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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))

— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data
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e Sampling from probability distribution p(z) = - exp(—f(x))
— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Applications

— Image generation p(x)
— Conditional image generation p(x|y) < p(y|x)p(x)
— Protein discovery (Frey et al., 2024), etc.



Application to image generation
“Panda riding a bicycle in Paris”
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Application to image generation
“Mathematicians in the black forest”
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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))
— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Applications

— Image generation p(x)
— Conditional image generation p(x|y) < p(y|x)p(x)
— Protein discovery (Frey et al., 2024), etc.

e Main difficulty

— Multimodal distributions
— Curse of dimensionality
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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) = - exp(—f(x))

— high-dimensional and “complex”
— f given (without Z) or f estimated from i.i.d. data

e Langevin algorithms
— Discretization of diffusion dX; = —V f(X;)dt + V2dB;:

Trr1 = Tk — YV f (1) + /27 - N(0, )

— (slow) convergence (see, e.g., Bakry et al., 2008)
— fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)



From log-concave to non-log-concave
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Problem set-up
Sampling with iterative algorithms

e Sampling from probability distribution p(z) x exp(—f(x))
— high-dimensional and “complex”

— f given or f estimated from i.i.d. data

e Langevin algorithms
— Discretization of diffusion dX; = —V f(X;)dt + V2dBy:

Trr1 = Tk — YV f () + /27 - N(0, 1)

— (slow) convergence (see, e.g., Bakry et al., 2008)
— fast for smooth log-concave distributions (e.g., f convex)

(Dalalyan, 2017, Durmus and Moulines, 2017, Chewi, 2022, etc.)

e Going beyond log-concave distributions



Sampling with denoising diffusion models
Three main ideas

1. Sampling by denoising (Saremi and Hyvarinen, 2019)

— Sampling the noisy data is easier
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Sampling with denoising diffusion models
Three main ideas

1. Sampling by denoising (Saremi and Hyvarinen, 2019)
— Sampling the noisy data is easier

— Denoising the data through “empirical Bayes”

2. Learning the denoiser from data
(Hyvarinen, 2005, Vincent, 2011)

— Multivariate output supervised learning
— Need samples from the distribution
3. Progressive denoising for improved sampling /denoising

— Using continuous-time diffusions (Song and Ermon, 2019)
— Using multiple measurements (Park, Saremi, and B., 2024)



Sampling by denoising (Saremi and Hyvarinen, 2019)

e Replace X by Y = X + ¢ - N(0,I): sampling is (provably) easier

c=0 oc=05
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e Replace X by Y = X + o - N(0, 1)

— Sampling (provably) easier

— Going back from Y to X by “optimal” denoising
e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)
— Proof by integration by parts



Proof by integration by parts

e Notation: ¢, density of Y = X + o - N(0,])
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Sampling by denoising (Saremi and Hyvarinen, 2019)

e Replace X by Y = X + o - N(0, 1)

— Sampling (provably) easier
— Going back from Y to X by “optimal” denoising

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )

— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

— Proof by integration by parts

— No need to know the normalization constant

N\ “Optimal” does not mean “good” performance

W (law of X, law of E[X|Y])” < o2d



Sampling by denoising (Saremi and Hyvarinen, 2019)

e Replace X by Y = X + o - N(0,I): effect of denoising
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Learning the denoiser from data

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)
— Vlogq,(Y) is the score function



Learning the denoiser from data

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)
— Vlogq,(Y) is the score function

e Denoising score matching (Hyvarinen, 2005, Vincent, 2011)

— Given x4, ..., x, data sampled from p(x)

— Create noisy samples y1,...,y, € R?

— Parameterize Vlog q,(Y) = fo(Y) € R?

— Estimate the density of the noisy variable y by minimizing

1 < )
Ezzzl HZE@ —yi — 0 fo(yi)

— Using classical deep learning models and algorithms

I



Sampling by denoising
(Saremi and Hyvarinen, 2019)

e Algorithm

1. Learn score at single scale 0: Y = X + o - N(0, 1)
2. Sample Y using Langevin diffusions (“walk™)
3. Denoise Y (“jumpn)



Sampling by denoising
(Saremi and Hyvarinen, 2019)

e Algorithm

1. Learn score at single scale 0: Y = X + o - N(0, I)
2. Sample Y using Langevin diffusions (“walk™)
3. Denoise Y (“jump”)

e Trade-off in choice of o

— o Is too large: Denoising is too “fuzzy”
— o is too small: Sampling is difficult



Sampling by denoising
(Saremi and Hyvarinen, 2019)

Noisy digits (c=1)

Walk-jump sampling (c=1)
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Walk-jump sampling (c=1/2)
R lelele rle rle e e e e e s e e e e
EEBEEEEE 8565665656655 655565685 555 SSSSSCSS55556%
5SS S SSTSS5S5555S5SSSSSSSsEEEEECCCRRRRRR
R R R R R R R R R R R IR I IIIITIIIIIIIRIRIIRIRRRIR R
PR R R R R R TR R I I T RRIIRRRRIRTIRIRIIIIRRRIVIIIIRIRR
TR R R R R R R R R R R RRRRR R R R R3S S5555555
5556555585858 655855568 8555885885558 5S55865
5555656556656555555555555555555555585555555555



