\{y \leftarrow s^{\prime}\right\}$ is h-normalizing for every s^{\prime}.
In particular, take $s^{\prime}:=\bar{s}=\lambda x_{1} \ldots \lambda x_{k} \cdot s$:

Confluence of β
Head normal forms are stable by β
Head Normalization Theorem

Light Genericity in CbN

We use the head open contextual preorder $\precsim_{\mathcal{C} O}^{h}$ to prove both.

- It is consistent to collapse unsolvable terms: (by light genericity) $\precsim_{\mathcal{C} O}^{h}$ equates unsolvable terms and $\precsim_{C} \mathrm{CO}$ is consistent ($\mathrm{I} \not \mathrm{L}_{\mathrm{Co}}^{h} \Omega$)
- $\precsim_{\mathfrak{C} O}^{h}$ is maximal:
(by light genericity) any larger theory is inconsistent
$>\precsim_{\mathcal{C} O}^{h}$ coincides with $\precsim \mathcal{C}^{\mathcal{C}}$ (by maximality)
$27 / 40$

Light Genericity in CbN

We use the head open contextual preorder ${\underset{\mathcal{C}}{ } \mathrm{C} O}_{h}$ to prove both.

- It is consistent to collapse unsolvable terms: (by light genericity) ${\underset{\sim}{C O}}_{h}^{h}$ equates unsolvable terms and ${\underset{\sim}{c}}^{h} 0$ is consistent (I $\mathcal{L}_{\mathrm{co}} \mathrm{O} \Omega$)
- $\precsim_{\mathfrak{C} O}^{h}$ is maximal:
(by light genericity) any larger theory is inconsistent
- $\precsim^{h} \mathrm{CO}$
coincides with α_{c}^{h} (by maximality)
$27 / 40$

Light Genericity in CbN

We use the head open contextual preorder $\precsim_{\mathcal{C} O}^{h}$ to prove both.

- It is consistent to collapse unsolvable terms:
(by light genericity) $\precsim_{\mathcal{C} O}^{h}$ equates unsolvable terms and $\precsim^{h} \mathcal{C} \mathcal{O}$ is consistent ($\mathrm{I} \not \mathscr{L}_{\mathcal{C} O}^{h} \Omega$)
(by light genericity) any larger theory is inconsistent
- $\precsim_{\mathcal{C} O}^{h}$ coincides with $\precsim_{\mathcal{C}}^{h}$ (by maximality)

Light Genericity in CbN

- It is consistent to collapse unsolvable terms:
(by light genericity) $\precsim_{\mathcal{C} O}^{h}$ equates unsolvable terms and $\precsim^{h} \mathcal{C} \mathcal{O}$ is consistent ($\mathrm{I} \not \mathscr{L}_{\mathrm{CO}}^{h} \Omega$)
- $\precsim_{\mathfrak{C} O}^{h}$ is maximal:
(by light genericity) any larger theory is inconsistent
- $\precsim_{\mathcal{C} O}^{h}$ coincides with $\precsim_{\mathcal{C}}^{h}$ (by maximality)

Light Genericity in CbN

We use the head open contextual preorder ${\underset{\mathcal{C}}{ } \mathrm{C} O}_{h}$ to prove both.

- It is consistent to collapse unsolvable terms:
(by light genericity) $\precsim_{\mathcal{C} O}^{h}$ equates unsolvable terms and $\precsim^{h} \mathcal{C} O$ is consistent ($\mathrm{I} \not \mathscr{L}_{\mathrm{CO}}^{h} \Omega$)
- $\precsim_{\mathfrak{C} O}^{h}$ is maximal:
(by light genericity) any larger theory is inconsistent
- $\precsim_{\mathcal{C} O}^{h}$ coincides with $\underset{\sim}{\mathcal{C}}$ (by maximality)

Outline

> The Lambda-Calculus \& Computable Functions

> From Barendregt's Genericity to Light Genericity

> Light Genericity \& Contextual Preorders

> Call-by-Name Light Genericity

Call-by-Value Light Genericity

Co-Genericity
Conclusion
$28 / 40$

Call-by-Value Light Genericity

Call-by-Value problems

Spoiler: it won't work

At least not using Plotkin's calculus
$\Omega_{n f}=((\lambda x . \delta)(y z)) \delta$ is meaningless!

