Separating Terms by Means of Multi Types,
Coinductively

Adrienne Lancelot

Inria & LIX, Ecole Polytechnique
IRIF, Université Paris Cité & CNRS

June 5th 2025 — Workshop on Reasoning with Quantitative
Types

1/17

Are these program equivalent?

When studying program equivalence, one searches for any small hint
that programs are not equivalent:

Ax.x + x and Ax.x x x can be distinguished by the input 1 (but not
by the input 2)

Ax.x + x and Ax."Hello World"” can be distinguished by types:
Ax.x 4+ x:int — int and Ax." Hello World" : o« — string

2/17

Separating Terms

Let t and u two A-terms.

» Does there exist a context C such that C(t) does not
terminate and C(u) terminates?

3/17

Separating Terms

Let t and u two A-terms.

» Does there exist a context C such that C(t) does not
terminate and C(u) terminates?

» Does there exist a typing judgment (I, L) such that '+ ¢: L
but 't/ u:L?

This talk is about separating with Intersection Types!

3/17

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

4/17

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

» I and are separated by the empty context ()

4/17

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AXAY.X

4/17

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AXAY.X

» yI(xQI)and yI(xII) areseparated by (Ay.(Ax.(:))m)m
where m = Ax.Ay.y

4/17

Bohm Out Technique

Separating Terms with Contexts: let's reduce term to their head
normal form and find an appropriate context.

» I and are separated by the empty context ()

» xIIand xQTI are separated by (Ax.(-))m1 where
T = AXAY.X

» yI(xQI)and yI(xII) areseparated by (Ay.(Ax.(:))m)m
where m = Ax.Ay.y

» xI(xQ1I)and xI(xII) are separated by ??

4/17

Type-Bohm Out Technique

Separating Terms with Types: easier than context Bohm out to
select subterms!

xI(xQI) and xI(xII)

x:[[A] —o [B] — B,[A] = [B] = A] F_: B

5/17

Type-Bohm Out Technique

Separating Terms with Types: easier than context Bohm out to
select subterms!

xI(xQI) and xI(xII)

x:[[A] —= [B] — B,[A] — [B] - A] F_: B

M-xI(xII):B but ¥ xI(xQI):B

5/17

This Talk

For Weak Head Call-by-Name:

Typing Transfer ——>
NF Bisimilarity Shape Typings Type Equivalence

» A coinductive flavor (normal form bisimulations): no
approximants

» Typing transfer requires non idempotent intersection types
» Shape Typings: a light form of principal types

6/17

Weak Head Multi Types

LINEAR TYPES L,L' = x|M—oL keN
Murtt TypEs M, N = [Li,...,L,] n>0
Mx:MEt:L

X:[L]l—X:Lax 0 Ax.t:kg Ak FFoxe M —L

M+ t:[L,'],'G/ — [’ (I',- H UZL,‘),‘E/ I finite o
FrYAb tu:l’

7/17

Type Equivalence

Type Equivalence: t ~ . u if V(L) THt:L < TFu:l

B-equivalence is included in >~y pe:

» by Subject Reduction and Expansion

n-equivalence is not included in ~p:
» x:[xo] F x:%o but x:[xo] I Ay.xy:xo
> O Ay.xy:xo but 0 I x:%q

8/17

Type Equivalence

Type Equivalence: t ~ . u if V(L) THt:L < TFu:l

B-equivalence is included in >~y pe:

» by Subject Reduction and Expansion

n-equivalence is not included in ~p:
» x:[xo] F x:%o but x:[xo] I Ay.xy:xo
> O Ay.xy:xo but 0 I x:%q

Type Preorder: t Jiype v if V(I,L) THt:L = TFu:l

8/17

Normal form bisimilarity

The syntactical characterization is phrased in a coinductive way,
using Sangiorgi's normal form bisimilarity. It coincides with the
inequational theory induced by Lévy-Longo trees.

Definition (Weak head normal form similarity)

A relation R is a weak head normal (whnf) form simulation if

whenever t R u holds, we have that either:
(L) t¥wn, or,
(abs) t ywn Ax.t" and u Y,n Ax.u’ with £/ R o, or,

(app) tdwh yti-- -tk and
u ‘U’Wh yul s Uk W|th (t, R Ui)igk-

Whnf similarity, noted 3., is the largest whnf simulation.

