
A directed homotopy type theory for 1-categories

Éléonore Mangel

under the supervision of Paige R. North

Utrecht University

10th October 2023 - 6th July 2024

1 Introduction

1.1 Abstract
In Martin-Löf Type Theory, the identity types are defined as the family of types IdA(x, y) for A a type and x and
y, two elements of A, generated inductively by refla : IdA(a, a). From this definition, we can deduce the usual
properties of the equality (reflexivity, symmetry and transitivity), and, in this context, these properties become
groupoidal operation (identity, inverse and composition). In fact, Hofmann and Streicher [1] discovered that
Martin-Löf Type Theory can be interpreted in the category of groupoids, such that identity types of a type A are
interpreted by the morphisms between two objects of the groupoid interpretation of A. This discovery showed
that Martin-Löf Type Theory can be used to prove and verify theorems in groupoid theory and homotopy
theory and gave a new unifying perspective on these domains.

However, despite many attempts, no consensus has yet been reached on what should be used to reason
synthetically on (higher) category theory and directed homotopy theory. One natural idea to solve this problem
is to develop a Directed Type Theory, by replacing symmetric identity types with directed homomorphism
types. Indeed, whereas groupoid theory and homotopy theory study symmetric paths, (higher) category theory
and directed homotopy theory are linked by their study of directed paths.

In this report, we present one attempt at such a theory. Even though it has been designed for 1-category, we
think of it as one more step towards a more general theory for higher category theory and directed homotopy
theory.

1.2 Analytic and synthetic theories
Mathematical theories can in classified in two categories, either synthetic or analytic.

A synthetic theory uses the structures its interested in as building blocks and use axioms so the building
blocks behave as intended. The most famous example is synthetic geometry, also called Euclid’s geometry.
Point and lines are supposed notion without a definition and there are axioms that ensures that they indeed
corresponds to our idea of points and lines.

The opposite is an analytic theory – which is not to be confused with the subfield of mathematics that is
analysis – a theory that breaks down structures in smaller pieces to make them fit in another theory, most of
the times set theory. In analytic geometry, also know as Descartes’ geometry, points are elements of Rn and
lines are sets of points.

Synthetic and analytic theories are not meant to be in two entirely separate parts of mathematics, but to
complement each other. For example, to prove the consistency of a logical theory, which is synthetic by nature,
we construct an analytic example, i.e. a model, in set theory.

Almost all of mathematics is done analytically inside of ZFC. Building a synthetic theory of a given math-
ematical subject can be hard (and historically appear after the analytic theory) but it has many advantages.
First, if we prove a theorem in a synthetic theory, it also proves the theorem in all of the models of the synthetic
theory. Secondly, many lemmas relating to the structure can be internalized in the theory and thus will be
automatically proved instead of having to prove it every time. For example, in synthetic computability, which
use computable sets as building blocks, every map is computable.

1.3 Homotopy type theory (HoTT)
Martin-Löf Type Theory (which we will abbreviate to MLTT from now on) is an extension of simple type
theory that adds dependent pair types, dependent function types and, arguably most interestingly, identity

1

types, which are formed using the following rule :

Γ ⊢ A type

Γ, x : A, y : A ⊢ IdA(x, y) type
Id-Form

which should be read as "If A is a type in context Γ, then IdA(x, y) is a type in the context Γ, x : A, y : A". The
introduction rule states that, for every element x of A, there is an identity of x with itself called the reflection
of x.

Γ ⊢ A type

Γ, x : A ⊢ reflx : IdA(x, x)
Id-Intro

Finally, the elimination rule states that, when we want to use an identity to construct an element, we only have
to consider the case where the identity is a reflection.

Γ ⊢ A type Γ, x : A, y : A, f : IdA(x, y) ⊢ D(x, y, f) type Γ, x : A ⊢ d(x) : D(x, x, reflx)

Γ, x : A, y : A, f : IdA(x, y) ⊢ jd(x, y, f) : D(x, y, f)
Id-Elim

From the introduction rule, we have that every element has an identity with itself and from the elimination
rule, we can deduce that identities can be composed and inversed. Thus, adding identity types gave types
the structure of a groupoid, a category whose every morphisms are isomorphisms. Moreover, as identity types
are also types, they have themselves the same structure, so it is actually an ∞-groupoid, a groupoid where
the isomorphims between two elements form themselves an ∞-groupoid. Therefore, MLTT can be used as a
synthetic theory of ∞-groupoids.

Moreover, MLTT has a lot of advantages, it has many models, including in ∞-groupoid, homotopy theory
and higher toposes and thus proving a theorem in MLTT proves it in a lot of contexts. Also, many very
useful notions when working on (∞-)groupoids are internalized in the theory. For example, every function is
automatically functorial. Finally, there exists proof checkers of MLTT, such as Agda and Coq, that allow us to
verify easily if a proof is correct or not.

All of this has motivated the rapid development of Homotopy Type Theory, which is MLTT with a few new
axioms added to make it more expressive, during the last 15 years. Now, many mathematical works are being
done inside of HoTT.

1.4 Motivations for a synthetic theory of higher category theory
With the still growing success of HoTT, one can only wonder what could be done with a powerful and simple
enough to use synthetic theory of higher categories. Indeed, higher category theory has a lot of applications in
other domains of mathematics or even in other sciences, for example, in logic and semantics. So a synthetic
theory whose building blocks are higher categories and that comes with, ideally, core lemmas of category theory
internalized (every function being a functor, every transformation being natural, etc) could be very useful and
would allow mathematicians to have a new setting to do higher category theory.

Thus, many attempts have been and are still being done to design such a theory, but no consensus on which
one should be used has emerged yet.

1.5 Our attempt at a synthetic category theory
Our attempt, like most other attempt, will be a type theory, as it will make it easier to implement a proof
checker later on. More precisely, design-wise, we started from MLTT and made changes to add directedness,
as, intuitively, the difference between groupoids and categories is the notion of direction.

For the moment, our attempt is focused on 1-categories but we hope that we will be able to generalize it to
higher categories in the future.

1.6 Related works
Our work builds on the previous work of my advisor [2]. We keep the same goal of having a homomorphism
type former with simple rules analogous to the identity type former of the Martin-Löf Type Theory, and we
solve one of the main problems of the previous article by having identity types that don’t collapse with the
homomorphism types.

We also take inspirations from the work of Nuyts [3], especially how variances of assumptions and terms are
marked in the judgments, and we improve on it by building an interpretation of our syntax.

Other works on directed type theory divert significantly from our project. Indeed, the works of Licata and
Harper [4] and Ahrens, North and Van Der Weide [5] don’t have a homomorphism type former and the work of
Riehl and Shulman [6] builds on Cubical Type Theory rather than Martin-Löf Type Theory.

2

1.7 Organization
After the presentation of the syntax of the system (Section 2) and an interpretation of it with 1-categories
(Section 3), we will look at its expressivity (Section 4). We will finish by considering an extension of the system
(Section 5).

In the appendix, you will find meta-informations about the internship (Appendix A) and an unfinished
attempt at a proof of the Yoneda lemma (Appendix B).

2 Syntax
In this section, we will present the syntax of our directed type theory. The idea of using orientations and general
implementation of them comes from [3] even though many details were changed to work semantically. The rules
for the homomorphism types comes from [2]. Everything else is original.

2.1 Judgments: orientations, contexts, terms and types
Our theory adds orientations to the standard Martin-Löf Type Theory (MLTT). They will mark the variance
of assumptions and terms.

The first two orientations are + and −, corresponding respectively to covariance and contravariance. For
example, if we have a contravariant term t of type B depending covariantly on a variable x of type A (which,
as we will see later, can be expressed by the judgment x

+

: A ⊢ t(x)
−
: B) and a morphism φ : a → a′ in A, then

we obtain a morphism from t(a′) to t(a) in B.
However, many mathematical notions that we want to express in our system are neither covariant nor

contravariant. For example, the identity type of x and y can’t depend covariantly nor contravariantly on x,
nor on y. If it did, it would allow us to transport identity along morphisms and thus the two ends of every
morphisms would be identified. We would want identities to only being transported along isomorphisms, so we
add a new orientation for this case: ◦ which will correspond to isovariance.

With t a covariant term depending isovariantly on a variable x, a morphism ϕ : a → a′ will give us no
information between t(a) and t(a′). But if ϕ is an isomorphism, then we will have an isomorphism between t(a)
and t(a′). Conversely, if t is an isovariant term depending on x covariantly, any morphism from a to a′ will
induce an isomorphism between t(a) and t(a′).

Our first type of judgment will be of the form ω ort, meaning that ω is an orientation.

◦ ort + ort − ort

Our second judgment will define a refinement order on the orientations. An isovariant term is also both co-
and contravariant, so ◦ is the smallest orientation.

ω ort

ω ≤ ω ort

ω ort

◦ ≤ ω ort

◦

+ −

We will now introduce contexts, terms and types. A context is a list of distinct variables, each associated
with a type and an orientation. Contexts will be noted x1

ω1
: A1, . . . , xn

ωn
: An) in their expanded form and Γℓ

in their contracted form with ℓ := (ω1, . . . , ωn). To simplify our notations, we will omit the orientation + in
contexts and write x : A instead of x

+

: A.
A term t of type A with orientation ω in a context Γℓ will be expressed by the judgment

Γℓ ⊢ t
ω

: A.

Types are themselves terms of universe types, that we will note Uk for k ∈ N.
We also have a judgment for equalities between two terms of the same type and the same orientation.

Equality of a and b, two terms of A with orientation ω in the context Γℓ will be noted:

Γℓ ⊢ a ≡ b
ω

: A.

3

As we will have another notion of equality, this one will be called judgmental equality. The judgmental equality
must respect the usual axiom of the equality (reflexivity, symmetry and transitivity) and judgmentally equal
types must have the same elements and the same judgmental equalities.

Γℓ ⊢ a
ω

: A

Γℓ ⊢ a ≡ a
ω

: A

Γℓ ⊢ a ≡ b
ω

: A

Γℓ ⊢ b ≡ a
ω

: A

Γℓ ⊢ a ≡ b
ω

: A Γℓ ⊢ b ≡ c
ω

: A

Γℓ ⊢ a ≡ c
ω

: A

Γℓ ⊢ A ≡ B : Uk Γℓ ⊢ a
ω

: A

Γℓ ⊢ a
ω

: B

Γℓ ⊢ A ≡ B : Uk Γℓ ⊢ a ≡ b
ω

: A

Γℓ ⊢ a ≡ b
ω

: B

A context is valid if the type of each of its variable can be constructed in the context formed by the previous
variables and we will use the judgment Γℓ ctx to express that Γℓ is a valid context.

