Automata
and
$\mathsf{FO[\mathbb{N}, <, \text{mod}]}$-definable integer relations

Arthur MILCHIOR

IRIF
Université Paris Diderot, France
LACL, UPEC, Créteil, France

17 juin 2016
Séminaire automate
The main result

Theorem

It is decidable in linear time whether \(R \subseteq \mathbb{N}^d \), accepted by a minimal automaton in base \(b \geq 2 \) is accepted by an automaton in base 1.

Outline:

Introduction

Definitions

The FO[\(<, \text{mod}\)]-definable sets

Similar problems

Two tools
Representation of \(d\)-tuples of integers.

<table>
<thead>
<tr>
<th>(n, n + 1)</th>
<th>Base 2</th>
<th>Base 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1110</td>
<td>11111111_</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
<td>11111111</td>
</tr>
<tr>
<td>(2\mathbb{N})</td>
<td>((1, 0)^* (0, 1) {(0, 0) + (1, 1)}^) (0{0, 1}^)</td>
<td>((1, 1)^* (_, 1)) ((11)^*)</td>
</tr>
</tbody>
</table>
Exponential explosion: Example \(\{2^i\} \)

Let \(R_i = \{2^i\} \).
Minimal automaton accepting \(R_i \) in base 2 has \(i + 2 \) states.

\(R_2 \) in base 2

![Diagram](image)

Minimal automaton accepting \(R_i \) in base 1 has \(2^i + 1 \) states.

\(R_2 \) in base 1

![Diagram](image)
Known results relating automata and logics

<table>
<thead>
<tr>
<th>Logic</th>
<th>Automaton in base</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>FO[+, V_b]</td>
<td>$b \geq 2$</td>
<td>Büchi 60, Bruyère 85</td>
</tr>
<tr>
<td>FO[+]</td>
<td>all $b \geq 2$</td>
<td>Cobham 69, Semenov 77</td>
</tr>
<tr>
<td>FO[<, mod]</td>
<td>1</td>
<td>Straubing 91</td>
</tr>
<tr>
<td>FO[+1, mod]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$V_b(n)$: greatest power of b dividing n.
Example: $V_2(000101001110) = 0001$.

![Automaton diagram](image-url)
Definition
A state $R \subseteq \mathbb{N}$ is ultimately periodic if there exists a threshold $t \in \mathbb{N}$, and a period p such that for all $n \geq t$, $(n \in R) \iff (n + p \in R)$.

It is equivalent to state that a set $R \subseteq \mathbb{N}$ is:
- FO[+]-definable,
- FO[<, mod]-definable,
- ultimately periodic.

Example

$$R = 3\mathbb{N} \cup \{4\} = \{0, 3, 4, 6, 9, \ldots \}$$

R admits threshold $t = 5$ and periodicity $p = 3$. It is defined by:

$$\phi(x) = \{x = 4 \lor x \equiv 0 \mod 3\}.$$
Characterization of FO[<, mod]

Definition (Regular set)

A regular set is a set accepted in base 1.

Theorem (Straubing 91)

A set is FO[<, mod]-definable if and only if it is regular.

![Diagram](image_url)

(a) $x_0 < x_1$

(b) $3N + 2$
Quantifier elimination

Theorem (From Cooper 72, mentioned in Smoryński 91)
The logic $\text{FO}[=\mathbb{N}, +\mathbb{N}, <, \text{mod}]$ admits quantifier elimination.

Example

$$\exists x. (x = y \land x = 0) \lor (x + 4 \leq y \land x \equiv 0 \mod 2).$$

equivalent to

$$\bigvee_{i=-2}^{2} \{ (i = y \land i = 0) \lor (i + 4 \leq y \land i \equiv 0 \mod 2) \} \lor \bigvee_{i=-6}^{-2} \{ (y+i = y \land y+i = 0) \lor (y+i + 4 \leq y \land y+i \equiv 0 \mod 2) \} \lor \bigvee_{i=-2}^{2} \{ (y+i = y \land y+i = 0) \lor (y+i + 4 \leq y \land y+i \equiv 0 \mod 2) \}.$$
Theorem (Peladeau 92)

The class \mathcal{R} of regular set is maximal such that $\text{FO}[\mathcal{R}, (P_a)_{a \in A}]$ only defines regular languages.

