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Abstract

In this technical note, we show that the Value Substitution Calculus (vsc) and the Lin-
ear Call-by-Value (lcbv) are observationally equivalent. We rely on the non-idempotent
intersection type system V to establish such a equivalence, as it is already known that V-
typability characterises vsc-termination. The technical development focuses on the char-
acterisation of lcbv-termination by means of system V.

1 Preliminary Notions

In this section, we recall Accattoli and Paolini’s Value Substitution Calculus [1] and give an al-
ternative specification of the Linear Call-by-Value (lcbv) [2]. Moreover, we recall a measure for
lcbv-terms from [2] and show that substitution steps in lcbv-reduction decrease (Lemma 2).

We recall also the type system V [3], inspired by Ehrhard’s system [5].

1.1 Syntax

We start by giving the syntax of both calculi in this work. Given a denumerable set of variables
(x, y, z, . . .), the syntax for describing the sets of terms (t, u, . . .), substitution contexts
(L, L′, . . .), and values (v, w, . . .) is specified by the following grammar:

t, u ::= x | λx. t | t u | t[x\u] L ::= 3 | L[x\t] v ::= x | λx. t

The set of terms includes variables, abstractions, applications, and closures t[x\u],
representing an explicit substitution (ES) [x\u] on a term t.

Free and bound occurrences of variables are defined as usual, where free occurrences
of x in t are bound in t[x\u]. Terms are considered up to α-renaming of bound variables.
Substitution contexts are lists of ESs, and we write tL for the replacement of the hole 3 in L

by t, which may capture the free variables of t. For example, if L = [x\y y][y\z] and t = x, then
tL = x[x\y y][y\z]. We write t{x := u} for the (capture-avoiding) substitution of the free
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occurrences of x by u in t. The sets of free variables of a term (fv(t)) is defined as expected.
The set of reachable variables of a term t is written rv(t) and defined as:

rv(x) := {x} rv(λx. t) := ∅
rv(t u) := rv(t) ∪ rv(u) rv(t[x\u]) := (rv(t) \ {x}) ∪ rv(u)

Evaluation contexts used in both calculi are defined by the following grammar:

W ::= 3 | W t | t W | W[x\t] | t[x\W]

And we write W⟨t⟩ for the term resulting from replacing the hole 3 in W by t.

1.2 The Value Substitution Calculus

Reduction in the Value Substitution Calculus (vsc) is defined by the two following rewriting
rules, closed by arbitrary weak evaluation contexts:

(λx. t)Lu →db t[x\u]L t[x\vL] →sv t{x := v}L

The db-rule (“distant beta”) is a β-like rule that applies an abstraction λx. t to an argument
u, creating an ES [x\u] that binds x to the argument u. This rule acts at a distance, meaning
an arbitrary list of ESs (L) may be in between the abstraction and its argument. For example,
(λx. λy. x) t u →db (λy. x)[x\t]u →db x[y\u][x\t].

The sv-rule (“substitution of values”) fires an ES when x is bound to a value v surrounded
by a context L. This rule performs the meta-level substitution of x by v, potentially erasing or
producing many copies of v, while it extrudes the substitution context L, which must remain
shared. For example, the step x[y\z] →sv x{y := z} = x results in the erasure of the value
z, while (xx)[x\(λy. z)[z\t]] →sv ((λy. z)λy. z)[z\t] produces two copies of the value λy. z but
keeps a single copy of the ES [z\t]. Note that a term like x[x\y y] is in vsc-normal form because
y y is not a value.

1.3 The Linear Call-by-Value Calculus

We start by giving an alternative specification of the lcbv calculus (w.r.t. [2]) using a more
conventional notation. Reduction in lcbv is defined by the two following rewriting rules, closed
by arbitrary weak evaluation contexts that is:

(λx. t)Lu →db t[x\u]L W⟨x⟩[x\vL] →lsv W⟨v⟩[x\v]L

We say a term t is lcbv-terminating if there is no infinite lcbv-reduction sequence starting
at t.

1.3.1 Term measures

Given a term t and a variable x, the potential number of occurences of x in t, written
#x(t), is a natural number defined as 0 if x /∈ fv(t), and otherwise is defined recursively as
follows:

#x(x) := 1 #x(t u) := #x(t) + #x(u)
#x(λy. t) := 0 #x(t[y\u]) := #x(t) + #x(u) · (1 + #y(t))

The measure of a term t is written #(t) and defined as:

#(x) := 0 #(t u) := #(t) + #(u)
#(λx. t) := 0 #(t[x\u]) := #(t) + #x(t) + #(u) · (1 + #x(t))



Remark 1. Let W be a weak evaluation context, x be any variable and v be any value. Then,
#(W⟨x⟩) = #(W⟨v⟩).

Let φ : Var → N. Given a substitution context L, the potential number of occurrences
of x in L under φ, written #φ

x (L), is recursively defined as follows:

#φ
x (3) := φ(x) #φ

x (L
′[y\t]) := #φ

x (L
′) + #x(t) · (1 + #φ

y (L
′))

We define the measure of L under φ, written #φ(L), as follows:

#φ(3) := 0 #φ(L′[x\t]) := #φ(L′) + #φ
x (L

′) + #(t) · (1 + #φ
x (L

′))

Lemma 2. If t →lsv t
′, then #(t) > #(t′).

Proof. We proceed by induction on t →lsv t′. We only show the base case, that is, when the
surrounding evaluation context is empty. The inductive cases are straightforward.