♢♢ ctx
Ctx-Emp

Γℓ ctx Γℓ ⊢ A
α

: Uk ω ort

Γℓ, x
ω

: A ctx
Ctx-Ext

From now on, we will only consider valid contexts.

Finally, we introduce a judgment for an order on lists of orientations generalizing the order on the orienta-
tions.

♢ ≤ ♢ ♢-ort
≤-Emp

ℓ ≤ m Γ-ort ω ≤ α ort Γm ⊢ A : Uk

ℓ, ω ≤ m,α (Γ, x : A)-ort
≤-Ext

With these two orders, we can define rules for weakening the orientations on both sides.
◦ is the orientation giving the most information, so the weakening rule on the left, that is on assumptions,

will transform + and − into ◦ and conversely, the weakening rule on terms will transform ◦ into + or −.

ℓ ≤ m Γm ⊢ J
Γℓ ⊢ J

Ort-weak-L

ω ≤ α ort Γℓ ⊢ t
ω

: A

Γℓ ⊢ t
α

: A
Ort-weak-R

ω ≤ α ort Γℓ ⊢ t ≡ t′
ω

: A

Γℓ ⊢ t ≡ t′
α

: A
Ort-weak-R-≡

We also add the transmutation rule that changes the orientations on both sides. To give it, we need to
introduce a monoidal structure on the orientations :

· ◦ − +
◦ ◦ ◦ ◦
− ◦ + −
+ ◦ − +

+ is the neutral element, ◦ is an absorbing element and − is a root of unity.

Γℓ ⊢ t
ω1
: A

Γℓ·ω2 ⊢ t
ω1·ω2
: A

Transmut
Γℓ ⊢ t ≡ t′

ω1
: A

Γℓ·ω2 ⊢ t ≡ t′
ω1·ω2
: A

Transmut-≡

where:

♢ · ω := ♢ (ℓ, α) · ω := ℓ · ω, α · ω

This rule translates the fact that a functor from A to B can be seen as a functor from Aop to Bop when applied
with ω2 = − and that the image of an isomorphism by a functor is also an isomorphism. Due to that rule, every
term in the empty context – in fact in any context of the form Γ◦ – can be proved to be isovariant.

2.2 Structural rules
Now we introduce the usual structural rules for variables, weakening and substitution.

Γℓ ⊢ A : Uk ω ort

Γℓ, x
ω

: A ⊢ x
ω

: A
Var

Γℓ,∆m ⊢ J Γℓ ⊢ A : Uk ω ort

Γℓ, x
ω

: A,∆m ⊢ J
Weak

Γℓ, x
ω

: A,∆m ⊢ t
α

: B Γℓ ⊢ a
ω

: A

Γℓ,∆[a/x]m ⊢ t[a/x]
α

: B[a/x]
Subst

Γℓ, x
ω

: A,∆m ⊢ t
α

: B Γℓ ⊢ a ≡ b
ω

: A

Γℓ,∆[a/x]m ⊢ t[a/x] ≡ t[b/x]
α

: B[a/x]
Subst-eq

We insist on the fact that substitution requires the variable substituted and the term to have the same
variance.

4

2.3 Homomorphism types
We can now introduce the type former hom for homomorphism types. For A a type, a and b two elements of A
respectively contravariant and covariant, homA(a, b) will be the type of homomorphism between a and b.

Γℓ ⊢ A : Uk

Γℓ, x
−
: A, y : A ⊢ homA(x, y) : Uk

hom-form
Γℓ ⊢ A : Uk

Γℓ, x
◦
: A ⊢ 1x : homA(x, x)

hom-intro

Γℓ ⊢ A : Uk Γℓ, x
−
: A, y : A,∆m ⊢ t

ω

: homA(x, y)

Γℓ, x
−
: A, y : A,∆m ⊢ t

◦
: homA(x, y)

hom-set

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y : A, z : homA(x, y),∆

m ⊢ D(x, y, z) : Uk Γℓ, x
◦
: A,∆m ⊢ d(x)

ω

: D(x, x, 1x)

Γℓ, x
◦
: A, y : A, z : homA(x, y),∆

m ⊢ jLd (x, y, z)
ω

: D(x, y, z)
hom-left-elim

Γℓ ⊢ A : Uk

Γℓ, x
−
: A, y

◦
: A, z : homA(x, y),∆

m ⊢ D(x, y, z) : Uk Γℓ, y
◦
: A,∆m ⊢ d(y)

ω

: D(y, y, 1y)

Γℓ, x
−
: A, y

◦
: A, z : homA(x, y),∆

m ⊢ jRd (x, y, z)
ω

: D(x, y, z)
hom-right-elim

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y : A, z : homA(x, y),∆

m ⊢ D(x, y, z) : Uk Γℓ, x
◦
: A,∆m ⊢ d(x) : D(x, x, 1x)

Γℓ, x
◦
: A,∆m ⊢ d(x) ≡ jLd (x, x, 1x) : D(x, x, 1x)

hom-left-comp

Γℓ ⊢ A : Uk

Γℓ, x
−
: A, y

◦
: A, z : homA(x, y),∆

m ⊢ D(x, y, z) : Uk Γℓ, y
◦
: A,∆m ⊢ d(y)

ω

: D(y, y, 1y)

Γℓ, y
◦
: A,∆m ⊢ d(y) ≡ jRd (y, y, 1y)

ω

: D(y, y, 1y)
hom-right-comp

Due to the asymmetry between the two arguments of the constructor hom, we have two dual elimination
rules (and two corresponding computation rules). The left rule should be understood as the elimination of a
morphism in the original category, whereas the right rule corresponds to elimination in the opposite category.

Despite being directed, our homomorphism types are very similar in their construction to Martin-Löf’s
identity types. In fact, erasing the orientations in our rules give us the rules of the identity types of MLTT.

2.4 Universes
We will use a countable hierarchy of universes noted (Uk)k∈N, such that, for every k, Uk+1 contains Uk and all
its terms.

Γℓ ctx

Γℓ ⊢ Uk
◦
: Uk+1

Γℓ ⊢ A
ω

: Uk

Γℓ ⊢ A
ω

: Uk+1

2.5 Function types
We will introduce function types to our theory. We will first present the rules for simple function types, where
the type of the output of the function doesn’t depend on the the input, and then generalize it with dependent
function types.

Simple function types
Function types will be annotated with the orientations of the input and the output, so Aω1 → Bω2 is the

type of functions that take an element of the type A with orientation ω1 and return an element of B with
orientation ω2. We stress the fact that Aω is not a new type and is simply a notation. We will keep the same
convention we use in orientation of contexts and note A+ as simply A.

To be able to construct a function type, the domain type must be isovariant.

5

Γℓ ⊢ A
−
: Uk Γℓ ⊢ B : Uk ω1 ort ω2 ort

Γℓ ⊢ Aω1 → Bω2 : Uk

→-form
Γℓ, x

ω1
: A ⊢ t

ω2
: B

Γℓ ⊢ λx.t : Aω1 → Bω2
→-intro

Γℓ ⊢ f : Aω1 → Bω2

Γℓ, x
ω1
: A ⊢ f(x)

ω2
: B

→-elim

Γℓ, x
ω1
: A ⊢ t

ω2
: B

Γℓ, y
ω1
: A ⊢ (λx.t)(y) ≡ t[y/x]

ω2
: B

→-β
Γℓ ⊢ f : Aω1 → Bω2

Γℓ ⊢ λx.f(x) ≡ f : Aω1 → Bω2
→-η

Dependent function types
Dependent function types allow the codomain type to depend on the input. More specifically, to construct

the type Πx:Aω1B(x)ω2 , we need B(x) to depend ω1 variantly on x.

Γℓ ⊢ A
−
: Uk Γℓ, x

ω1
: A ⊢ B(x) : Uk

Γℓ ⊢ Πx:Aω1B(x)ω2 : Uk

Π-form
Γℓ, x

ω1
: A ⊢ t : B(x)

Γℓ ⊢ λx.t : Πx:Aω1B(x)ω2
Π-intro

Γℓ ⊢ f : Πx:Aω1B(x)ω2

Γℓ, x
ω1
: A ⊢ f(x)

ω2
: B(x)

Π-elim

Γℓ, x
ω1
: A ⊢ t

ω2
: B(x)

Γℓ, y
ω1
: A ⊢ (λx.t)(y) ≡ t[y/x] : B(y)

Π-β
Γℓ ⊢ f : Πx:Aω1B(x)ω2

Γℓ ⊢ λx.f(x) ≡ f : Πx:Aω1B(x)ω2
Π-η

Simple function types are a special case of dependent function types where x doesn’t appear in B.

2.6 Product types
We present in this part the rules for the product types, first in the non-dependent case, then in the general case.

Cartesian product types
Just as function types, cartesian product types will be annotated with the orientations of their components.

Thus, an element of Aω1 ×Bω2 is a pair (a, b) where a is an element of A with orientation ω1 and b is an element
of B with orientation ω2.

Γℓ ⊢ A : Uk Γℓ ⊢ B : Uk

Γℓ ⊢ Aω1 ×Bω2 : Uk

×-form
Γℓ ⊢ a

ω1
: A Γℓ ⊢ b

ω2
: B

Γℓ ⊢ (a, b) : Aω1 ×Bω2
×-intro

Γℓ ⊢ p : Aω1 ×Bω2

Γℓ ⊢ π1(p)
ω1
: A

×-elim-L
Γℓ ⊢ p : Aω1 ×Bω2

Γℓ ⊢ π2(p)
ω2
: B

×-elim-R

Γℓ ⊢ a
ω1
: A Γℓ ⊢ b

ω2
: B

Γℓ ⊢ π1((a, b)) ≡ a
ω1
: A

×-β-L
Γℓ ⊢ a

ω1
: A Γℓ ⊢ b

ω2
: B

Γℓ ⊢ π2((a, b)) ≡ b
ω2
: B

×-β-R

Γℓ ⊢ p : Aω1 ×Bω2

Γℓ ⊢ (π1(p), π2(p)) ≡ p : Aω1 ×Bω2
×-η

Dependent pair types
Generalizing product types to the dependent case is the same as for function types.