Open and closed CbV contextual equivalences do not coincide:

Call-by-Value Light Genericity

Call-by-Value problems

Spoiler: it won't work
At least not using Plotkin's calculus
$\Omega_{n f}=((\lambda x . \delta)(y z)) \delta$ is meaningless!
Open and closed CbV contextual equivalences do not coincide:

Call-by-Value Light Genericity

Call-by-Value problems

Spoiler: it won't work
At least not using Plotkin's calculus
$\Omega_{n f}=((\lambda x . \delta)(y z)) \delta$ is meaningless!
Open and closed CbV contextual equivalences do not coincide:

Call-by-Value Light Genericity

Call-by-Value problems

Spoiler: it won't work
At least not using Plotkin's calculus
$\Omega_{n f}=((\lambda x . \delta)(y z)) \delta$ is meaningless!
Open and closed CbV contextual equivalences do not coincide:

$$
\Omega_{n f} \simeq_{\mathcal{C}}^{p_{v}} \Omega \text { but } \Omega_{n f} 千_{\mathcal{C O}}^{p_{v}} \Omega
$$

Change Call-by-Value

The good call-by-value contextual equivalence is Plotkin's closed.

$$
\simeq_{\mathcal{C}}^{v}:=\simeq_{\mathcal{C}}^{p_{v}}=\simeq_{c}^{v_{c}}=\simeq_{c c}^{v_{c}}
$$

> We use a nicer calculus (the Value Substitution Calculus [AP12]) that knows how to deal with open terms, but retains the same closed contextual equivalence.

Undefined terms are exactly vse-diverging terms. ${ }^{8}$

```
There, we can show:
    D Light Genericity: vsc-diverging terms are minimum for §vsc
    > Consistency: }\mp@subsup{\gtrsim}{}{V/O
    - Maximality: }\mp@subsup{\precsim}{\mathcal{COO}}{\mathrm{ VS }}\mathrm{ is a maximal inequational theory
    \ Closed and Open coincide: }\mp@subsup{\precsim}{\mathcal{C}}{V/C}=\mp@subsup{\precsim}{\mathcal{CO}}{VSC
```


Change Call-by-Value

The good call-by-value contextual equivalence is Plotkin's closed.

$$
\simeq_{\mathcal{C}}^{v}:=\simeq_{\mathcal{C}}^{p_{v}}=\simeq_{\mathcal{C}}^{v s}=\simeq_{c \mathcal{c}}^{v s}
$$

We use a nicer calculus (the Value Substitution Calculus [AP12]) that knows how to deal with open terms, but retains the same closed contextual equivalence.

Undefined terms are exactly vsc-diverging terms. ${ }^{8}$

There, we can show:

- Light Genericity: vsc-diverging terms are minimum for \precsim vsc
- Consistency: $\precsim^{\text {COC }}$ © equates diverging terms and is consistent
- Maximality: $\precsim^{\text {VSC }}$ is a maximal inequational theory
- Closed and Open coincide: $\precsim_{c}^{v s c}=\precsim_{c O}$
${ }^{8}$ weak vsc-diverging
$30 / 40$

Change Call-by-Value

The good call-by-value contextual equivalence is Plotkin's closed.

$$
\simeq_{\mathcal{C}}^{v}:=\simeq_{\mathcal{C}}^{p_{v}}=\simeq_{\mathcal{C}}^{v \mathcal{C}}=\simeq_{\mathcal{C}}^{v \mathcal{O}}
$$

We use a nicer calculus (the Value Substitution Calculus [AP12]) that knows how to deal with open terms, but retains the same closed contextual equivalence.

Undefined terms are exactly vsc-diverging terms. ${ }^{8}$

There, we can show:

- Light Genericity: vsc-diverging terms are minimum for $\precsim_{\mathcal{C} O}^{\text {vs }}$
- Consistency: $\precsim_{\mathcal{C O}}^{\text {VS }}$ equates diverging terms and is consistent
- Maximality: $\precsim_{\mathcal{C} O}^{\text {VCO }}$ is a maximal inequational theory
- Closed and Open coincide: $\precsim_{\mathcal{C}}{ }^{\text {sc }}=\precsim \mathcal{C O}$
${ }^{8}$ weak vsc-diverging

Proofs of Call-by-Value Light Genericity

How to prove light genericity?