Sampling by denoising
(Saremi, Srivastava, B., 2023)
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Denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)




From data to standard Gaussian

t=1.33 t=1.42

t=1.58
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[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)

e Backward flow

— For T large, X7 =~ N(0,I) = backward simulations
— Y, = Xp_, follows dY; = [Y; + 2V log ro_(Y;)]dt + /2d B,
with 7; the density of X;



Denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

[following expositions from Bortoli (2023) and Peyré (2023)]

e Forward flow

— Ornstein-Uhlenbeck process dX; = — X, dt + /2dB;
— started from p(x) < exp(—f(z)) at time t =0
— marginal distribution: X; = e *Xy + 1 —e=2t . N(0,1)

e Backward flow

— For T large, X7 =~ N(0,I) = backward simulations

— Y, = Xr_; follows dY; = [Y; + 2V log rr_:(Y;)]dt + /2d B,
with 7; the density of X;

— Simulate the backward SDE using “only” the densities of X,

Yk+1 = Yk + YUk + 29V 1og re_yx(yx) + /27 - N(O, 1)



Denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

e Learning score functions of noisy samples at various scales

— Denolsing score matching

e Denoising diffusion models

— Start from T’ large, yo = X7, and discretize the backward SDE

Yk+1 = Yk + YUk + 27€"*V log ¢o, (yre'™®) + /27 - N(0, 1)

— with t, =T — ’yk, and O = @T_’Yk\/l — e 2T+2vk



From data to standard Gaussian

t=1.33 t=1.42

t=1.58




Denoising diffusion models
(Song and Ermon, 2019, Song et al., 2019)

e Learning score functions of noisy samples at various scales

— Denolsing score matching

e Denoising diffusion models

— Start from T’ large, yo = X7, and discretize the backward SDE

Yk+1 = Uk + VYk + 27V log ¢, (yxe™) + /2y - N(0, 1)

— with t, =T — ’yk, and O = @T_’Yk\/l — e 2T+2vk

e Alternative view (Saremi, Park, B., 2023)

— Diffusion freel



Empirical Bayes with multiple measurements

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)
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e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
with Yl:m — % ZZI Y;
— Increased concentration around the mean (S., P. and B., 2023)
2
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— Improved results with “strong” priors



Empirical Bayes with multiple measurements

e Empirical Bayes (Robbins, 1956, Miyasawa, 1961)

— Notation: ¢, density of Y = X + ¢ - N(0, )
— Key result: E[X|Y] =Y + 0%V log ¢, (Y)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

— Posterior mean: E|X|Y7,...,Y,,] = Yy, + %QV 10g 45 /i (Y1:m)
with Yl:m — % ZZI Y;
— Increased concentration around the mean (S., P. and B., 2023)

o o4d
Wa(law of X, law of E[X|Y7,...,Y,,])” < —
™m

— Improved results with “strong” priors

e Idea #1 (Saremi and Srivastava, 2022)
— Sampling X by sampling Y7,...,Y,, and then Empirical Bayes



ultimeasurement generative models
(Saremi and Srivastava, 2022)

X U1 2 3 4

x|y17°°°7y’m

till hard to sample from (y{,...,ym




Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;
— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m



Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Feasibility:
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Idea #2: Sequential denoising (S., P. and B., 2023)

e Multiple measurements: YV, =X +¢;,,1=1,...,m

e Algorithm

— Sample y; from Y;

— Iteratively sample y; from Y;|y1,...,y;—1, fori=1,....m
e Sampling steps using Langevin algorithms

— Feasibility:

17 o _
Vi 108 p(Ym|y1, -+ s Ym—1) = — [y1:m—ym+EV log qa/m(ykm)}

e Main benefit

— If o large enough, only log-concave distributions to sample from

o

— If m large enough, NG Is small enough to obtain clean samples



Synthetic experiments

e Mixtures of two Gaussians

— covariance matrices 721, Ay =6-(1,...,1) € R¢

Mixture of Gaussians ~ Mixture of Gaussians
’ —— d=2
2.0} —_—— =4
—— d=8
157 —e— d=16
o d=32
1.0} d=64
“““““ X~ px
0.5 ]
—
ooOC e
0 10 20 30 40 50 60

— SMS (sequential multimeasurement sampling)
— JMS (joint multimeasurement sampling)



Discussion

e T hree main ideas

— Sampling by denoising

— Learning the denoiser from data

— Progressive denoising for improved sampling/denoising
+ Using continuous-time diffusions (Song and Ermon, 2019)
+ Using multiple measurements (Park, Saremi, and B., 2024)



Discussion

e T hree main ideas

— Sampling by denoising

— Learning the denoiser from data

— Progressive denoising for improved sampling/denoising
+ Using continuous-time diffusions (Song and Ermon, 2019)
+ Using multiple measurements (Park, Saremi, and B., 2024)

e Key open problems

— Theoretical analysis

— Beyond Gaussians and Euclidean geometry
— Conditional sampling

— Rigorous empirical evaluation
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First step

log p(y )
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