Recent progress in denoising diffusion models

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Journées "Probabilités en informatique" September 2024

- Sampling from probability distribution $p(x) = \frac{1}{Z} \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given (without Z) or f estimated from i.i.d. data

- Sampling from probability distribution $p(x) = \frac{1}{Z} \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given (without Z) or f estimated from i.i.d. data

Applications

- Image generation p(x)
- Conditional image generation $p(x|y) \propto p(y|x)p(x)$
- Protein discovery (Frey et al., 2024), etc.

Application to image generation "Panda riding a bicycle in Paris"

https://stablediffusionweb.com/

Application to image generation "Mathematicians in the black forest"

https://stablediffusionweb.com/

- Sampling from probability distribution $p(x) = \frac{1}{Z} \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given (without Z) or f estimated from i.i.d. data

Applications

- Image generation p(x)
- Conditional image generation $p(x|y) \propto p(y|x)p(x)$
- Protein discovery (Frey et al., 2024), etc.

• Main difficulty

- Multimodal distributions
- Curse of dimensionality

- Sampling from probability distribution $p(x) = \frac{1}{Z} \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given (without Z) or f estimated from i.i.d. data

- Sampling from probability distribution $p(x) = \frac{1}{Z} \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given (without Z) or f estimated from i.i.d. data

Langevin algorithms

- Discretization of diffusion $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$:

$$x_{k+1} = x_k - \gamma \nabla f(x_k) + \sqrt{2\gamma} \cdot \mathcal{N}(0, I)$$

- (slow) convergence (see, e.g., Bakry et al., 2008)
- fast for smooth log-concave distributions (e.g., f convex) (Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)

From log-concave to non-log-concave

From log-concave to non-log-concave

From log-concave to non-log-concave

- Sampling from probability distribution $p(x) \propto \exp(-f(x))$
 - high-dimensional and "complex"
 - -f given or f estimated from i.i.d. data

Langevin algorithms

- Discretization of diffusion $dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t$:

$$x_{k+1} = x_k - \gamma \nabla f(x_k) + \sqrt{2\gamma} \cdot \mathcal{N}(0, I)$$

- (slow) convergence (see, e.g., Bakry et al., 2008)
- fast for smooth log-concave distributions (e.g., f convex) (Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)
- Going beyond log-concave distributions

Sampling with denoising diffusion models Three main ideas

1. Sampling by denoising (Saremi and Hyvärinen, 2019)

- Sampling the noisy data is easier
- Denoising the data through "empirical Bayes"

Sampling with denoising diffusion models Three main ideas

1. Sampling by denoising (Saremi and Hyvärinen, 2019)

- Sampling the noisy data is easier
- Denoising the data through "empirical Bayes"

2. Learning the denoiser from data (Hyvärinen, 2005, Vincent, 2011)

- Multivariate output supervised learning
- Need samples from the distribution

Sampling with denoising diffusion models Three main ideas

1. Sampling by denoising (Saremi and Hyvärinen, 2019)

- Sampling the noisy data is easier
- Denoising the data through "empirical Bayes"

2. Learning the denoiser from data (Hyvärinen, 2005, Vincent, 2011)

- Multivariate output supervised learning
- Need samples from the distribution

3. Progressive denoising for improved sampling/denoising

- Using continuous-time diffusions (Song and Ermon, 2019)
- Using multiple measurements (Park, Saremi, and B., 2024)

• Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$: sampling is (provably) easier

$$\sigma = 0$$

$$\sigma$$
 = 0.5

$$\sigma = 1$$

$$\sigma$$
 = 2

- Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Sampling (provably) easier
 - Going back from Y to X by "optimal" denoising

- Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Sampling (provably) easier
 - Going back from Y to X by "optimal" denoising
- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
 - Proof by integration by parts

Proof by integration by parts

• Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$

$$\mathbb{E}[X|Y=y] = \frac{1}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} x p(x,y) dx = \frac{1}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} x p(y|x) p(x) dx$$

$$= \frac{1}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} x \frac{1}{(2\pi\sigma^{2})^{d/2}} e^{-\frac{1}{2\sigma^{2}} ||x-y||^{2}} p(x) dx$$

$$= y + \frac{\sigma^{2}}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} \frac{1}{(2\pi\sigma^{2})^{d/2}} \frac{x-y}{\sigma^{2}} e^{-\frac{1}{2\sigma^{2}} ||x-y||^{2}} p(x) dx$$

$$= y + \frac{\sigma^{2}}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} \frac{1}{(2\pi\sigma^{2})^{d/2}} \left(-\nabla e^{-\frac{1}{2\sigma^{2}} ||x-y||^{2}}\right) p(x) dx$$

$$= y + \frac{\sigma^{2}}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} \frac{1}{(2\pi\sigma^{2})^{d/2}} e^{-\frac{1}{2\sigma^{2}} ||x-y||^{2}} \nabla p(x) dx$$

$$= y + \frac{\sigma^{2}}{q_{\sigma}(y)} \int_{\mathbb{R}^{d}} \frac{1}{(2\pi\sigma^{2})^{d/2}} e^{-\frac{1}{2\sigma^{2}} ||y||^{2}} \nabla p(x-y) dx$$

$$= y + \frac{\sigma^{2}}{q_{\sigma}(y)} \nabla q_{\sigma}(y) = y + \sigma^{2} \nabla \log q_{\sigma}(y)$$

- Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Sampling (provably) easier
 - Going back from Y to X by "optimal" denoising
- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
 - Proof by integration by parts

- Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Sampling (provably) easier
 - Going back from Y to X by "optimal" denoising
- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
 - Proof by integration by parts
 - No need to know the normalization constant
 - − ⚠ "Optimal" does not mean "good" performance

$$W_2(\text{law of }X,\text{law of }\mathbb{E}[X|Y])^2\leqslant\sigma^2d$$

• Replace X by $Y = X + \sigma \cdot \mathcal{N}(0, I)$: effect of denoising

Learning the denoiser from data

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
 - $-\nabla \log q_{\sigma}(Y)$ is the score function

Learning the denoiser from data

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
 - $\nabla \log q_{\sigma}(Y)$ is the score function
- Denoising score matching (Hyvärinen, 2005, Vincent, 2011)
 - Given x_1, \ldots, x_n data sampled from p(x)
 - Create noisy samples $y_1, \ldots, y_n \in \mathbb{R}^d$
 - Parameterize $\nabla \log q_{\sigma}(Y) = f_{\theta}(Y) \in \mathbb{R}^d$
 - Estimate the density of the noisy variable y by minimizing

$$\frac{1}{n} \sum_{i=1}^{n} \|x_i - y_i - \sigma^2 f_{\theta}(y_i)\|^2$$

Using classical deep learning models and algorithms

Algorithm

- 1. Learn score at single scale σ : $Y = X + \sigma \cdot \mathcal{N}(0, I)$
- 2. Sample Y using Langevin diffusions ("walk")
- 3. Denoise Y ("jump")

Algorithm

- 1. Learn score at single scale σ : $Y = X + \sigma \cdot \mathcal{N}(0, I)$
- 2. Sample Y using Langevin diffusions ("walk")
- 3. Denoise Y ("jump")

• Trade-off in choice of σ

- $-\sigma$ is too large: Denoising is too "fuzzy"
- $-\sigma$ is too small: Sampling is difficult

Noisy digits (σ =1)

Walk-jump sampling (σ =1)

Walk-jump sampling (σ =1/2)

Sampling by denoising (Saremi, Srivastava, B., 2023)

[following expositions from Bortoli (2023) and Peyré (2023)]

Forward flow

- Ornstein-Uhlenbeck process $dX_t = -X_t dt + \sqrt{2} dB_t$
- started from $p(x) \propto \exp(-f(x))$ at time t = 0
- marginal distribution: $X_t = e^{-t}X_0 + \sqrt{1 e^{-2t}} \cdot \mathcal{N}(0, I)$

From data to standard Gaussian

[following expositions from Bortoli (2023) and Peyré (2023)]

Forward flow

- Ornstein-Uhlenbeck process $dX_t = -X_t dt + \sqrt{2} dB_t$
- started from $p(x) \propto \exp(-f(x))$ at time t = 0
- marginal distribution: $X_t = e^{-t}X_0 + \sqrt{1 e^{-2t}} \cdot \mathcal{N}(0, I)$

[following expositions from Bortoli (2023) and Peyré (2023)]

Forward flow

- Ornstein-Uhlenbeck process $dX_t = -X_t dt + \sqrt{2} dB_t$
- started from $p(x) \propto \exp(-f(x))$ at time t = 0
- marginal distribution: $X_t = e^{-t}X_0 + \sqrt{1 e^{-2t}} \cdot \mathcal{N}(0, I)$

Backward flow

- For T large, $X_T \approx \mathcal{N}(0, I) \Rightarrow \text{backward simulations}$
- $Y_t = X_{T-t}$ follows $dY_t = [Y_t + 2\nabla \log r_{T-t}(Y_t)]dt + \sqrt{2}dB_t$ with r_t the density of X_t

[following expositions from Bortoli (2023) and Peyré (2023)]

Forward flow

- Ornstein-Uhlenbeck process $dX_t = -X_t dt + \sqrt{2} dB_t$
- started from $p(x) \propto \exp(-f(x))$ at time t = 0
- marginal distribution: $X_t = e^{-t}X_0 + \sqrt{1 e^{-2t}} \cdot \mathcal{N}(0, I)$