- Direct proof: Takahashi's trick adapts, but not very smoothly.
- Using a good model of CbV: relational semantics [Ehr12]
- Applicative similarity or any program preorder that is included in $\precsim \mathcal{C} \mathcal{O}$ and has diverging terms as minimums.

Proofs of Call-by-Value Light Genericity

How to prove light genericity?

- Direct proof: Takahashi's trick adapts, but not very smoothly.
- Using a good model of CbV: relational semantics [Ehr12]
- Applicative similarity or any program preorder that is included in $\precsim \mathfrak{C} \mathcal{C}$ and has diverging terms as minimums.

Outline

The Lambda-Calculus \& Computable FunctionsFrom Barendregt's Genericity to Light Genericity
Light Genericity \& Contextual Preorders
Call-by-Name Light Genericity
Call-by-Value Light Genericity
Co-Genericity

Conclusion

Characterization of minimum terms

For $s \in\{$ head, $v s c\}$:
Light genericity says:
t is s-diverging $\Longrightarrow t$ is a minimum for $\underset{\sim}{\mathfrak{C} \mathcal{C}}$

Adequacy ($t \mathcal{R} u$ and t is s-normalizing then u is s-normalizing)
implies the converse implication.
t is s-diverging $\Longleftrightarrow t$ is a minimum for $\precsim \mathcal{C} \mathcal{O}$

Characterization of minimum terms

For $s \in\{$ head, $v s c\}$:
Light genericity says:
t is s-diverging $\Longrightarrow t$ is a minimum for $\underset{\sim}{ } \mathfrak{C} \mathcal{O}$

Adequacy ($t \mathcal{R} u$ and t is s-normalizing then u is s-normalizing) implies the converse implication.
t is s-diverging $\Longleftrightarrow t$ is a minimum for $\precsim_{\sim}^{\mathcal{C}} \mathcal{O}$

Well, what about maximums?

$$
t \text { is ?? } \Longleftrightarrow t \text { is a maximum for } \precsim \mathfrak{c} \mathcal{O}
$$

- Call-by-Name: no maximum elements
- Call-by-Value: super terms!

Co-genericity states that super terms are maximum for $\underset{\sim}{\sim} \mathcal{C} \mathcal{O}$

Well, what about maximums?

$$
t \text { is ?? } \Longleftrightarrow t \text { is a maximum for } \precsim \mathfrak{c} \mathcal{O}
$$

- Call-by-Name: no maximum elements
- Call-by-Value: super terms!

Co-genericity states that super terms are maximum for $\precsim_{\mathcal{C}} \mathcal{O}$

Well, what about maximums?

$$
t \text { is ?? } \Longleftrightarrow t \text { is a maximum for } \precsim_{\sim \mathcal{C} \mathcal{O}}^{\mathfrak{s}}
$$

- Call-by-Name: no maximum elements
- Call-by-Value: super terms!

Co-genericity states that super terms are maximum for $\underset{\sim}{\mathcal{C} O}$

Super terms

A term t is s-super if, coinductively, $t \rightarrow_{\mathrm{s}}^{*} \lambda x . u$ and u is s-super.
Intuitively, t infinitely normalizes to $\lambda x_{1} . \lambda x_{2} \ldots \lambda x_{k} \ldots$
$\Omega_{\lambda}:=(\lambda x \cdot \lambda y \cdot x x)(\lambda x \cdot \lambda y \cdot x x)$ is a call-by-value super term

Super terms

A term t is s-super if, coinductively, $t \rightarrow_{\mathrm{s}}^{*} \lambda x . u$ and u is s-super. Intuitively, t infinitely normalizes to $\lambda x_{1} . \lambda x_{2} \ldots \lambda x_{k} \ldots$
$\Omega_{\lambda}:=(\lambda x \cdot \lambda y \cdot x x)(\lambda x \cdot \lambda y \cdot x x)$ is a call-by-value super term

Super terms

A term t is s-super if, coinductively, $t \rightarrow_{\mathrm{s}}^{*} \lambda x . u$ and u is s-super.
Intuitively, t infinitely normalizes to $\lambda x_{1}, \lambda x_{2} \ldots \lambda x_{k} \ldots$
$\Omega_{\lambda}:=(\lambda x \cdot \lambda y \cdot x x)(\lambda x \cdot \lambda y \cdot x x)$ is a call-by-value super term

Co-genericity

In call-by-value:

Again, we use the open call-by-value contextual preorder $\precsim \vee \mathcal{C O}$ to prove it.

