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Are these program equivalent?

When studying program equivalence, one searches for any small hint
that programs are not equivalent:

λx .x + x and λx .x ∗ x can be distinguished by the input 1 (but not
by the input 2)

λx .x + x and λx .”Hello World” can be distinguished by types:
λx .x + x : int→ int and λx .”Hello World”:α→ string
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Separating Terms

Let t and u two λ-terms.

▶ Does there exist a context C such that C ⟨t⟩ does not
terminate and C ⟨u⟩ terminates?

▶ Does there exist a typing judgment (Γ, L) such that Γ ⊢ t :L
but Γ ̸⊢ u :L?

This talk is about separating with Intersection Types!
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Böhm Out Technique

Separating Terms with Contexts: let’s reduce term to their head
normal form and find an appropriate context.

▶ I and Ω are separated by the empty context ⟨·⟩

▶ x I I and x Ω I are separated by (λx .⟨·⟩)π1 where
π1 = λx .λy .x

▶ y I (x Ω I) and y I (x I I) are separated by (λy .(λx .⟨·⟩)π1)π2
where π2 = λx .λy .y

▶ x I (x Ω I) and x I (x I I) are separated by ??
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Type-Böhm Out Technique

Separating Terms with Types: easier than context Böhm out to
select subterms!

x I (x Ω I) and x I (x I I)

x : [ [A]⊸ [B]⊸ B, [A]⊸ [B]⊸ A ] ⊢ : B

Γ ⊢ x I (x I I) :B but Γ ̸⊢ x I (x Ω I) :B
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This Talk

For Weak Head Call-by-Name:

NF Bisimilarity Type Equivalence
Typing Transfer

Shape Typings

▶ A coinductive flavor (normal form bisimulations): no
approximants

▶ Typing transfer requires non idempotent intersection types

▶ Shape Typings: a light form of principal types
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Weak Head Multi Types

Linear Types L, L′ ::= ⋆k | M ⊸ L k ∈ N
Multi Types M,N ::= [L1, . . . , Ln] n ≥ 0

x : [L] ⊢ x :L
ax

∅ ⊢ λx .t :⋆k
λk

Γ, x :M ⊢ t :L

Γ ⊢ λx .t :M ⊸ L
λ

Γ ⊢ t : [Li ]i∈I ⊸ L′ (Γi ⊢ u :Li )i∈I I finite

Γ ⊎∆ ⊢ tu :L′
@
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Type Equivalence

Type Equivalence: t ≃type u if ∀(Γ, L) Γ ⊢ t :L ⇐⇒ Γ ⊢ u :L

β-equivalence is included in ≃type :

▶ by Subject Reduction and Expansion

η-equivalence is not included in ≃type :

▶ x : [⋆0] ⊢ x :⋆0 but x : [⋆0] ̸⊢ λy .x y :⋆0
▶ ∅ ⊢ λy .x y :⋆0 but ∅ ̸⊢ x :⋆0

Type Preorder: t ≾type u if ∀(Γ, L) Γ ⊢ t :L =⇒ Γ ⊢ u :L
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Normal form bisimilarity

The syntactical characterization is phrased in a coinductive way,
using Sangiorgi’s normal form bisimilarity. It coincides with the
inequational theory induced by Lévy-Longo trees.

Definition (Weak head normal form similarity)

A relation R is a weak head normal (whnf) form simulation if
whenever t R u holds, we have that either:
(⊥) t ̸⇓wh , or,
(abs) t ⇓wh λx .t ′ and u ⇓wh λx .u′ with t ′ R u′, or,
(app) t ⇓wh y t1 · · · tk and

u ⇓wh y u1 · · · uk with (ti R ui )i≤k .

Whnf similarity, noted ≾nf , is the largest whnf simulation.
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Typing Transfer
From bisimilar terms to type equivalent types

NF Bisimilarity Type Equivalence
Typing Transfer

The proof goes by induction on the size of derivations.
Assume t ≾nf u and π ▷ Γ ⊢ t :L.
By Quantitative Subject Reduction, π′ ▷ Γ ⊢ nt :L s.t. |π′| ≤ |π|.
By case analysis on the shape of nt :
Application case:

π′ :

Γ ⊢ xt1 · · · tk−1 : [Li ]i∈I ⊸ L (∆i ⊢ tk :Li )i∈I
Γ ⊎ (⊎i∈I∆i ) ⊢ nt = xt1 · · · tk :L

@

⇝ σ ▷ Γ ⊢ nu :L as xt1 · · · tk−1 ≾nf xu1 · · · uk−1 and tk ≾nf uk .
By Subject Expansion, σ′ ▷ Γ ⊢ u :L.