Backward flow

- For T large, $X_T \approx \mathcal{N}(0, I) \Rightarrow \text{backward simulations}$
- $Y_t = X_{T-t}$ follows $dY_t = [Y_t + 2\nabla \log r_{T-t}(Y_t)]dt + \sqrt{2}dB_t$ with r_t the density of X_t
- Simulate the backward SDE using "only" the densities of X_t

$$y_{k+1} = y_k + \gamma y_k + 2\gamma \nabla \log r_{T-\gamma k}(y_k) + \sqrt{2\gamma} \cdot \mathcal{N}(0, I)$$

- Learning score functions of noisy samples at various scales
 - Denoising score matching
- Denoising diffusion models
 - Start from T large, $y_0 = X_T$, and discretize the backward SDE

$$y_{k+1} = y_k + \gamma y_k + 2\gamma e^{t_k} \nabla \log q_{\sigma_k}(y_k e^{t_k}) + \sqrt{2\gamma} \cdot \mathcal{N}(0, I)$$

- with
$$t_k = T - \gamma k$$
, and $\sigma_k = e^{T - \gamma k} \sqrt{1 - e^{-2T + 2\gamma k}}$

From data to standard Gaussian

- Learning score functions of noisy samples at various scales
 - Denoising score matching
- Denoising diffusion models
 - Start from T large, $y_0 = X_T$, and discretize the backward SDE

$$y_{k+1} = y_k + \gamma y_k + 2\gamma e^{t_k} \nabla \log q_{\sigma_k}(y_k e^{t_k}) + \sqrt{2\gamma} \cdot \mathcal{N}(0, I)$$

- with $t_k = T \gamma k$, and $\sigma_k = e^{T \gamma k} \sqrt{1 e^{-2T + 2\gamma k}}$
- Alternative view (Saremi, Park, B., 2023)
 - Diffusion free!

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
- Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \ldots, m$
 - Posterior mean: $\mathbb{E}[X|Y_1,\ldots,Y_m]=\bar{Y}_{1:m}+\frac{\sigma^2}{m}\nabla\log q_{\sigma/\sqrt{m}}(\bar{Y}_{1:m})$ with $\bar{Y}_{1:m}=\frac{1}{m}\sum_{i=1}^m Y_i$

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
- Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \ldots, m$
 - Posterior mean: $\mathbb{E}[X|Y_1,\ldots,Y_m]=\bar{Y}_{1:m}+\frac{\sigma^2}{m}\nabla\log q_{\sigma/\sqrt{m}}(\bar{Y}_{1:m})$ with $\bar{Y}_{1:m}=\frac{1}{m}\sum_{i=1}^m Y_i$
 - Increased concentration around the mean (S., P. and B., 2023)

$$W_2(\text{law of }X, \text{law of }\mathbb{E}[X|Y_1, \dots, Y_m])^2 \leqslant \frac{\sigma^2 d}{m}$$

- Improved results with "strong" priors

- Empirical Bayes (Robbins, 1956, Miyasawa, 1961)
 - Notation: q_{σ} density of $Y = X + \sigma \cdot \mathcal{N}(0, I)$
 - Key result: $\mathbb{E}[X|Y] = Y + \sigma^2 \nabla \log q_{\sigma}(Y)$
- Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \dots, m$
 - Posterior mean: $\mathbb{E}[X|Y_1,\ldots,Y_m]=\bar{Y}_{1:m}+\frac{\sigma^2}{m}\nabla\log q_{\sigma/\sqrt{m}}(\bar{Y}_{1:m})$ with $\bar{Y}_{1:m}=\frac{1}{m}\sum_{i=1}^m Y_i$
 - Increased concentration around the mean (S., P. and B., 2023)

$$W_2(\text{law of }X, \text{law of }\mathbb{E}[X|Y_1, \dots, Y_m])^2 \leqslant \frac{\sigma^2 d}{m}$$

- Improved results with "strong" priors
- Idea #1 (Saremi and Srivastava, 2022)
 - Sampling X by sampling Y_1, \ldots, Y_m and then Empirical Bayes

Multimeasurement generative models (Saremi and Srivastava, 2022)

 $\mathbb{E}[x|y_1,\ldots,y_m]$

• Still hard to sample from (y_1, \ldots, y_m)

Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \dots, m$

Algorithm

- Sample y_1 from Y_1
- Iteratively sample y_i from $Y_i|y_1,\ldots,y_{i-1}$, for $i=1,\ldots,m$

Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \ldots, m$

Algorithm

- Sample y_1 from Y_1
- Iteratively sample y_i from $Y_i|y_1,\ldots,y_{i-1}$, for $i=1,\ldots,m$