6

Γℓ ⊢ A : Uk Γℓ, x
ω1
: A ⊢ B(x) : Uk

Γℓ ⊢ Σx:Aω1B(x)ω2 : Uk

Σ-form
Γℓ ⊢ a

ω1
: A Γℓ ⊢ b

ω2
: B(a)

Γℓ ⊢ (a, b) : Σx:Aω1B(x)ω2
Σ-intro

Γℓ ⊢ p : Σx:Aω1B(x)ω2

Γℓ ⊢ π1(p)
ω1
: A

Σ-elim-L
Γℓ ⊢ p : Σx:Aω1B(x)ω2

Γℓ ⊢ π2(p)
ω2
: B(π1(p))

Σ-elim-R

Γℓ ⊢ a
ω1
: A Γℓ ⊢ b

ω2
: B(a)

Γℓ ⊢ π1((a, b)) ≡ a
ω1
: A

Σ-β-L
Γℓ ⊢ a

ω1
: A Γℓ ⊢ b

ω2
: B(a)

Γℓ ⊢ π2((a, b)) ≡ b
ω2
: B(a)

Σ-β-R

Γℓ ⊢ p : Σx:Aω1B(x)ω2

Γℓ ⊢ (π1(p), π2(p)) ≡ p : Σx:Aω1B(x)ω2
Σ-η

2.7 Inductive types
In our study of inductive types, we were most interested in the ones that could not exist in MLTT, so the one
where orientations matter. We found two types interesting : the opposite of a type and the core of a type.
They may seem useless as they seem to be just a repeat of the orientations, but as we will see later, the core of
a type is a useful tool to define identity types.

The opposite of a type

Γℓ ⊢ A : Uk

Γℓ ⊢ Aop : Uk

op-form
Γℓ ⊢ A : Uk

Γℓ, x
−·ω
: A ⊢ flipx

ω

: Aop
op-intro

Γℓ ⊢ A : Uk Γℓ, x
α

: Aop,∆m ⊢ D(x)
κ

: Uk Γℓ, x
−·α
: A,∆[flipx/x]m ⊢ d(x)

ω

: D(flipx)

Γℓ, x
α

: Aop,∆m ⊢ indop(d, x)
ω

: D(x)
op-elim

Γℓ ⊢ A : Uk Γℓ, x
α

: Aop,∆m ⊢ D(x)
κ

: Uk Γℓ, x
−·α
: A,∆[flipx/x]m ⊢ d(x)

ω

: D(flipx)

Γℓ, x
−·α
: A,∆[flipx/x]m ⊢ d(x) ≡ indop(d, flipx)

ω

: D(flipx)
op-comp

The core of a type

Γℓ ⊢ A : Uk

Γℓ ⊢ Acore : Uk

core-form
Γℓ ⊢ A : Uk

Γℓ, x
◦·ω
: ⊢ stripx

ω

: Acore
core-intro

Γℓ ⊢ A : Uk Γℓ, x
α

: Acore,∆ ⊢ D
κ

: Uk Γℓ, x
◦·α
: A,∆[stripx/x] ⊢ d(x)

ω

: D(stripx)

Γℓ, x
α

: A,∆m ⊢ indcore(d, x)
ω

: D(x)
core-elim

Γℓ ⊢ A : Uk Γℓ, x
α

: Acore,∆m ⊢ D(x)
κ

: Uk Γℓ, x
◦·α
: A,∆[stripx/x]m ⊢ d(x)

ω

: D(stripx)

Γℓ, x
◦·α
: A,∆[stripx/x]m ⊢ d(x) ≡ indcore(d, stripx)

ω

: D(stripx)
core-comp

For both of these types, the rules are interpreted semantically as the identity as a covariant term Acore and
an isovariant variant term of A will be interpreted the same way.

3 Interpretation of the syntax in 1-categories
The model presented in this section is adapted from [2] but everything is written by me.

We will work in a set theory with a strictly increasing sequence of uncountable inaccessible cardinals (λk)k∈N
and, for any k, we will note Catk the category of λk-small categories. Except in the subsection about universes,
we will always reason in a single given universe Uk.

In this section, both covariant and contravariant Grothendieck constructions will be used for context exten-
sion, so we find it necessary to explain them here.

Let C be a category and F a functor from C to Catk. The covariant Grothendieck construction C.F is the
category such that :

7

• the objects of C.F are pairs (X,Y) where X ∈ Ob(C) and Y ∈ Ob(F (X)),

• the morphisms from (X,Y) to (X ′, Y ′) are pairs (f, g) where f : X → X ′ is a morphism in C and
g : F (f)(Y) → Y ′ a morphism in F (X ′).

We will also use the projection functor πC associating X to each pair (X,Y) and for Z an object of C.F , we
will note its second component Z2.

The contravariant Grothendieck construction requires instead a contravariant functor F from C to Catk (i.e.
a functor from Cop to Catk). C.F is the category such that :

• the objects of C.F are pairs (X,Y) where X ∈ Ob(C) and Y ∈ Ob(F (X)), exactly as the covariant version,

• the morphisms from (X,Y) to (X ′, Y ′) are pairs (f, g) where f : X → X ′ is a morphism in C and
g : Y → F (f)(Y ′) a morphism in F (X).

Moreover, the projection functor for the contravariant Grothendieck construction will be noted π−
C .

3.1 Interpretation of contexts, types and terms
A context Γℓ is interpreted as an object of Catk. A type A in Γℓ will be interpreted as

• a functor from Γℓ to Catcorek if it is isovariant,

• a functor from Γℓ to Catk if it is covariant,

• a functor from (Γℓ)op to Catk if it is contravariant.

It will sometimes be helpful to annotate the type with its context, so, in these situations, we will note the
functor AΓℓ , but most of the time, we will simply write it A.

Orientations are interpreted as endofunctors of Catk, + is the identity, − associates a category to its opposite
category and ◦ is the functor taking a category to its maximal sub-groupoid. For A a type, we will note Aω for
ω ◦A.

We also have the natural transformations i : ◦ ⇒ + and iop : ◦ ⇒ − given by the identity on the objects
and, respectively, the inclusion and the inversion on the morphisms. Therefore, for ω and α two orientations
such that ω ≤ α, we have a natural transformation from ω to α, and by whiskering it with a type A, we obtain
a natural transformation from Aω to Aα that we will note Aω≤α.

◦

+ −

i iop

The empty context is interpreted as the terminal object ⋆ of Catk and we interpret the context Γℓ, x
ω

: A
as either the covariant Grothendieck construction Γℓ.Aω if A is covariant or isovariant or the contravariant
Grothendieck construction Γℓ.Aω if A is contravariant.

As the order on orientations has been extended to contexts by induction, we can use the natural transfor-
mations between related orientations to construct functors between related contexts by induction, i.e. when
ℓ ≤ m Γ-ort, we can construct a functor f ℓ;m from Γℓ to Γm. f⋄;⋄ is the identity functor and, for the hereditary
cases, we use the following constructions for co-/isovariant and contravariant types respectively :

f ℓ.ω;m.α : Γℓ.(AΓm ◦ f ℓ;m)ω → Γm.Aα
Γm

f ℓ.ω;m.α(γ, x) := (f ℓ;m(γ), Aω≤α
fℓ;m(γ)

(x))

f ℓ.ω;m.α(p1, p2) := (f ℓ;m(p1), A
ω≤α
fℓ;m(γ)

(p2))

f ℓ.ω;m.α : Γℓ.(BΓm ◦ (f ℓ;m)op)ω → Γm.Bα
Γm

f ℓ.ω;m.α(γ, x) := (f ℓ;m(γ), Bω≤α
(fℓ;m(γ))op

(x))

f ℓ.ω;m.α(p1, p2) := (f ℓ;m(p1), B
ω≤α
(fℓ;m(γ))op

(p2))

As we define f , we also need to impose the following coherence condition : if we have ℓ ≤ m Γ-ort and for A
and B respectively a co-/isovariant type and a contravariant type in Γm, then

AΓℓ = AΓm ◦ f ℓ;m BΓℓ = BΓm ◦ (f ℓ;m)op.

In practice, we will construct the interpretation of each type for the finest list of orientations and use the formula
of the coherence condition to generalize it.

8

Terms of co-/isovariant types A with orientation ω in a context Γℓ will be interpreted as sections of πAω :
Γℓ.Aω → Γℓ or, equivalently, as lax natural transformations ⋆Γℓ ⇒ Aω. Indeed, a lax natural transmutation
α : ⋆Γℓ ⇒ Aω is characterized by the data of an object αγ(⋆) in Aω(γ) for each γ ∈ Γ and a morphism from
Aω(f)(αγ(⋆)) to αγ′(⋆) in Aω(γ′) for each f : γ → γ′ (we will denote this morphism as αf from now on) which
is the exact data that characterizes a section of πΓℓ .

Dually, terms of contravariant types B will be interpreted as sections of π−
Γℓ : Γℓ.Bω → Γℓ or, equivalently,

oplax natural transformations ⋆Γℓ ⇒ Bω ◦ (−)op. Finally, judgmental equalities will be interpreted as equalities
of the interpretation of the terms.

3.2 Interpretation of weakening of orientations and transmutation
Ort-Weak-L

Let ℓ and m be two lists of orientation for Γ such that ℓ ≤ m Γ-ort, A : Γm → Catk be a covariant functor,
ω be an orientation and t : ⋆Γm ⇒ Aω be a lax natural transformation.

Γℓ Γm Catk
fℓ;m

⋆
Γℓ

Aω

t

By whiskering t with f ℓ;m, we obtain a lax natural transformation tf ℓ;m : ⋆Γℓ ⇒ Aω : Γℓ → Catk. The case of
A being a contravariant functor and t an oplax natural transformation is treated dually.

Ort-Weak-R
Let Γℓ be a category, A : Γℓ → Catk be a covariant functor, ω and α be two orientations such that ω ≤ α,

and t be a lax natural transformation from ⋆Γℓ to Aω.

Γℓ Catk

Aα

⋆
Γℓ

Aω

t

Aω≤α

Vertical composition gives us a natural transformation Aω≤α◦t : ⋆Γℓ ⇒ Aα. The case of A being a contravariant
functor and t an oplax natural transformation is treated dually.