Example

$$\phi = \exists m. m \times 2 = \text{last} \land \forall y. P_b(y) \iff y = m$$

Satisfied by:

$$a \; a \; b \; a \; a \; \quad \quad \quad \quad \quad \quad \quad \quad \; a \; a \; a \; a \; a$$

$$0 \; 1 \; 2 \; 3 \; 4 \; \quad \quad \quad \quad \quad \quad \quad \quad \; 0 \; 1 \; 2 \; 3 \; m$$

Not satisfied by:

$$a \; a \; a \; a \; a$$

The formula ϕ defines the non-regular language $\{a^nba^n \mid n \in \mathbb{N}\}$. Hence $\times 2$ is not FO[$<$, mod]-definable.
Theorem

The class \(\mathcal{R} \) of regular set is the maximal fragment of \(\text{FO}[^+] \) such that the satisfiability of \(\exists \text{MSO}[<,\mathcal{R}] \) is decidable.

This result does not hold for logics which are not fragment of \(\text{FO}[+] \).
The main result

Input: a minimal automaton \mathcal{A} in base $b \geq 2$.

Theorem (Decision algorithm)

It is decidable whether R accepted by \mathcal{A} is $\text{FO}[<, \text{mod}]$-definable is decidable in linear time.

Theorem (Construction algorithm)

*If R is $\text{FO}[<, \text{mod}]$-definable, an existential $\text{FO}[<, \text{mod}]$-formula defining R can be computed in time $O\left(n^3 \log(n)\right)$.**
Introduction

Similar problems
- Honkala’s algorithm
- Muchnik’s algorithm
- Leroux’s algorithm
- Marsault-Sakarovitch’s algorithm

Two tools
Similar problem for FO[+]

Theorem

It is decidable whether \(R \subseteq \mathbb{N}^d \) accepted by \(A \) is FO[+]-definable is decidable.

<table>
<thead>
<tr>
<th>dimension (d)</th>
<th>time complexity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Honkala 86)</td>
<td></td>
</tr>
<tr>
<td>any</td>
<td>3EXP</td>
<td>(Muchnik 91)</td>
</tr>
<tr>
<td>any</td>
<td>polynomial</td>
<td>(Leroux 06)</td>
</tr>
<tr>
<td>1</td>
<td>quasi-linear</td>
<td>(Marsault-Sakarovitch 13)</td>
</tr>
</tbody>
</table>
Honkala’s algorithm

Theorem (Honkala 86)

It is decidable whether $R \subseteq \mathbb{N}$ *accepted by* \mathcal{A} *is* FO[+]-*definable is decidable.*

Lemma

The threshold t *and the period* p *is at most* b^n *where* n *is the number of states of* \mathcal{A}.

Algorithm

1. Runs over all sets $R \subseteq \mathbb{N}$ with threshold and period less than b^n.
2. Generates the minimal automaton \mathcal{A}_R in base b accepting R.
3. Accepts if $\mathcal{A}_R = \mathcal{A}$.
Honkala’s example

If this automaton accepts an ultimately periodic set, the threshold and period are at most $2^3 = 8$.

Proposition

This method allows to recognize any class C of languages such that:

- there exists a function s from language to integers,
- for all language $L \in C$, the minimal automaton accepting L has at least $s(L)$ states,
- the set $\{ L \mid s(L) \}$ is finite and computable.

For C the ultimately periodic sets, take $s(R) = \max(t, p)$.
Muchnik’s algorithm

Theorem (Muchnik 91)
There exists $\phi_d \in \text{FO}[+, R]$ which states "$R \subseteq \mathbb{N}^d$ is $\text{FO}[+]$-definable".

Corollary (Muchnik 91)
It is decidable whether $R \subseteq \mathbb{N}^d$ accepted by \mathcal{A} is $\text{FO}[+]$-definable is decidable in 4EXP-time.

Algorithm

(1) Transform ϕ_d into an automaton \mathcal{A}' where R is encoded by \mathcal{A}.
(2) Accepts if \mathcal{A}' accepts a non-empty language.
Muchnik’s example

This method works for any class C of set of tuple of natural integers such that there exists a $\phi \in \text{FO}[+, V_b, R]$ which holds if and only if $R \in C$.

Example

It is decidable whether an automaton accepts a subsemigroup of $(\mathbb{N}^d, +)$.

$$\forall x_1, \ldots, x_d \forall y_1, \ldots, y_d \left\{ (x_1, \ldots, x_d) \in R \land (y_1, \ldots, y_d) \in R \right\} \implies (x_1 + y_1, \ldots, x_d + y_d) \in R$$

asserts that R is a subsemigroup of $(\mathbb{N}^d, +)$.
Leroux’s algorithm

Theorem (Leroux 06)

It is decidable whether \(R \subseteq \mathbb{N}^d \) *accepted by* \(\mathbb{A} \) *is* \(\text{FO}[+] \)-definable *is decidable in polynomial time.*

Theorem

It is decidable whether \(R \) *accepted by* \(\mathbb{A} \) *is* \(\text{FO}[<, \text{mod}] \)-definable *is decidable in* \(2\text{EXP}-\text{time} \).