Sampling steps using Langevin algorithms

– Feasibility:

$$\nabla_{y_m} \log p(y_m | y_1, \dots, y_{m-1}) = \frac{1}{\sigma^2} \left[\bar{y}_{1:m} - y_m + \frac{\sigma^2}{m} \nabla \log q_{\sigma/\sqrt{m}}(\bar{y}_{1:m}) \right]$$

Idea #2: Sequential denoising (S., P. and B., 2023)

• Multiple measurements: $Y_i = X + \varepsilon_i$, $i = 1, \ldots, m$

Algorithm

- Sample y_1 from Y_1
- Iteratively sample y_i from $Y_i|y_1,\ldots,y_{i-1}$, for $i=1,\ldots,m$

Sampling steps using Langevin algorithms

– Feasibility:

$$\nabla_{y_m} \log p(y_m | y_1, \dots, y_{m-1}) = \frac{1}{\sigma^2} \left[\bar{y}_{1:m} - y_m + \frac{\sigma^2}{m} \nabla \log q_{\sigma/\sqrt{m}}(\bar{y}_{1:m}) \right]$$

• Main benefit

- If σ large enough, only log-concave distributions to sample from
- If m large enough, $\frac{\sigma}{\sqrt{m}}$ is small enough to obtain clean samples

Synthetic experiments

Mixtures of two Gaussians

– covariance matrices $au^2 I$, $\Delta \mu = 6 \cdot (1, \dots, 1) \in \mathbb{R}^d$

- SMS (sequential multimeasurement sampling)
- JMS (joint multimeasurement sampling)

Discussion

• Three main ideas

- Sampling by denoising
- Learning the denoiser from data
- Progressive denoising for improved sampling/denoising
 - * Using continuous-time diffusions (Song and Ermon, 2019)
 - * Using multiple measurements (Park, Saremi, and B., 2024)

Discussion

Three main ideas

- Sampling by denoising
- Learning the denoiser from data
- Progressive denoising for improved sampling/denoising
 - * Using continuous-time diffusions (Song and Ermon, 2019)
 - * Using multiple measurements (Park, Saremi, and B., 2024)

Key open problems

- Theoretical analysis
- Beyond Gaussians and Euclidean geometry
- Conditional sampling
- Rigorous empirical evaluation

References

- Valentin Bortoli. Generative modeling, https://vdeborto.github.io/project/generative_modeling/, 2023.
- Gabriel Peyré. Denoising Diffusion Models, https://mathematical-tours.github.io/book-sources/optim-ml/OptimML-DiffusionModels.pdf, 2023.
- Bakry, D., Cattiaux, P. and Guillin, A. Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 727–759, 2008.
- Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. R. Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint arXiv:2209.11215. 2022.
- Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. Journal of the Royal Statistical Society. Series B (Statistical Methodology), pp. 651–676, 2017.

- Alain Durmus and Éric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin algorithm. The Annals of Applied Probability, 27(3):1551 1587, 2017.
- Frey, N. C., Berenberg, D., Zadorozhny, K., Kleinhenz, J., Lafrance-Vanasse, J., Hotzel, I., . . . , & Saremi, S. Protein discovery with discrete walk-jump sampling. arXiv preprint arXiv:2306.12360, 2023
- Sinho Chewi. Log-Concave Sampling https://chewisinho.github.io/main.pdf, 2023.
- Andrea Montanari. Sampling, Diffusions, and Stochastic Localization. arXiv preprint arXiv:2305.10690, 2023.
- Herbert Robbins. An empirical Bayes approach to statistics. In Proc. Third Berkeley Symp., volume 1, pp. 157–163, 1956.
- Koichi Miyasawa. An empirical Bayes estimator of the mean of a normal population. Bulletin of the International Statistical Institute, 38(4):181–188, 1961.

- Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6(Apr):695–709, 2005.
- Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Advances in neural information processing systems, 32, 2019.
- Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. In International Conference on Learning Representations, 2021.
- Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):1661–1674, 2011.
- Saeed Saremi and Rupesh Kumar Srivastava. Multimeasurement generative models. In International Conference on Learning Representations, 2022.
- Conforti, Giovanni, Alain Durmus, and Marta Gentiloni Silveri. Score diffusion models without early stopping: finite Fisher information is all you need. arXiv preprint arXiv:2308.12240, 2023

- S. Saremi, R. K. Srivastava, F. Bach. Universal Smoothed Score Functions for Generative Modeling. Technical report, arXiv:2303.11669, 2023.
- S. Saremi, J.-W. Park, F. Bach. Chain of Log-Concave Markov Chains. International Conference on Learning Representations (ICLR), 2024.

First step

m = 64