Transmut
We will treat separately the transmutation by ◦ and by −.
For the isovariant transmutation, we will first need to prove that, for Γℓ a context, (Γℓ)◦ and Γ◦ are

isomorphic. We will prove it by induction on the length of Γℓ.
In the case of the empty context, both object are the terminal object of Catk and thus are trivially isomorphic.
Let Γℓ be a context such that (Γℓ)◦ and Γ◦ are isomorphic and let A : Γℓ → Catk be a covariant functor and

ω be an orientation. We have :

Ob(Γ◦.A◦) = {(γ, a) | γ ∈ Γ◦, a ∈ A◦(γ)}
Mor(Γ◦.A◦)((γ, a), (γ′, a′)) = {(f, g) | f ∈ Mor(Γ◦)(γ, γ′), g ∈ Mor(A◦(γ′))(A◦(f)(a), a′)}

Ob((Γℓ.Aω)◦) = {(γ, a) | γ ∈ (Γℓ)◦, a ∈ A◦(γ)}
Mor((Γℓ.Aω)◦) = IsoMor(Γℓ.Aω)

An isomorphism of (Γℓ.Aω) from (γ, a) to (γ′, a′) is a pair (f, g) such that f is an isomorphism of Γℓ (i.e. a
morphism of (Γℓ)◦) and g : Aω(f)(a) → a′ is a morphism of Aω(γ′) such that there exists g′ : Aω(f−1)(a′) → a
in Aω(γ) and g ◦Aω(f)(g′) = ida′ and g′ ◦Aω(f−1)(g) = ida. So g is an isomorphism of Aω(γ′) (and therefore
a morphism of A◦(γ′)) whose inverse is Aω(f)(g′).

Thus, we have

Mor((Γℓ.Aω)◦)((γ, a), (γ′, a′)) = {(f, g) | f ∈ Mor((Γℓ)◦)(γ, γ′), g ∈ Mor(A◦(γ′))(A◦(f)(a), a′)}

and we can construct an isomorphism between (Γℓ.Aω)◦ and Γ◦.A◦ by using the isomorphism between (Γℓ)◦

and Γ◦.

9

For the case of an extension of the context with a contravariant type, let Γℓ be a context such that (Γℓ)◦

and Γ◦ are isomorphic and let B : (Γℓ)op → Catk be a functor and ω be an orientation.
Morphisms of Γ◦.B◦ from (γ, b) to (γ′, b′) are pairs (f, g) with f : γ → γ′ and g : a → B◦(f)(a′) two

isomorphisms.
Morphisms of (Γℓ.Bω)◦ from (γ, b) to (γ′, b′) are pairs (f, g) with f an isomorphism in Γℓ and g : b →

Bω(f)(b′) a morphism in Bω(γ) such that, for a given g′ : b′ → Bω(f−1)(b), we have Bω(f)(g′) ◦ g = idb and
Bω(f−1)(g) ◦ g′ = idb′ . Thus, g is an isomorphism whose inverse is Bω(f)(g′) and (Γℓ.Bω)◦ and Γ◦.B◦ are
isomorphic.

Let A : Γℓ → Catk be a covariant functor, ω be an orientation and t : Γℓ → ΓℓAω be a section of πΓℓ . By
applying (−)◦ to t, we obtain a functor t◦ : (Γℓ)◦ → (Γℓ.Aω)◦. By pre- and post-composing by the isomorphism
we constructed just before, we obtain a functor from Γ◦ to Γ◦.A◦ and, as we know the behavior of each functor
that has been composed, we can easily verify that it is a section of πΓ◦ . For B : (Γℓ)op → Catk and t : Γℓ → Γℓ.Bω

a section of π−
Γℓ , the same process gives us a section of π−

Γ◦ : Γ◦.B◦ → Γ◦.

For the contravariant transmutation, we will first prove that, for any context Γℓ, (Γℓ)− and Γℓ·− are isomor-
phic. We will prove it by induction on Γℓ.

The case of the empty context is trivial, as they both are the empty context. For the case of context extension
by a covariant type, let Γℓ be a context such that (Γℓ)− and Γℓ·− are isomorphic, A : Γℓ → Catk a functor and
ω on orientation. We’ll note that, to construct Γℓ.Aω, we use the covariant Grothendieck construction on Aω,
whereas, for Γℓ·−.Aω·−, we use the contravariant Grothendieck construction on Aω·− seen as a functor from
(Γℓ·−)op to Catk. We have :

Mor((Γℓ.Aω)−)((γ, a), (γ′, a′)) = {(f, g) | f ∈ Mor((Γℓ)−)(γ, γ′), g ∈ Mor(Aω(γ))(Aω(f)(a′), a)}

Mor(Γℓ·−.Aω·−)((γ, a), (γ′, a′)) = {(f, g) | f ∈ Mor(Γℓ·−)(γ, γ′), g ∈ Mor(Aω(γ))(Aω(f)(a′), a)}

By using the isomorphism between (Γℓ)− and Γℓ·−, we can construct an isomorphism between (Γℓ.Aω)− and
Γℓ·−.Aω·−. The case of context extension by a contravariant type is symmetric.

By applying the same process as we did for the isovariant transmutation, we can turn any section of πΓℓ t
into a section of π−

Γℓ·− and reciprocally.

3.3 Interpretation of structural rules
Var

For Γℓ a category, A a covariant functor from Γℓ to Catk and ω an orientation, we can construct V ar :
⋆Γℓ.Aω ⇒ Aω as the (lax) natural transformation such that, for any γ ∈ Γℓ and any a ∈ Aω(γ), V ar(γ,a)(⋆) is
equal to a.

Weak
Let Γℓ be a category, n a natural number, (ωk)k∈[1,n] a list of orientations and (∆k)k∈[1,n] a list of func-

tors such that, for all k ∈ [1, n], ∆k is a functor from either Γℓ.∆ω1
1∆

ωk−1

k−1 or (Γℓ.∆ω1
1∆

ωk−1

k−1)op to
Catk, and let A be a covariant functor from Γℓ to Catk and α an orientation. We construct the functor
Weak : Γℓ.Aα.∆ω1

1∆ωn
n → Γℓ.∆ω1

1∆ωn
n that takes the n + 2-uplet (γ, a, δ1, . . . , δn) to the n + 1-uplet

(γ, δ1, . . . , δn). Weak is the functor that "erases" Aα from the context.
Let B be a covariant (respectively contravariant) functor from Γℓ.∆ω1

1∆ωn
n to Catk and α an orientation.

By whiskering any lax (respectively oplax) natural transformation from Γℓ.∆ω1
1∆ωn

n to Bα with Weak, we
obtain a lax (respectively oplax) natural transformation from Γℓ.Aω.∆ω1

1∆ωn
n to Bα.

Subst
We will only treat the case where ∆m contains only one variable. The generalization for any ∆m is easily

done by induction on its length.
Let A be a covariant functor from Γℓ to Catk, ω an orientation, a : Γℓ ⇒ Aω a lax natural transformation

and B a covariant functor from Γℓ.Aω to Catk. We construct the functor Subst from Γℓ.B[a/x]α (where B[a/x]
is the functor B ◦ a) to Γℓ.Aω.Bα that associates to a pair (γ, b) the triple (a(γ), b). The cases where A or B
are contravariant are treated similarly.

Let C be a covariant (respectively contravariant) functor from Γℓ.Aω.Bα to Catk and β an orientation. We
can turn any lax (respectively oplax) natural transformation from Γℓ.Aω.Bα to Cβ into a lax (respectively
oplax) natural transformation from Γℓ.B[a/x]α to Cβ by whiskering it with Subst.

3.4 Universes
For k a natural number, the universe Uk as a type in the empty context is interpreted as the category Catk. The
two rules related to the universes corresponds to the fact that Catk and all its elements are included in Catk+1.

10

A isovariant type, i.e. a term of a universe Uk with orientation ◦, in a context Γℓ is a functor from Γℓ to
Cat◦k. Thus, isovariant types are exactly the types that, for a morphism in the context, induce an isomorphism
on Catk.

3.5 Homomorphism types
Hom formation

Let A be a functor Γℓ → Catk. We want to construct a functor homA(a, b) from Γℓ.A−.(A ◦πΓℓ) (which will
be noted Γℓ.A−.A from now on) to Catk. The objects of Γ.A−.A are triples (γ, a, b) with γ in Γ and a and b
two objects of A(γ). A morphism from (γ, a, b) to (γ′, a′, b′) is a triple (f, g, h) with f : γ → γ′ a morphism in
Γ and g : a′ → A(f)(a) and h : A(f)(b) → b′ two morphisms in A(γ′).

homA : Γℓ.A−.A → Catk
homA := (γ, a, b) 7→ homSetA(γ)(a, b)
homA := (f, g, h) : (γ, a, b) → (γ′, a′, b′) 7→ (φ 7→ h ◦A(f)(φ) ◦ g)

where homSetA(γ)(a, b) is the set of homomorphisms in A(γ) from a to b seen as a (discrete) category.

Hom introduction
Let A be a functor Γℓ → Catk. We will note iop × i the functor from Γℓ.A◦ to Γℓ.A−.A that duplicates

the element of A◦ and injects in A− and A. We want to construct a lax natural transformation 1 : ⋆Γℓ.A◦ ⇒
(homA ◦ (iop × i))◦.

Let γ be an object in Γℓ and a one in A◦. Defining a functor 1γ,a : ⋆ → homA(γ, a, b)
◦ is picking an object

in homA(γ, a, a). This category being equal to homSetA(γ)(a, a), we can pick ida, the identity of a.
For the (lax) naturality of 1, we need to check that, for each morphism (f, g) : (γ, a) → (γ′, a′) in Γℓ.A◦,

(homA ◦ (iop × i))◦(f, g)(1γ,a(⋆)) is equal to 1γ′,a′(⋆). By unfolding the definitions, we have that (homA ◦ (iop ×
i))◦(f, g)(1γ,a) is equal to g ◦A(f)(ida) ◦ g−1 and thus, equal to ida′ . So 1 is (lax) natural.

Hom left elimination and computation
As we did for the substitution rule, we will only consider the case where ∆m contains only one variable.

Proving the general case can be easily done by induction on the length of ∆m.
Let A be a functor from Γℓ to Catk, B a functor from Γℓ.A◦ to Catk, ω1 and ω2 two orientations, D a functor

Γℓ.A◦.A.homA .Bω1 → Catk. We will note iop × i × 1.Bω1 : Γℓ.A◦.Bω1 → Γℓ.A−.A. homA .Bω1 the functor
associating to a triple (γ, a, b) the quintuple (γ, a, a, 1a, b). Finally, let d be a lax natural transformation from
⋆Γℓ.A◦.Bω1 to (D ◦ (iop × i× 1.Bω1))ω2 .

We want to construct a natural transformation :

jLd : ⋆Γℓ.A◦.A. homA .Bω1 ⇒ Dω2

Γℓ.A◦.A. homA .Bω1 has for objects quintuples (γ, a1, a2, φ, b) where γ is an object of Γℓ, a1 and a2 are two ob-
jects of A(γ), φ : a1 → a2 a morphism in A(γ) and b an object in Bω1(γ, a1). Morphisms in Γℓ.A◦.A.homA .Bω1

are quadruples :
(f, g1, g2, h) : (γ, a1, a2, φ, b) → (γ′, a′1, a

′
2, g2 ◦A(f)(φ) ◦ g−1

1 , b′)

with f a morphism in Γℓ from γ to γ′, g1 : A(f)(a1) → a′1 an isomorphism in A(γ′), g2 : A◦(f)(a2) → a′2 a
morphism in A(γ′) and h : Bω1(f, g1)(b) → b′ in Bω1(γ′, a′1).