- It is consistent to equate super terms, as $\precsim_{\mathcal{C} O}^{v}$ does it and is consistent.
- It is consistent to equate diverging terms and to equate super terms, as $\underset{\sim}{\mathcal{C} O}$ does it and is consistent.

Proofs of co-genericity

How to prove co-genericity ?
> - Direct proof: Takahashi's trick adapts, and the proof is easier than for light genericity.

- Using a good model of CbV? relational semantics [Ehr12] do not work, as s-super terms are not maximum elements!
\rightarrow Applicative similarity or any program preorder that is included in $\precsim \mathrm{s} \mathcal{O}$ and has super terms as maximums ${ }^{9}$.

Proofs of co-genericity

How to prove co-genericity ?

- Direct proof: Takahashi's trick adapts, and the proof is easier than for light genericity.
- Using a good model of CbV? relational semantics [Ehr12] do not work, as s-super terms are not maximum elements!
- Applicative similarity or any program preorder that is included in $\precsim \mathfrak{c} \mathcal{C} O$ and has super terms as maximums ${ }^{9}$.
${ }^{9}$ I don't think I know of any other one

Outline

The Lambda-Calculus \& Computable FunctionsFrom Barendregt's Genericity to Light Genericity
Light Genericity \& Contextual Preorders
Call-by-Name Light Genericity
Call-by-Value Light Genericity
Co-Genericity
Conclusion

Conclusion

- Light genericity is a modular concept that is strong enough to imply the two main consequences of Barendregt's genericity.
- It is naturally dualizable as co-genericity. Both concepts are inspired and tied with contextual preorders.
- An application of light genericity and maximality is an elegant proof of the fact that closed and open contextual equivalences coincide.

A question remains: we named the two genericity statements Heavy and Light, but we don't know whether one implies the other or not.

Bottom (and Top?) line

Thank you!

To appear in FoSSaCS24 \& technical report: https://hal.science/hal-04406343

CbN
CbV
Contextual preorder for lambda terms
$\perp:=$ equivalence class of Ω

Beniamino Accattoli and Giulio Guerrieri.
The theory of call-by-value solvability (long version).
CoRR, abs/2207.08697, 2022.
R Beniamino Accattoli and Luca Paolini.
Call-by-value solvability, revisited.
In Tom Schrijvers and Peter Thiemann, editors, Functional
and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings,
volume 7294 of Lecture Notes in Computer Science, pages
4-16. Springer, 2012.
囯 Thomas Ehrhard.
Collapsing non-idempotent intersection types.
In Patrick Cégielski and Arnaud Durand, editors, Computer
Science Logic (CSL'12) - 26th International Workshop/21st
Annual Conference of the EACSL, CSL 2012, September 3-6,
2012, Fontainebleau, France, volume 16 of LIPIcs, pages

259-273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

圊 Masako Takahashi.
A simple proof of the genericity lemma, pages 117-118.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1994.

[^0]: ${ }^{1}$ synonym of non potentially valuable

[^1]: ${ }^{1}$ synonym of non potentially valuable
 ${ }^{2}$ Why? Genericity Lemma

[^2]: ${ }^{1}$ synonym of non potentially valuable
 ${ }^{2}$ Why? Genericity Lemma

[^3]: ${ }^{4}$ Why? Short answer: all values should be defined. Long answer: [AG22]
 ${ }^{5}$ But no Genericity Lemma!

[^4]: ${ }^{4}$ Why? Short answer: all values should be defined. Long answer: [AG22]
 ${ }^{5}$ But no Genericity Lemma!