9/17

Typing Transfer

From bisimilar terms to type equivalent types

Typing Transfer —>
NF Bisimilarity Type Equivalence

Assume t Sppuand T F t: L.
By Subject Reduction, 7/ >T F n;: L
By case analysis on the shape of n;:

Application case:
M+ Xty b1 [Li]iE/ — L (A,’ = ty: L,'),'E/

/

T rL‘H(L‘H;E/A,‘)l—nt:th"-thL
~ o>l kny:L asxty---tg 1 Saf XUt Ug_1 and tx Snf Uk.

~

By Subject Expansion, o/ >T F u: L.

10/17

Typing Transfer

From bisimilar terms to type equivalent types

Typing Transfer —>
NF Bisimilarity Type Equivalence

The proof goes by induction on the size of derivations.
Assume t Sppuand T F t: L.
By Quantitative Subject Reduction, 7' >T + n: L s.it. |7/| < x|
By case analysis on the shape of n;:
Application case:
M+ Xty b1 [Li]iE/ — L (A,’ = ty: Li)iE/
' rL‘H(L‘H;E/A,‘)l—nt:th"-thL
~ o>l kny:L asxty- - tx 1 Snf X1+ Ug_1 and tx Snf Uk.

By Subject Expansion, o/ >T F u: L.

10/17

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur
> t Ziype U implies Ax.t Ziype AX.U

Adequacy: if t Zype U and t is wh-normalizing then so is u.

11/17

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Stype U and s Zype rimplies ts Seype ur
> t Ziype U implies Ax.t Ziype AX.U

Adequacy: if t Zype U and t is wh-normalizing then so is u.

Proposition (Soundness wrto Contextual Equivalence)
If t Ziype U then t <¥N y

11/17

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur
> t Ziype U implies Ax.t Ziype AX.U

Adequacy: if t Zype U and t is wh-normalizing then so is u.

Proposition (Soundness wrto Contextual Equivalence)
If t Ziype U then t <¥N y

Side note: t <% u does not imply t Ztype U (problems with 7...)

11/17

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur
> t Ziype U implies Ax.t Ziype AX.U

Adequacy: if t Zype U and t is wh-normalizing then so is u.

Proposition (Soundness wrto Contextual Equivalence)
If t Ziype U then t <¥N y

Side note: t <% u does not imply t Ztype U (problems with 7...)

3% §VCVh AX.yx

11/17

Type Equivalence & Compositionality

Type equivalence is compositional.
» t Ztype U and s Siype r implies ts Siype ur
> t Ziype U implies Ax.t Ziype AX.U

Adequacy: if t Zype U and t is wh-normalizing then so is u.

Proposition (Soundness wrto Contextual Equivalence)
If t Ziype U then t <¥N y

Side note: t <% u does not imply t Ztype U (problems with 7...)

3% §VCVh Ax.yx and yy E"‘C’h YAX.yX

11/17

Shape Typings

Ensuring bisimilarity with types

NF Bisimilarity Shape Typings Type Equivalence

Coinduction principle: Ziype is @ whnf simulation = ZiypeCZns

We show that Ziype is @ whnf simulation:

Let t and u such that t {4 n: and u Jup ny
by SR/SE: n¢ Ztype Nu

~> Build Shape Typings

» That ensures that the outer shape of n; matches the one of n,

» Also ensures that the inner sub terms of n; and n, must be
related by Ztype

12/17

Separating Terms with Shape Typings

Some examples

—

. Separating any abstraction Ax.t and any applied nf x ty - - - ty:

FF o tixg [Xty bk
Then I must have the shape:
r=0 | M=x:[M —-,..]
. Separating a variable x and an applied nf xt:

w N

. Separating abstractions with different inner bodies:

. Separating applied nf where arguments differ, say xt and xu:

N

13/17

Separating Terms with Shape Typings

Some examples

1. Separating any abstraction A\x.t and any applied nf x t1 - - - ty.:

2. Separating a variable x and an applied nf xt:

FFxrg X FFxtrg

Then I must resemble:
= x:[xo] ‘ FrNox:M—---,..]