To construct the lax natural transformation jLd : ⋆Γℓ.A◦.A. homA .Bω1 ⇒ Dω2 , we need to specify its com-
ponent for each object of Γℓ.A◦.A.homA .Bω1 . That is, for each (γ, a1, a2, φ, b), we have to pick an object of
Dω2(γ, a1, a2, φ, b).

Let (γ, a1, a2, φ, b) be an object of Γℓ.A◦.A. homA .Bω1 . We consider the morphism:

(idγ , ida1 , φ, idb) : (γ, a1, a1, ida1 , b) → (γ, a1, a2, φ, b).

Applying Dω2 gives us the functor:

Dω2(idγ , ida1 , φ, idb) : D
ω2(γ, a1, a1, ida1

, b) → Dω2(γ, a1, a2, φ, b)

Moreover, d(γ,a1,b)(⋆) is an element of Dω2(γ, a1, a1, ida1
, b). So we define:

jLd (γ, a1, a2, φ, b)(⋆) := Dω2(idγ , ida1
, φ, idb)d(γ,a1,b)(⋆)

Now, to check the lax naturality of jLd , we need to verify that for any morphism (f, g1, g2, h) :
(γ, a1, a2, φ, b) → (γ′, a′1, a

′
2, g2 ◦A◦(f)(φ) ◦ g−1

1 , b′) in Γℓ.A◦.A.homA .Bω1 , we have a morphism

Dω2(f, g1, g2, h)j
L
d (γ, a1, a2, φ, b)(⋆) → jLd (γ

′, a′1, a
′
2, g2 ◦A◦(f)(φ) ◦ g−1

1 , b′)(⋆)

11

in Dω2(γ′, a′1, a
′
2, b

′)

Dω2(f, g1, g2, h)j
L
d (γ, a1, a2, φ, b) = Dω2(f, g1, g2, h)D

ω2(idγ , ida1
, φ, idb)d(γ,a1,b)

= Dω2(f, g1, g2 ◦A◦(f)(φ), h)d(γ,a1,b)

= Dω2(idγ′ , ida′
1
, g2 ◦A◦(f)(φ) ◦ g−1

1 , idb′)D
ω2(f, g1, g1, h)d(γ,a1,b)

→ Dω2(idγ′ , ida′
1
, g2 ◦A◦(f)(φ) ◦ g−1

1 , idb′)d(γ′,a′
1,b

′)

= jLd (γ
′, a′1, a

′
2, g2 ◦A◦(f)(φ) ◦ g−1

1 , b′)

The first and last equalities are the definition of j◦d , the second and third ones are due to the composition in
Γℓ.A◦.A◦.Id◦A.B

ω1 and the morphism of the fourth step is the lax naturality of d.
Finally, we have to check that our construction validates the computation rule, i.e. jLd ◦ (iop× i×1.Bω1) = d.
Let (γ, a, b) be an object of Γℓ.A◦.Bω1 . We have that :

(jLd ◦ (i× iop × 1.Bω1))(γ, a, b) = jLd (γ, a, a, ida, b)

= Dω2(idγ , ida, ida, idb)d(γ,a,b)

= d(γ,a,b)

So jLd ◦ (iop × i× 1.Bω1) = d holds and the computation rule is verified.

3.6 Dependent function types
This construction is taken from Hofmann and Streicher [1] and adapted to the directed case.

We start by defining TmC(F) the category of terms of a functor F : C → Catk.

Ob(TmC(F)) := {t : C → C.F | πC ◦ t = idC}
Mor(TmC(F))(t, t′) := {τ : t ⇒ t′ | ∀x ∈ C, πC(τx) = idx}

Let Γℓ be a category, A a contravariant functor from Γℓ to Catk, ω1 and ω2 two orientations and B : Γℓ.Aω
1 → Catk

a functor.
For each γ ∈ Γℓ, we construct the functor Bω2

γ : Aω1(γ) → Catk.

Bω2
γ : Aω1(γ) → Catk

Bω2
γ (a) := B(γ, a)

Bω2
γ (p) := B(idγ , p)

We define ΠAω1 (Bω2) as the functor associating to each γ the category of terms of Bγ .

ΠAω1 (Bω2) : Γℓ → Catk
ΠAω1 (Bω2)(γ) := TmAω1 (γ)(B

ω2
γ)

We now define the action on morphism of ΠAω1 (Bω2). For f : γ → γ′ and t ∈ TmAω1 (γ)(B
ω2
γ),

ΠAω1 (Bω2)(f, t) : Aω1(γ′) → Aω1(γ′).Bω2

γ′

ΠAω1 (Bω2)(f, t)(a) := (a,Bω2(f, ida)(t(A
ω1(f)(a))2))

ΠAω1 (Bω2)(f, t)(a
p−→ a′) := (p,Bω2(f, ida′)(t(Aω1(f)(p))2))

In this construction, we are using the fact that A is contravariant to obtain the functor Aω1(f) from Aω1(γ′) to
Aω1(γ) and transport a and p to Aω1(γ). Thus, we have to restrict the syntax of function types to ones where
the domain type is contravariant.

To interpret the introduction, elimination and computation rules, we want to construct a bijection between
the lax natural transformations from ⋆Γℓ.Aω1 to Bω2 and the lax natural transformations from ⋆Γℓ to ΠAω1Bω2 .

Let t : ⋆Γℓ.Aω1 ⇒ Bω2 be a lax natural transformation. We construct a lax natural transformation λt from
⋆Γℓ to ΠAω1Bω2 by currying t.

λt : ⋆Γℓ ⇒ ΠAω1Bω2

λtγ(⋆)(a) := (a, t(γ,a)(⋆))

λtγ(⋆)(a
p−→ a′) := (p, t(idγ ,p))

For the lax naturality of λt, we need to construct, for all f : γ → γ′ in Γℓ, a morphism from
ΠAω1Bω2(f)(λtγ(⋆)) to λt′γ(⋆) in ΠAω1Bω2(γ′), i.e. a natural transformation equal to the identity on the first
component. For a ∈ Aω1(γ′), we pick t(f,ida).

12

Dually, for t : ⋆Γℓ ⇒ ΠAω1Bω2 a lax natural transformation, we construct a lax natural transformation
λ−1t : ⋆Γℓ.Aω1 ⇒ Bω2 by decurrying.

λ−1t : ⋆Γℓ.Aω1 ⇒ Bω2

λ−1t(γ,a)(⋆) := tγ(⋆)(a)
λ−1t(f,g) := tf (a

′)2 ◦Bω2(f, ida′)(tγ(⋆)(g)2)

The bijection and its inverse give us respectively the introduction and elimination rules and the fact that it
is a bijection gives us both computation rules.

3.7 Dependent pair types
This construction is also an adaptation of [1] to the directed case.

We’ll fix Γℓ a category, ω1 and ω2 two orientations, A : Γℓ → Catk and B : Γℓ.Aω1 → Catk two covariant
functors.

To construct the interpretation of the dependent pair type ΣAω1 (Bω2), we’ll use again the construction Bω2
γ

defined in the proof for dependent function types.

ΣAω1 (Bω2) : Γℓ → Catk
ΣAω1 (Bω2)(γ) := Aω1(γ).Bω2

γ

The action on morphism of ΣAω1 (Bω2) is defined as follows :

For p : γ → γ′ and (a, b) ∈ Aω1(γ).Bω2
γ , ΣAω1 (Bω2)(p)(a, b) := (Aω1(p)(a), Bω2(p, idAω1 (p)(a))(b))

For the introduction rule, let a be a section of πΓℓ : Γℓ.Aω1 → Γℓ and b be a section of πΓℓ : Γℓ.(B◦a)ω2 → Γℓ.
We want a section (a, b) of πΓℓ : Γℓ.ΣAω1Bω2 → Γℓ.

(a, b) : Γℓ → Γℓ.ΣAω1Bω2

(a, b)(γ) := (γ, (a(γ)2, b(γ)2))
(a, b)(f) := (f, (a(f)2, b(f)2))

Now for the elimination rules, let p : Γℓ → Γℓ.ΣAω1Bω2 be a section of πΓℓ . We need to construct a section
π1(p) of πΓℓ : Γℓ.Aω1 → Γℓ and a section π2(p) of πΓℓ : Γℓ → Γℓ.(B ◦ π1(p))

ω1 .

π1(p) : Γℓ → Γℓ.Aω1

π1(p)(γ) := (γ, πAω1 (γ)(p(γ)2))

π1(p)(γ
f−→ γ′) := (f, πAω1 (γ′)(p(f)2))

π2(p) : Γℓ → Γℓ.(B ◦ π1(p))
ω1

π2(p)(γ) := (γ, (p(γ)2)2)
π2(p)(f) := (f, (p(f)2)2)

We can easily verify that these constructions behave the intended way together and that the computation
rules holds.

4 Expressivity of the syntax
In this part, we will present multiple usual constructions of both category theory and homotopy type theory in
our theory.

4.1 Identity types
In HoTT, the identity type between a and b is meant to be thought as the type of isomorphisms between a
and b. The solution we chose to have identity types in our system is to look at the homomorphisms in the core
of a type and we can deduce formation, introduction and elimination rules just as if we had defined them as
independent types. We will prove the elimination rule in detail and give the formation and introduction rules.

