Automaton and $\text{FO}[\mathbb{N}^r, <, \text{mod}]$
Problem

<table>
<thead>
<tr>
<th>Strong logic</th>
<th>Weak Logic</th>
<th>Weaker Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{FO} [+, V_b]$</td>
<td>$\text{FO} [+]$</td>
<td>$\text{FO} [<, \text{mod}]$</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Automata</th>
</tr>
</thead>
</table>

Question

Decide in *polynomial time* if R definable in a strong logic is definable in a weak logic.
Automata reading r-tuple of integers

Example

Base $b = 3$, least digit first
\[
17_{10} = 2210_3, 18_{10} = 0020_3.
\]

Example

Arity $r = 2$
\[
\begin{pmatrix} 17 \\ 18 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}
\]

Definition

\[
A = (Q, [0, b - 1]^r, \delta, q_0, F)
\]

A read an r-tuple of base b integer least digit first.

- $|A| = \{ w \in [0, b - 1]^r* \mid \delta(q_0, w) \in F \}$ its accepted set of tuples of words.
- $|\overline{A}| \subseteq \mathbb{N}^r$ its accepted set of integers.
\[|\overline{A}| = \{(x, y) \mid x + 1 = y \lor y + 1 = x\}. \]

Theorem (Büchi 60)

Let \(R \subseteq \mathbb{N}^r \), \(R \) is accepted by a deterministic automaton in base \(b \) iff it is definable in \(\text{FO}[+, V_b] \).

\(V_b(n) = b^k \) when \(n = b^k c \) and \(b \) does not divide \(c \).
Regular sets

Definition

$R \subseteq \mathbb{N}^r$ is regular if the set of r-tuples in R, written in base 1, is accepted by a synchronous automaton.

Theorem (Péladeau Straubing 94)

R is regular iff it is definable in $\text{FO}[<, \text{mod}]$.

Figure: $x = 3 \lor (x = 0 \mod 3 \land y = 0 \mod 2 \land y > x)$
Characterization

Theorem

Let $R \subseteq \mathbb{N}^r$. $R \notin \text{FO}[<, \text{mod}]$ iff there exists a unary function definable in $\text{FO}[<, R]$ not in $\text{FO}[<, \text{mod}]$.

Theorem

$R \in \text{FO}[<, \text{mod}k]$ iff

- every sections and diagonal are in $\text{FO}[<, \text{mod}k]$ and
- $\exists l. \forall x_1 > l, \ldots, x_r > l \Rightarrow (x_1, \ldots, x_r) \in R \iff (x_1 + k, \ldots, x_r + k) \in R$
Characterization

Theorem

Let \(R \subseteq \mathbb{N}^r \). \(R \notin \text{FO}[<, \mod] \) iff there exists a unary function definable in \(\text{FO}[<, R] \) not in \(\text{FO}[<, \mod] \).

Theorem

\(R \in \text{FO}[<, \mod k] \) iff

- every sections and diagonal are in \(\text{FO}[<, \mod k] \) and
- \(\exists l. \forall x_1 > l, \ldots, x_r > l \Rightarrow (x_1, \ldots, x_r) \in R \iff (x_1 + k, \ldots, x_r + k) \in R \)

Theorem (Cooper 72)

Quantifier-free \(\text{FO}[+, =, \leq, <, \mod] \) admits quantifier elimination.
Sections and Diagonals

Figure: Section $y = 5$

Figure: Diagonal $x = y - 1$
Known results

Theorem (Leroux 06)

Deciding if a deterministic automaton accepts a FO[+] set is decidable in polynomial time.

Theorem (Marsault-Sakarovitch 13)

Deciding if a deterministic automaton accepts a FO[mod] or FO[\(\mathbb{N}, \text{mod}\)] set of integers is decidable in time \(n \log(n)\).

Theorem

Deciding if a deterministic automaton accepts a FO[<, mod] set is decidable in time 3-EXP.
First easy solutions, two 3-EXP algorithms

Theorem

Deciding if a deterministic automaton accepts a FO[<, mod] set is decidable in time 3-EXP.

- Obtaining a polynomial-size FO[+] formula by Leroux 06
- Checking if the formula could be stated in FO[<, mod] by Choffrut 08
- Stating ϕ in FO[+, R] "R is regular" by Milchior 13
- Rewriting ϕ as a deterministic automaton as in Muchnik 03 of size 3-EXP
- Checking if the formula is true on the automaton.
Our polynomial time algorithm

Theorem (Decidability)

Let $R \in \text{FO}[+, V_b]$. There exists an algorithm in polynomial time that accepts iff R is in $\text{FO}[<, \mod]$.

Its complexity is $O(2^r |Q|^2 (r^2 b^r + 2^r \log(|Q|) + 8^r))$ when R is given as a deterministic automaton A.

Theorem (Computation of the formula)

There exists an algorithm that computes a $\text{FO}[<, \mod, +C, = C]$-formula, if one exists, of polynomial size.

The size of the formula is $O(|Q|^2 r (b^r + |Q|^2 r \log(b) \log(|Q|)))$.
Remark

Everything still holds if \(\mathbb{Z} \) replaces \(\mathbb{N} \).
The computation time is multiplied by \(2^r \).

The existence algorithm also works for \(\text{FO}[\text{mod}] \) and when \(C \subseteq \mathbb{N} \),
\(X \subseteq \{+C, = C, =, <\} \) it works for \(\Pi_0[X, \text{mod}] \).
Further research

Open question:
- If the alphabet is $[0, b - 1]^*$, is there a polynomial time algorithm?
- Is there a polynomial time algorithm for $\text{FO}[\prec]$ or $\text{FO}[\prec, \text{mod } k]$?
Further research

Open question:
- If the alphabet is $[0, b - 1]^*$, is there a polynomial time algorithm?
- Is there a polynomial time algorithm for $\text{FO}[^<]$ or $\text{FO}[^<, \text{mod } k]$?

Conjecture
The algorithm works for $\text{FO}[^<, \text{mod}, \times b]$
Further research

Open question:
- If the alphabet is $[0, b - 1]^*$, is there a polynomial time algorithm?
- Is there a polynomial time algorithm for $\text{FO}[\prec]$ or $\text{FO}[\prec, \text{mod } k]$?

Conjecture
The algorithm works for $\text{FO}[\prec, \text{mod}, \times b]$

Thank you