10 / 17



Typing Transfer
From bisimilar terms to type equivalent types

NF Bisimilarity Type Equivalence
Typing Transfer

The proof goes by induction on the size of derivations.
Assume t ≾nf u and π ▷ Γ ⊢ t :L.
By Quantitative Subject Reduction, π′ ▷ Γ ⊢ nt :L s.t. |π′| ≤ |π|.
By case analysis on the shape of nt :
Application case:

π′ :

Γ ⊢ xt1 · · · tk−1 : [Li ]i∈I ⊸ L (∆i ⊢ tk :Li )i∈I
Γ ⊎ (⊎i∈I∆i ) ⊢ nt = xt1 · · · tk :L

@

⇝ σ ▷ Γ ⊢ nu :L as xt1 · · · tk−1 ≾nf xu1 · · · uk−1 and tk ≾nf uk .
By Subject Expansion, σ′ ▷ Γ ⊢ u :L.

10 / 17



Type Equivalence & Compositionality

Type equivalence is compositional.

▶ t ≾type u and s ≾type r implies ts ≾type ur

▶ t ≾type u implies λx .t ≾type λx .u

Adequacy: if t ≾type u and t is wh-normalizing then so is u.

Proposition (Soundness wrto Contextual Equivalence)

If t ≾type u then t ≤wh
C u

Side note: t ≤wh
C u does not imply t ≾type u (problems with η...)

y ⪇wh
C λx .yx and yy ≡wh

C yλx .yx
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Shape Typings
Ensuring bisimilarity with types

NF Bisimilarity Type Equivalence
Shape Typings

Coinduction principle: ≾type is a whnf simulation ⇒ ≾type⊆≾nf

We show that ≾type is a whnf simulation:
Let t and u such that t ⇓wh nt and u ⇓wh nu
by SR/SE: nt ≾type nu

⇝ Build Shape Typings

▶ That ensures that the outer shape of nt matches the one of nu
▶ Also ensures that the inner sub terms of nt and nu must be

related by ≾type
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Separating Terms with Shape Typings
Some examples

1. Separating any abstraction λx .t and any applied nf x t1 · · · tk :

Γ ⊢ λx .t :⋆0
λ0

...
Γ ⊢ x t1 · · · tk :⋆0

Then Γ must have the shape:
Γ = ∅ Γ = x : [M1⊸ · · · , . . .]

2. Separating a variable x and an applied nf xt:

3. Separating abstractions with different inner bodies:

4. Separating applied nf where arguments differ, say xt and xu:

´
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Outer-Shape Typing System

x : [⋆k ] ⊢shape x :⋆k
shape-ax ∅ ⊢shape λx .t :⋆k

shape-λk

Γ ⊢shape x t1 · · · ti :⋆k ⋆k appears only once in Γ

Γ{⋆k ← [ ]⊸ ⋆k ′} ⊢shape x t1 · · · ti ti+1 :⋆k ′
shape-@

1. Any normal form n is shape typable:

there exists Γ, ⋆k such that Γ ⊢shape n :⋆k ;
2. The ⊢shape is sound for ⊢ :

if Γ ⊢shape t :L then Γ ⊢ t :L;

3. They distinguish outer shape:

if Γ ⊢shape n :⋆k and Γ ⊢shape n′ :⋆k then either:
▶ n = x = n′;
▶ n = λx .t and λx .t ′ = n′:
▶ n = x t1 · · · ti and x t ′1 · · · t ′i = n′:
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Factorizing the need of countable atoms

The Normal Inversion Lemma of ≾type is the only part that uses
many distinguishable ground types!

Intuitively: ts ≾type ur implies t ≾type u and s ≾type r

Lemma (Normal Inversion Lemma for ≾type)

Let t, t ′, ti , t
′
i be terms.

1. Body of Abstractions: if λx .t ≾type λx .t
′ then t ≾type t

′.

2. Arguments: if x t1 · · · tk ≾type x t
′
1 · · · t ′k then ti ≾type t

′
i for

i ≤ k .

In fact, we can do without and only use a single ground type ⋆!
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Conclusion

NF Bisimilarity Type Equivalence
Typing Transfer

Shape Typing

Perspectives:

▶ Towards Call-by-Value equivalences, where NF bisimilarities are
more involved (and Shape Typings less easy to define)

▶ Can we adapt this coinductive proof technique (without
approximants) to the idempotent setting?

▶ Can we adapt type equivalence to reach full abstraction?

Ctx. Equiv. Inhabited Type Equiv.
Definability?

Compositionality?

Thank you!
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