13

Γℓ ⊢ A : Uk

Γℓ ⊢ Acore : Uk

Γℓ, x
◦
: A, y

◦
: A, z : homAcore(stripx, strip y),∆m ⊢ D(x, y, z) : Uk

Γℓ, x′ ◦
: Acore, y′ : Acore, z : homAcore(x′, y′),∆m ⊢ indcore(indcore(D(−,=, z), x′), y′) : Uk

Γℓ, x
◦
: A,∆m ⊢ d(x)

ω

: D(x, x, 1strip x)

Γℓ, x′ ◦
: Acore,∆m ⊢ indcore(d, x

′)
◦
: indcore(indcore(D(−,−, 1strip−)), x

′), x′)

Γℓ, x
◦
: A, y

◦
: A, x′ ◦

: Acore, y′ : Acore, z : homAcore(x′, y′),∆m ⊢L
j indcore(d,−)(x

′, y′, z)
ω

: indcore(D(−,=, z), x′), y′)

Γℓ, x
◦
: A, y

◦
: A, x′ ◦

: Acore ⊢ strip y : Acore

Γℓ, x
◦
: A, y

◦
: A, x′ ◦

: Acore, z : homAcore(x′, strip y),∆m ⊢ jLindcore(d,−)(x
′, strip y, z)

ω

: indcore(D(−, y, z), x′)

Γℓ, x
◦
: A, y

◦
: A ⊢ stripx

◦
: Acore

Γℓ, x
◦
: A, y

◦
: A, z : homAcore(stripx, strip y),∆m ⊢ jLindcore(d,−)(stripx, strip y, z) : D(x, y, z)

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y

◦
: A ⊢ homAcore(stripx, strip y) : Uk

hom−core-form
Γℓ ⊢ A : Uk

Γℓ, x
◦
: A ⊢ 1strip x : homAcore(stripx, stripx)

hom−core-intro

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y

◦
: A, z : homAcore(stripx, strip y),∆m ⊢ D(x, y, z) : Uk Γℓ, x

◦
: A,∆m ⊢ d(x) : D(x, x, 1strip x)

Γℓ, x
◦
: A, y

◦
: A, z : homAcore(x, y),∆m ⊢ jLindcore(d,−)(stripx, strip y, z)

ω

: D(x, y, z)
hom−core-elim

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y

◦
: A, z : homAcore(stripx, strip y),∆m ⊢ D(x, y, z) : Uk Γℓ, x

◦
: A,∆m ⊢ d(x)

ω

: D(x, x, 1strip x)

Γℓ, x
◦
: A,∆m ⊢ d(x) ≡ jLindcore(d,−)(stripx, strip y, z)

ω

: D(x, y, z)
hom−core-comp

We will use the notation IdA(x, y) := homAcore(stripx, strip y), reflx := 1strip x and j◦d(x, y, z) := jLindcore(d,−)(stripx, strip y, z).
We could have used a new type former for identity types (and we did initially) but constructing them as the

homomorphism of the core of a type is simpler as we don’t have to make a new proof for their interpretation
and we can deduce their interpretation from the interpretation of homomorphism types and the one of cores of
types.

4.2 Compositions
As we want types to be synthetic categories, with terms as objects and terms of the homomorphism types as
morphisms, a composition of homomorphisms is necessary. Our syntax allows us to define two constructions
of the compositions, both by homomorphism induction, the first one using the right elimination rule and the
second one the left.

Γℓ ⊢ A : Uk

. . .

Γℓ, x
−
: A, y

◦
: A, z : A, g : homA(x, y), f : homA(y, z) ⊢ homA(x, z) : Uk

Γℓ, y
◦
: A, z : A, f : homA(y, z) ⊢ f : homA(y, z)

Γℓ, x
−
: A, y

◦
: A, z : A, g : homA(x, y), f : homA(y, z) ⊢ jRf (x, y, g) : homA(x, z)

Γℓ ⊢ A : Uk

. . .

Γℓ, x
−
: A, y

◦
: A, z : A, g : homA(x, y), f : homA(y, z) ⊢ homA(x, z) : Uk

Γℓ, x
−
: a, y

◦
: A, g : hom(x, y) ⊢ g : hom(x, y)

Γℓ, x
−
: A, y

◦
: A, z : A, g : homA(x, y), f : homA(y, z) ⊢ jLg (y, z, f) : homA(x, z)

We will note f ◦R g := jRf (x, y, g) and f ◦L g := jLg (y, z, f).

The two constructions are not judgmentally equal but we can construct an identification between the two
by using elimination twice, once in each direction.

. . .

Γℓ, y
◦
: A ⊢ refl1y : IdhomA(y,y)(1y, 1y)

Γℓ, y
◦
: A, z : A, f : homA(y, z) ⊢ jLrefl1y (y, z, f) : IdhomA(y,z)(f ◦L 1x, f)

Γℓ, x
−
: A, y

◦
: A, z : A, g : homA(x, y), f : homA(y, z) ⊢ jRjLrefl1x (x,z,f)(x, y, g) : IdhomA(x,z)(f ◦L g, f ◦R g)

14

We remark that jLrefl1y (y, z, f) is a proof of the right unitality of 1x for −◦L − and that the left unitality is true
by judgmental equality. We can also prove the associativity of this composition, and thus that our types are
categories.

In the following, we will note f ◦ g := f ◦L g.

4.3 Isomorphisms

We want to have a notion of inversible homomorphisms that we will call isomorphisms. For A a type, x, y
◦
: A

and f : homA(x, y),

leftInv(f) := Σg:homA(y,x)IdhomA(x,x)(g ◦ f, 1x) rightInv(f) := Σg:homA(y,x)IdhomA(y,y)(f ◦ g, 1y)

isIso(f) := leftInv(f)× rightInv(f)

If we have an element of isIso(f), we will say that f is an isomorphism. We will note isoA(x, y) the type of
isomorphisms between x and y.

isoA(x, y) := Σf :homA(x,y)isIso(f)

Only isovariant terms can be an end of an isomorphism, as they have to be both covariant and contravariant
to construct the type.

5 A new orientation
One of the main problem of the system I’ve presented so far is that homomorphisms between a contravariant
and a covariant objects are near useless. Even really simple things such as applying a function to a morphism
where neither ends are isovariant are not possible. One notable example of that issue is that we are unable to
construct an equivalent to what is called apf in HoTT and which apply a function to an homomorphism.

F
◦
: A → B, x

−
: A, y : A, f : homA(x, y) ⊢ homB(F (x), F (y)),

Indeed, we can only apply hom-elimination if at least one end is isovariant.
The first idea that comes to mind is to add rules about how morphisms and functions work together that

could look like this :

Γ, x
−
: A, y : A, f : homA(x, y), F : A → B ⊢ F (f) : homB(F (a), F (b)) .

However, this solution seems ad-hoc and if we want to generalize to higher dimensions, we would need to add
new rules for each dimension.

The solution I chose is to add a new orientation noted 1 (as in 1-cell). A 1-variant element of the type A is
a morphism of A and we will write it in the form x

f−→ y
1

: A. Semantically, it has the same interpretation as
x

−
: A, y : A, f : homA(x, y). The endofunctors of Catk associated with it is the following :

1 : Catk → Catk
A 7→ A− ×A.homA

A
F−→ B 7→

{
(a, b, f) 7→ (F (a), F (b), F (f))
(g, h) 7→ (F (g), F (h))

Thus we can add the following rule to introduce a new 1-variant term :

Γℓ ⊢ A : Uk

Γℓ, x
−
: A, y : A, f : homA(x, y) ⊢ x

f−→ y
1

: A
1-intro

which semantically is simply the identity.
A 1-variant term can be weakened to a covariant or a contravariant term and it would give us respectively

the end point and the beginning point of the morphism. Also, an isovariant term can be weakened to 1-variant
and it would give the identity of this term.

◦

1

+ −

15

We will sometimes use notation a bit arbitrary when we do weakening, etc, with the intent of making what is
happening in the semantics the clearest. For example, when a term x

f−→ y
1

: A is weakened to −, we will note
it x

−
: A instead of just keeping the same variable name like we did for other weakenings.

This new orientation allows a new introduction rule for hom :

Γℓ ⊢ A : Uk

Γℓ, x
f−→ y

1

: A ⊢ f : homA(x, y)
hom-intro

The semantic of this new rule is simply a projection on the hom part. The previous one can still be deduced
by applying this rule to a weakened isovariant term.

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A, y

f−→ z
1

: A ⊢ f : homA(y, z)

Γℓ, x
◦
: A ⊢ x

◦
: A

Γℓ, x
◦
: A ⊢ x

idx−−→ x
1

: A

Γℓ, x
◦
: A ⊢ idx : homA(x, x)

A 1-variant type A
F−→ B in the universe Uk in the context Γℓ is interpreted as a functor Γℓ → Catopk ×

Catk.homCatk , that is, for every object γ ∈ Γ, F (γ) is a functor between two categories of Catk.
To be able to extend a context with a 1-variant type, we will use the following construction inspired by the

Grothendieck construction.

Let C be a category and F : C → Cat1k a functor.
For X ∈ C, we’ll note F+(X) the projection on the first component of F (X), F−(x) the second component

and F→(X) the third. For f a morphism in C, we note F l(f) the first component of F (f) and F r(f) the
second.

We construct C.1F as the category :

• whose objects are quadruplets (X,Y1, Y2, φ) where X ∈ Ob(C), Y1 ∈ Ob(F−(X)), Y2 ∈ Ob(F+(X)) and
φ : F→(X)(Y1) → Y2 is a morphism in F+(X),

• whose morphisms from (X,Y1, Y2, φ) to (X ′, Y ′
1 , Y

′
2 , φ

′) are triplets (f, g1, g2) where f : X → X ′, g1 :
F l(f)(Y ′

1) → Y1 in F−(X), g2 : F r(f)(Y2) → Y ′
2 in F+(X ′) such that :

F r(f)(F→(X)(Y1)) F r(f)(Y2)

F→(X ′)(Y ′
1) Y ′

2

F r(f)(φ)

g2

φ′

F r(f)(F→(X)(g1))

1-variant types behave differently than the other kinds of types. This is caused by the fact that, in the empty
context, 1-variant types are not interpreted as categories. Let A F−→ B be a 1-variant type. Contravariant terms
of F are contravariant terms of A, covariant terms are covariant terms in B and 1-variant types are morphisms
in B where the source has been transported from A to B through F . There are isovariant terms only if F is a
weakened isovariant type. We add the following rules to translate these facts :

Γℓ ⊢ A
F−→ B

1

: Uk

Γℓ, x
−
: A

F−→ B ⊢ x
−
: A

Γℓ ⊢ A
F−→ B

1

: Uk

Γℓ, x
−
: A ⊢ x

−
: A

F−→ B

such that composing the two rules is judgmentally equal to the identity. We also add similar rules for the
covariant terms.

We also add a new type former
−−→
hom for homomorphism over a 1-variant type.

Γℓ ⊢ A
F−→ B

1

: Uk

Γℓ, x
−
: A, y : B ⊢

−−→
homF (x, y) : Uk

−−→
hom-form

Γℓ ⊢ A
F−→ B

1

: Uk

Γℓ, x
f−→ y

1

: A
F−→ B ⊢ f :

−−→
homF (x, y)

−−→
hom-intro

We can still define a multiplication on orientations but it requires to add an infinity of new orientations.
Indeed, for each natural number n, 1n is a distinct orientation. Conceptually, 1 is a line, 12 is a square, 13 is
a cube, etc. These compositions of orientations are not so interesting when working with 1-categories but are
promising for higher dimensions.