3. Separating abstractions with different inner bodies:

4. Separating applied nf where arguments differ, say xt and xu:

7

13/17

Outer-Shape Typing System

shape-ax shape-\j

X [*k] l_shape X kg 0 |_shape AX. Ky

I Fshape X t1---tiix, *, appears only once in [’

shape-@
M{*k <[] = %1} Fshape X t1 - tj tip1 kg

14 /17

Outer-Shape Typing System

shape-ax shape-\j

X [*k] l_shape X kg 0 }_shape AX. Ky

I Fshape X t1-- - tiikk % appears only once in [’

shape-@
M{*k <[] = %1} Fshape X t1 - tj tip1 kg

1. Any normal form n is shape typable:
there exists I, x) such that [Fgpape nixg;
2. The Fgpape is sound for = :
if [Fghape t:L then T = t:L;
3. They distinguish outer shape:

if T Fshape Nixk and I Fgpape 0’ :%, then either:
’ n:X:nl;
» n=M\x.t and \x.t' = n':
> n=xt;---tjand x t] -t/ = '

14 /17

Separating Terms with Shape Typings

Some examples

—

. Separating any abstraction Ax.t and any applied nf x ty - - - ty:

N

Separating a variable x and an applied nf xt:

w

Separating abstractions with different inner bodies:
Suppose we have [, x: M t:L but I', x: M|7‘u L

Fx:MEt:L
FE ot M oL If TFwuM—L

Then it must start with:

M= AxuM— L

Separating applied nf where arguments differ, say xt and xu:

Mx:MbEu:L

&

15/17

Separating Terms with Shape Typings

Some examples

. Separating any abstraction Ax.t and any applied nf x ty - - - ty:
. Separating a variable x and an applied nf xt:

. Separating abstractions with different inner bodies:

A W N =

. Separating applied nf where arguments differ, say xt and xu:
Suppose we have '+ t:L but ' u: L
Al x:[L] o TFt:L :
Ty AF xt:x; If TFxu:ix;
Then it must start with:
A x: L) —x (TiFu:ly);
Ty A+ xuix

If i is well chosen, then A" = x:[[L] —o]

15/17

Factorizing the need of countable atoms

The Normal Inversion Lemma of Ziype is the only part that uses
many distinguishable ground types!

Intuitively: ts Ziype ur implies t ZSiype U and s Siype ©

16/17

Factorizing the need of countable atoms

The Normal Inversion Lemma of Ziype is the only part that uses
many distinguishable ground types!

Intuitively: ts Ziype ur implies t ZSiype U and s Siype ©

Lemma (Normal Inversion Lemma for Siype)
Lett, t', t;, t; be terms.

1. Body of Abstractions: if Ax.t Stype Ax.t' then t Ziype t'.

2. Arguments: if x t1 -+t Stype X ty - tk then t; Ziype t,- for
i <k.

16/17

Factorizing the need of countable atoms

The Normal Inversion Lemma of Ziype is the only part that uses
many distinguishable ground types!

Intuitively: ts Ziype ur implies t ZSiype U and s Siype ©

Lemma (Normal Inversion Lemma for Siype)
Let t, t', t;, t] be terms.
1. Body of Abstractions: if Ax.t Stype Ax.t' then t Ziype t'.

2. Arguments: if x t1 -+t Stype X ty - tk then t; Ziype t,- for
i <k.

In fact, we can do without and only use a single ground type x!

16/17

Conclusion

Typing Transfer ——>

NF Bisimilarity Shape Typing Type Equivalence

Perspectives:

» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved (and Shape Typings less easy to define)

17/17

Conclusion

Typing Transfer ——>
NF Bisimilarity Shape Typing Type Equivalence

Perspectives:

» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved (and Shape Typings less easy to define)

» Can we adapt this coinductive proof technique (without
approximants) to the idempotent setting?

17/17

Conclusion

Typing Transfer ——>
NF Bisimilarity Shape Typing Type Equivalence

Perspectives:
» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved (and Shape Typings less easy to define)

» Can we adapt this coinductive proof technique (without
approximants) to the idempotent setting?

» Can we adapt type equivalence to reach full abstraction?
———— Definability? ——

Ctx. Equiv. Compositionality? Inhabited Type Equiv.

17/17

Conclusion

Typing Transfer ——>
NF Bisimilarity Shape Typing Type Equivalence

Perspectives:
» Towards Call-by-Value equivalences, where NF bisimilarities are
more involved (and Shape Typings less easy to define)

» Can we adapt this coinductive proof technique (without
approximants) to the idempotent setting?

» Can we adapt type equivalence to reach full abstraction?
———— Definability? ——

Ctx. Equiv. Compositionality? Inhabited Type Equiv.

Thank you!

17/17