1. Compute a polynomial-time \(\text{FO}[+] \)-formula (Leroux 06),
2. Deciding whether this formula is equivalent to a \(\text{FO}[<, \text{mod}] \)-formula (Choffrut 08).
Marsault-Sakarovitch’s algorithm

Theorem (Marsault-Sakarovitch 13)

It is decidable whether \(R \subseteq \mathbb{N} \) accepted by \(\mathcal{A} \) is \(\text{FO}[+] \)-definable is decidable in linear time.

Pascal automata - \(3\mathbb{N} \)

States: \(\{0, 1\} \times \{0, 1, 2\} \) (length, value)

Initial state: \((0, 0) \)

Transition:
\[
\delta((l, v), a) = (l + 1, v + 2^a)
\]

Final states: \(\{0, 1\} \times \{0\} \).

\[
(101 \cdot 1)_2 \equiv 101_2 + 1 \times 2^{\lfloor 101 \rfloor} \equiv 5 + 1 \times 2^3 \equiv 2 + 1 \times 2^1 \equiv 1 \mod 3.
\]
General method

Proposition

Let \mathbb{L} be a class of language such that:

1. each language of \mathbb{L} is accepted by an automaton of \mathbb{A},
2. all automata of \mathbb{A} accepts a language belonging to \mathbb{L},
3. \mathbb{A} is closed under quotient and
4. it is decidable in time $t(n)$ whether an automaton belongs to \mathbb{A}.

It is decidable in time $t(n)$ whether a minimal automaton accepts a language of \mathbb{L}.
The letter 0^{-1}

Lemma

Assuming m coprime with b, each state belongs to a 0-cycle. The length of the (10^{-1})-cycle is the periodicity.
Outline

Introduction

Similar problems

Two tools
 The initially-cyclic case
 Left-quotient
 Conclusion

Conclusion
First step

Proposition (Leroux 06)

An automaton A accepts a set $\text{FO}[+]$-definable if and only if A_q is $\text{FO}[+]$-definable for all q accessible in a step.

\[
\begin{array}{c}
\overline{A_{0,0}}^\mathbb{N} = 1 + 2(\overline{A_{1,1}}^\mathbb{N}) = 1 + 2(3\mathbb{N}) = 1 + 6\mathbb{N}
\end{array}
\]

where $\overline{A_{l,v}}^\mathbb{N}$ denotes the set of integers accepted when (l,v) is the initial state.
The initially-cyclic case

Corollary

An automaton A accepts a set FO$[+]$-definable if and only if A_q is FO$[+]$-definable for each cyclic q.

Also holds for FO$[<, \text{mod}]$.

\[\begin{array}{cccccc}
0 & 1 & 0,1 & 0,1 & 1 & 0,1 \\
& & & & & \\
q_0 & q_1 & q_2 & q_3 & q_4 & \\
\end{array} \]

(a) $\{0, 2, 4, 6\}$

A_{q_3} accepts $\{0\}$ and A_{q_4} accepts \emptyset:

A accepts a FO$[<, \text{mod}]$-definable set.
Left quotient of formulas

Proposition (Boudet, Comon 96)

Let $\phi(x_1, \ldots, x_d)$ be a FO$[+]$-formula defining a set $R \subseteq \mathbb{N}^d$. Let $L \subseteq (\{0, 1\}^d)^*$ be the binary expansion of elements of R. Let $(a_1, \ldots, a_d) \in \{0, 1\}^d$.

$(a_1, \ldots, a_d)^{-1}L$ is defined by the FO$[+]$-formula:

$$(a_1, \ldots, a_d)^{-1} \phi = \phi(a_1 + 2x_1, \ldots, a_d + 2x_d).$$

This result also holds for FO$[<, \text{mod}]$.

$$(0, 0)^{-1}(x_0 + 2 = x_1) \equiv (0 + 2x_0 + 2 = 0 + 2x_1) \equiv (x_0 + 1 = x_1)$$

$$(1, 0)^{-1}(x_0 + 2 = x_1) \equiv (1 + 2x_0 + 2 = 0 + 2x_1) \equiv \text{false}$$
Conclusion

Can be tested with https://github.com/Arthur-Milchior/RegAut
This algorithm also works for FO[+1, mod] and Σ₀[=N, <].

Open problems

Considering FO[<].
Considering most-significant-digit first automata.
Applying similar method to real automata.