16

· ◦ − + 1 . . .
◦ ◦ ◦ ◦ ◦ · 1 . . .
− ◦ + − 1 . . .
+ ◦ − + 1 . . .
1 1 · ◦ 1 · − 1 12 . . .
.

We have not yet studied the rest of the orientations created by this multiplication, but we will use later on that
◦ can be weakened to ◦ ·1. Indeed, a ◦ ·1-variant term of A is an isomorphism and we can weaken any isovariant
term to an isomorphism by taking its identity. We can now add the transmutation by 1 :

Γℓ ⊢ t
ω1
: A

Γℓ·1 ⊢ t
ω1·1
: A

Transmut

To visualize what this rule means semantically, I will explain in details its interpretation when we apply it to
x : A ⊢ t(x) : B(x) with B a covariant type.

We have a functor t : A → A.B which is a section of πA and when we apply the endofunctor 1 to it, we
obtain a functor from A1 to (A.B)1.

The category (A.B)1 has for objects triples ((a, b), (a′, b′), (f, g)) with a, a′ two objects of A, b and b′ objects
of B(a) and B(a′) respectively, f : a → a′ a morphism in A and g : B(f)(b) → b′ a morphism in B(a′). A
morphism from ((a, b), (a′, b′), (f, g)) to ((c, d), (c′, d′), (f ′, g′)) is a pair ((α, β), (α′, β′)) such that the following
two diagrams commute :

a a′

c c′

f

α′α

f ′

B(α′ ◦ f)(c) B(α′)(c′)

B(f ′)(d) d′

B(α′)(f)

β′

g′

B(α′◦f)(β)

We can easily verify that (A.B)1 is isomorphic to A1.1B1 and thus we obtain a functor t̃ from A1 to A1.1B1.

With all this, we can have a far greater control on homomorphisms between contravariant and covariant
terms. For example, we can apply a function to a homomorphism and therefore prove that elements of a function
type are functors.

Γ◦, F
φ−→ F ′ 1

: A → B, x
f−→ y

1

: A, a
f ′

−→ b
1

: B ⊢ f ′ : homB(a, b)
Γ◦, F : A → B ⊢ F : A → B

Γ◦, F : A → B, x : A ⊢ F (x) : B

Γ◦·1, F
φ−→ F ′ 1

: A → B, x
f−→ y

1

: A ⊢ F (x)
F (f)−−−→ F (y)

1

: B

Γ◦, F
φ−→ F ′ 1

: A → B, x
f−→ y

1

: A ⊢ F (f) : homB(F (x), F (y))

Γ◦, F
◦
: A → B, x

−
: A, y : A, f : homA(x, y) ⊢ F (f) : homB(F (x), F (y))

The limitation to isovariant contexts is necessary because of our use of the transmutation rule. In the rest of
this section, many construction will have the same limitation on the context for the same reason.

This new orientation allows us to define natural transformations, which is an essential tool for category
theory. In the rest of the section, we will define natural transformations and other constructions derived from
them.

5.1 Natural transformations
Let A be a contravariant type in Γ and B a covariant type family on A. For F and G two functions of Πx:AB(x),
respectively contravariant and covariant, the type of homomorphisms from F to G will be called the type of
natural transformations.

Transf(F,G) := homΠx:AB(x)(F,G)

There are no rules to construct a non-trivial (i.e. except the identity) term of this type, which makes it really
unpractical to use. We will prefer to use a more useful relation between functions. In the non-dependent case,
it will be :

Nat(F,G) := Π
x

f−→y
1
:A

homB(F (x), G(y))

This is the type of functions that associates to each morphism f : x → y in A a morphism from F (x) to G(y).

17

We can generalize it to the dependent case by using
−−→
hom.

Natd(F,G) := Π
x

f−→y
1
:A

−−→
homB(f)(F (x), G(y))

It may not seem clear why this is the type of natural transformations as it doesn’t resemble the usual definition,
so we will prove that every term of this type is indeed a natural transformation from F to G. To do that, we
first recall that an equivalent definition of a natural transformation from F to G is a function α that associates
to each morphism f : x → y a morphism α(f) : F (x) → G(y) such that, for all f and g such that f ◦ g exists,
we have α(f) ◦ F (g) = G(f) ◦ α(g). So we need to need to verify that every term of Nat(F,G) verifies this last
condition.

Γ◦, α
◦
: Nat(F,G), y :

◦
: A ⊢ 1α(1y) : IdhomB(F (y),G(y)(α(1y), α(1y))

Γ◦, α
◦
: Nat(F,G), x

−
: A, y

◦
: A, g : homA(x, y) ⊢ jR1α(1y)

(x, y, g) : IdB(α(1y) ◦ F (g), 1G(y) ◦ α(g))

Γ◦, α
◦
: Nat(F,G), x

−
: A, y

◦
: A, z : A, f : homA(y, z), g : homA(x, y) ⊢ jLjR1α(1y)

(x,y,g)(y, z, f) : IdB(α(f) ◦ F (g), G(f) ◦ α(g))

So every term of Nat(F,G) is a natural transformation. We can also prove semantically that the interpretation
of this type corresponds exactly to the natural transformations between F and G.

We can construct a function from Trans(F,G) to Nat(F,G).

Γ◦, F
φ−→ G

1

: A → B, x
f−→ y

1

: A, a
f ′

−→ b : B ⊢ f ′ : homB(a, b)

Γ◦, F : A → B ⊢ F : A → B

Γ◦, F : A → B, x : A ⊢ F (x) : B

Γ◦·1, F
φ−→ G

1

: A → B, x
f−→ y

1

: A ⊢ F (x)
φ(f)−−−→ G(y)

1

: B

Γ◦, F
φ−→ G

1

: A → B, x
f−→ y

1

: A ⊢ F (x)
φ(f)−−−→ G(y)

1

: B

Γ◦, F
φ−→ G

1

: A → B, x
f−→ y

1

: A ⊢ φ(f) : homB(F (x), G(y))

Γ◦, F
φ−→ G

1

: A → B ⊢ λf.φ(f) : Nat(F,G)

Γ◦, F
−
: A → B,G : A → B,φ : homA→B(F,G) ⊢ λf.φ(f) : Nat(F,G)

We will note this function napply for "natural apply" and we will come back to it later.

5.2 Natural isomorphisms
Now that we have considered homomorphisms between functions, we are also interested in identities between
functions. Unfortunately, we run into the same problem and we can’t construct identities between functions
besides the reflection.

In HoTT, the solution is to use the type of homotopies between two functions, which is defined as
Πx:AIdB(F (x), G(x)). If we try to directly translate this type in our system, we would obtain the following
type :

Πx:A◦ IdA(F (x), G(x)).

However, terms of this type only acts on isomorphisms which is not satisfactory.
The solution we chose instead is to use natural isomorphisms, that is, natural transformations which gives

an isomorphisms when applied to the identity morphism.
Let A and B be two types in a context Γ◦ and F and G be two isovariant functions from A to B. We define

the type of natural isomorphisms between F and G as :

NatIso(F,G) := Σα:Nat(F,G)Πx
◦
:A
isIso(α(x

idx−−→ x))

From an identity between two functions, we can construct an natural isomorphism by first transforming the
identity into an isomorphism, and then using napply on the isomorphism. We will note this function niapply.

5.3 Equivalences
In HoTT, equivalences are functions that are inversible up to homotopy. It’s an important concept as it replaces
the notion of bijections from set theory. Now that we’ve defined natural isomorphisms, we have all the tools to
define them is our system.

Let A and B be two types in a context Γ◦ and F an isovariant function from A to B.

leftInv(F) := ΣG:(B→A)◦NatIso(G ◦ F, λx.x) rightInv(F) := ΣH:(B→A)◦NatIso(F ◦H,λx.x)

isEquiv(F) := leftInv(F)× rightInv(F)

18

If we have an element of isEquiv(F), we will say that F is an equivalence. We will note A ≃ B the type of
equivalences between A and B.

A ≃ B := ΣF :(A→B)◦ isEquiv(F)

5.4 Function extensionality and directed function extensionality
To be able to construct homomorphisms and identities between functions, we can add two axioms stating that
the canonical functions we constructed earlier are equivalences.

Let A and B be two types in a groupoidal context and F and G two functions from A to B. The directed
function extensionality states that napply is an equivalence between Trans(F,G) and Nat(F,G). As for function
extensionnality, it states that niapply is an equivalence.

These axioms are really useful as they allow us to construct natural transformations or natural isomorphisms,
which are easy to construct, and then use homomorphism or identity induction on them.

Both of these axioms are not provable in our system. In HoTT, function extensionality can be derived from
the Univalence Axiom. We hope to be able to prove function extensionality and directed function extensionality
with an adequate notion of univalence.

We note that in the model described in Section 3, both of these axioms holds.

5.5 Univalence in a directed setting
In HoTT, the Univalence axiom states that the canonical function from the identity type between two types to
the type of equivalences between the two types is an equivalence. It’s a central part of HoTT and formalizes
the mathematical intuition that isomorphic objects are equal.

In directed homotopy type theory, we would like to have a directed Univalence axiom, a directed version
of the Univalence axiom, that would state that some canonical function from homUk

(A,B) to A → B is an
equivalence. However, there exists two such canonical functions, depending on which elimination rule we use.

Γℓ, A
◦
: Uk, x : A ⊢ x : A

Γℓ, A
◦
: Uk ⊢ λx.x : A → A

Γℓ, A
◦
: Uk, B

◦
: Uk, ϕ : homUk

(A,B) ⊢ jLλx.x(A,B, ϕ) : A → B

Γℓ, B
◦
: Uk, x : B ⊢ x : B

Γℓ, B
◦
: Uk ⊢ λx.x : B → B

Γℓ, A
◦
: Uk, B

◦
: Uk, ϕ : homUk

(A,B) ⊢ jRλx.x(A,B, ϕ) : A → B

These two functions are semantically equal, but not syntactically. One solution that seems reasonable is to
have the directed Univalence axiom stating that both functions are equivalences, but more work is necessary to
understand what this axiom would entail.

The link between identities and isomorphisms also need to be studied. From an identity, we can construct
an isomorphism between the same two endpoints by reasoning by induction on the identity.

Γℓ ⊢ A : Uk

Γℓ, x
◦
: A ⊢ 1x : homA(x, x)

Γℓ, x
◦
: A, y

◦
: A, p : IdA(x, y) ⊢ j◦1x(x, y, p) : homA(x, y)

The inverse homomorphism is obtained by using induction on the inverse identity, that is j◦1y (y, x, p
−1) and we

can prove by induction that they are indeed inverses.

Γℓ, x
◦
: A ⊢ refl1x : IdhomA(x,x)(1x, 1x)

Γℓ, x
◦
: A, y

◦
: A, p : IdA(x, y) ⊢ IdhomA(x,x)(j

◦
1y (y, x, p

−1) ◦ j◦1x(x, y, p), 1x)

The Categorical Univalence axiom states that the function that constructs an isomorphism from an identity
is an equivalence. Further research is necessary to know the impact of adding it as an axiom but we can note
that from the categorical Univalence and the directed Univalence axioms, we can deduce that the types of
equivalences and of identities between two types are equivalent, i.e. the usual Univalence axiom.

19

6 Conclusion
During this internship, I have defined a synthetic 1-category theory, constructed an interpretation of it in
1-categories and studied the mathematics we can do in the theory.

There is still a lot of work left to do. Proving the Yoneda lemma in our system was one of our goals since
almost the beginning of the internship, but we’re not there yet and many improvements would probably have
to be made to make it possible. We would also like to have a greater control on the orientation in the context,
so we would not have to restrict ourselves to groupoidal contexts in many proofs. Finally, it would be very
interesting to study what higher inductive types would add to the system.

References
[1] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. Twenty-five years of

constructive type theory (Venice, 1995), 36:83–111, 1998.

[2] Paige Randall North. Towards a directed homotopy type theory. Electronic Notes in Theoretical Computer
Science, 347:223–239, 2019.

[3] Andreas Nuyts. Towards a directed homotopy type theory based on 4 kinds of variance. Mém. de mast.
Katholieke Universiteit Leuven, 2015.

[4] Daniel R Licata and Robert Harper. 2-dimensional directed type theory. Electronic Notes in Theoretical
Computer Science, 276:263–289, 2011.

[5] Benedikt Ahrens, Paige Randall North, and Niels Van Der Weide. Bicategorical type theory: semantics and
syntax. Mathematical Structures in Computer Science, 33(10):868–912, 2023.

[6] Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. arXiv preprint
arXiv:1705.07442, 2017.

A Meta-informations about the internship

October - November
I started to work on the flaws of the previous attempt at a directed type theory of my
advisor, mainly the lack of identity types. I added an identity type former to the
theory and I started looking at the mathematics we could develop in this system.

December
As the type formers op and core became a liability, I chose to replace them by
orientations and adapt the work already done to orientations. I also added dependent
pair and dependent function types.

January - February

Due to housing issues, I had to go back to France and work from there for 2 months.
During this time, I read a lot about (higher) inductive types in HoTT with the goal
of adding them in our system and I worked on adapting the model used in the previous
attempt to the new system.

04.03.2024

Fernando Chu started a PhD with Paige North and started working with me on
Directed Homotopy Type Theory. It was really good to have an exterior eye on the
project at this point and many notations were changed to make more sense thanks to
him. He also noticed many errors I had make and help to correct them.

March I finished the first report of the internship.

April

I worked on inductive types and defined the core of a type and the opposite of a type,
the first allowing me to remove the identity type former and instead having the identity
types be defined as the homomorphism type of the core of a type. I had hoped to be able
to define higher inductive types, but it would require a lot more work.

May I added contravariant types to the syntax and worked on changing the interpretation
to accommodate them.

14.06.2024 Our work was presented at TYPES 2024 by Fernando Chu. Due to a lack of funds,
I couldn’t go myself.

June

Fernando noticed an issue with the natural transformations, which revealed that many
constructions and proofs in the syntax we had done so far were not quite right. It led
to the addition of 1-variance to be able to have a type of natural transformations
that is indeed interpreted as natural transformations in the model. As it was very late
in the internship, I didn’t have the time to add it to the interpretation.

20

B Incomplete try at a proof of the Yoneda Lemma
One of the main goals we had when we started this project was to prove the Yoneda Lemma, as it is a central
result of Category Theory, but unfortunately, we didn’t get there during the internship. In this section, we will
show an unfinished try at a proof of the Yoneda Lemma in a groupoidal context (i.e. a context Γ◦). I believe
it’s possible to finish it but we doesn’t quite have all the tools necessary.

The Yoneda Lemma states that, for A a type, a an isovariant element of A and P an isovariant presheaf on
A (that is a term of the type A− → U◦

k), we have an equivalence :

Π
x

f−→y:A1
(homA(y, a) → P (x)) ≃ P (a)

To prove it, assuming function extensionality is necessary.
We first need to make sure that both types in the equivalences exist. Because of the presheaf, we have to

reason in the universe Uk+1.

Γ◦, a
−
: A ⊢ A

−
: Uk+1 Γ◦, a

−
: A ⊢ Uk : Uk+1

Γ◦, a
−
: A ⊢ A− → U◦

k : Uk+1

Γ◦, a
−
: A,P : A− → U◦

k ⊢ P : A− → U◦
k

Γ◦, a
−
: A,P : A− → U◦

k , x
−
: A ⊢ P (x) : U◦

k Γ◦, a
−
: A,P : A− → U◦

k ⊢ a
−
: A

Γ◦, a
−
: A,P : A− → U◦

k ⊢ P (a)
◦
: Uk

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ P (a)
◦
: Uk

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ P (a)
◦
: Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , y
−
: A ⊢ homA(y, a) : Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , y : A ⊢ homA(y, a)
−
: Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ P : A− → U◦
k

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , x
−
: A ⊢ P (x)

◦
: Uk

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , x
−
: A, y : A, f : homA(x, y) ⊢ homA(y, a) → P (x) : Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , x
f−→ y

1

: A ⊢ homA(y, a) → P (x) : Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ Π
x

f−→y:A1
homA(y, a) → P (x) : Uk+1

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ Π
x

f−→y:A1
homA(y, a) → P (x)

◦
: Uk+1

Now, we construct both functions. The first function consists of applying the function of Π
x

f−→y:A1
homA(y, a) →

P (x) to the identity of a.

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x) ⊢ F : Π

x
f−→y:A1

homA(y, a) → P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x), x

f−→ y
1

: A ⊢ F (f) : homA(y, a) → P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x) ⊢ a

1a−→ a
1

: A

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x) ⊢ F (a

1a−→ a) : homA(a, a) → P (a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x), p : homA(a, a) ⊢ F (a

1a−→ a, p) : P (a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x) ⊢ 1a : homA(a, a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , F : Π
x

f−→y:A1
homA(y, a) → P (x) ⊢ F (a

1a−→ a, 1a) : P (a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ λF.F (a
1a−→ a, 1a) : (Π

x
f−→y:A1

homA(y, a) → P (x)) → P (a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ λF.F (a
1a−→ a, 1a)

◦
: (Π

x
f−→y:A1

homA(y, a) → P (x)) → P (a)

The second function is constructed by two homomorphism inductions. We have to be very careful about the

21

variance of the types we are using.

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a) ⊢ z : P (a)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a), x
−
: A, f : homA(x, a) ⊢ jRz (x, a, f) : P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z
−
: P (a), x : A, f : homA(x, a) ⊢ jRz (x, a, f)

−
: P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z
−
: P (a), x : A ⊢ λf.jRz (x, a, f) : homA(x, a) → P (x)−

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z
−
: P (a), x : A, y

−
: A, p : homA(y, a) ⊢ jRλf.jRz (x,a,f)(y, a, p) : homA(x, y) → P (x)−

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z
−
: P (a), x : A, y

−
: A, f : homA(x, y), p : homA(y, a) ⊢ jRλf.jRz (x,a,f)(y, a, p)(f)

−
: P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a), x
−
: A, y : A, f : homA(x, y), p : homA(y, a) ⊢ jRλf.jRz (x,a,f)(y, a, p)(f) : P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a), x
−
: A, y : A, f : homA(x, y) ⊢ λp.jRλf.jRz (x,a,f)(y, a, p)(f) : homA(y, a) → P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a), x
f−→ y

1

: A ⊢ λp.jRλf.jRz (x,a,f)(y, a, p)(f) : homA(y, a) → P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k , z : P (a) ⊢ λfp.jRλf.jRz (x,a,f)(y, a, p)(f) : Π
x

f−→y:A1
homA(y, a) → P (x)

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ λzfp.jRλf.jRz (x,a,f)(y, a, p)(f) : P (a) → (Π
x

f−→y:A1
homA(y, a) → P (x))

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ λzfp.jRλf.jRz (x,a,f)(y, a, p)(f)
◦
: P (a) → (Π

x
f−→y:A1

homA(y, a) → P (x))

Now, we prove that the compositions of the functions are homotope to the identity. For the first direction, we
use the fact that, for z : P (a), we have that jRλf.jRz (a,a,f)(a, a, 1a)(1a) is judgmentally equal to z.

. . .

Γ◦, a
◦
: A,P

◦
: A− → U◦

k ⊢ λz
φ−→ z′.φ : Π

z
φ−→z′:P (a)1

homP (a)(j
R
λf.jRz (a,a,f)(a, a, 1a)(1a), z

′)

Unfortunately, proving the other direction is not possible yet. We would have to construct an element of
the following type :

Π
F

φ−→F ′:(Π
x

f−→y:A1
(homA(y,a)→P (x)))1

homΠ
x

f−→y:A1
(homA(y,a)→P (x))(λfp.j

R
λf.jR

F (1a,1a)
(x,a,f)(y, a, p)(f), F

′),

which is not feasible, as we can’t use directed function extensionality on non-covariant functions.

22

	1 Introduction
	1.1 Abstract
	1.2 Analytic and synthetic theories
	1.3 Homotopy type theory (HoTT)
	1.4 Motivations for a synthetic theory of higher category theory
	1.5 Our attempt at a synthetic category theory
	1.6 Related works
	1.7 Organization

	2 Syntax
	2.1 Judgments: orientations, contexts, terms and types
	2.2 Structural rules
	2.3 Homomorphism types
	2.4 Universes
	2.5 Function types
	2.6 Product types
	2.7 Inductive types

	3 Interpretation of the syntax in 1-categories
	3.1 Interpretation of contexts, types and terms
	3.2 Interpretation of weakening of orientations and transmutation
	3.3 Interpretation of structural rules
	3.4 Universes
	3.5 Homomorphism types
	3.6 Dependent function types
	3.7 Dependent pair types

	4 Expressivity of the syntax
	4.1 Identity types
	4.2 Compositions
	4.3 Isomorphisms

	5 A new orientation
	5.1 Natural transformations
	5.2 Natural isomorphisms
	5.3 Equivalences
	5.4 Function extensionality and directed function extensionality
	5.5 Univalence in a directed setting

	6 Conclusion
	References
	A Meta-informations about the internship
	B Incomplete try at a proof of the Yoneda Lemma