Then, t = W⟨x⟩[x\vL] →lsv W⟨v⟩[x\v]L = t′, so that

#(W⟨x⟩[x\vL]) = #(W⟨x⟩) + #x(W⟨x⟩) + #(vL) · (1 + #x(W⟨x⟩))
= #(W⟨x⟩) + #x(W⟨x⟩) + (#(v) + #φv (L)) · (1 + #x(W⟨x⟩)) (By [2, Lemma C.4 (2)])

= #(W⟨v⟩) + #x(W⟨x⟩) + #(v) · (1 + #x(W⟨x⟩)) + #φW⟨v⟩(L) · (1 + #x(W⟨x⟩)) (By Remark 1)

= #(W⟨v⟩) + #x(W⟨x⟩) + #(v) · (1 + #x(W⟨x⟩)) + #φW⟨v⟩(L) · (1 + (#x(W⟨v⟩) + 1))

> #(W⟨v⟩) + #x(W⟨x⟩) + #(v) · (1 + #x(W⟨x⟩)) + #φW⟨v⟩(L) · (1 + #x(W⟨v⟩))
≥ #(W⟨v⟩) + #x(W⟨x⟩) + #(v) · (1 + #x(W⟨x⟩)) + #φW⟨v⟩[x\v](L) (By [2, Lemma C.5 (2)])

= #(W⟨v⟩) + (#x(W⟨v⟩) + 1) + #(v) · (1 + (#x(W⟨v⟩) + 1)) + #φW⟨v⟩[x\v](L)

> #(W⟨v⟩) + #x(W⟨v⟩) + #(v) · (1 + #x(W⟨v⟩)) + #φW⟨v⟩[x\v](L)

= #(W⟨v⟩[x\v]) + #φW⟨v⟩[x\v](L)

= #(W⟨v⟩[x\v]L) (By [2, Lemma C.4 (2)])

1.4 The Type System V
Let us consider a set of base types denoted by α. The grammar of types is given by:

(Types) σ, τ ::= α | M | M → σ
(Multi-Types) M,N ::= [σi]i∈I where I is a finite set

Typing environments Γ,∆, . . . are functions mapping variables to multi-types. The do-
main of an environment Γ is dom(Γ) := {x | Γ(x) ̸= [ ]}, and ∅ denotes the empty typing
environment, mapping each variable to [ ].

The union of multi-types, written M1 +M2, is a multiset of types defined as expected,
where [ ] is the neutral element. For typing environments (Γi)i∈I , we write +i∈IΓi for the
environment mapping each variable x to +i∈IΓi(x), where Γ+∆ and Γ+j∈J ∆j are particular
instances of the general notation. When dom(Γ) ∩ dom(∆) = ∅ we write Γ;∆ instead of Γ +∆
to emphasise that the domains of Γ and ∆ are disjoint. As a consequence, Γ;x : [ ] is identical
to Γ.

Type assumptions are denoted x : M, meaning that the environment assigns M to x,
and [ ] to any other variable.



Typing judgements in system V are of the form Γ ⊢ t : σ, where Γ is a type environment,
t is a term, and σ is a type.

The typing rules of system V are:

x : M ⊢ x : M
var

(Γi;x : Mi ⊢ t : σi)i∈I

+i∈IΓi ⊢ λx. t : [Mi → σi]i∈I

abs

Γ ⊢ t : [M → σ] ∆ ⊢ u : M
Γ +∆ ⊢ t u : σ

app
Γ;x : M ⊢ t : σ ∆ ⊢ u : M

Γ +∆ ⊢ t[x\u] : σ
es

We write Φ�Γ ⊢ t : σ to denote there is a (typing) derivation Φ in system V concluding
with the typing judgement Γ ⊢ t : σ. We say a term t is V-typable if there is a derivation for
typing t.

Lemma 3 (Relevance). If Φ� Γ ⊢ t : T , then rv(t) ⊆ dom(Γ) ⊆ fv(t).

Proof. By a straightforward induction on typing derivations.

Let Φ be a type derivation with conclusion Γ ⊢ t : T . Then, the measure of Φ is noted by
meas (Φ), and is a pair of natural numbers given by ⟨sz (Φ) ,#(t)⟩, where sz (Φ) is recursively
defined as follows:

• sz

(
x : T ⊢ x : T

var

)
= |T |

• sz

(
(Φi)i∈I

Γ ⊢ λx. t : [αi]i∈I

abs

)
= |I|+

∑
i∈I sz (Φi)

• sz

(
Φ1 Φ2

Γ ⊢ t u : T
app

)
= 1 + sz (Φ1) + sz (Φ2)

• sz

(
Φ1 Φ2

Γ ⊢ t[x\u] : T
es

)
= 1 + sz (Φ1) + sz (Φ2) if x ∈ rv(t)

• sz

(
Φ1 Φ2

Γ ⊢ t[x\u] : T
es

)
= sz (Φ1) + sz (Φ2) otherwise

2 Characterisation of lcbv-termination through V-typability
In this section, we show that V-typability characterises lcbv-termination. To do so, we prove
that the type system V is sound and complete with respect to lcbv-reduction.

2.1 Soundness

We start addressing the soundness of system V with respect to the lcbv calculus, which states
that V-typability implies lcbv-termination. This result rely on a subject reduction property
based in turn on a substitution lemma.



Remark 4. If Φ� Γ ⊢ v : [ ], then sz (Φ) = 0.

Remark 5. Let t be a term. Then, t = W⟨x⟩ if and only if x ∈ rv(t).

Lemma 6 (Splitting/Merging). The following are equivalent:

1. Φ� Γ ⊢ v : M1 +M2

2. There exist typing derivations Φ1,Φ2 and typing contexts Γ1,Γ2 such that Φ1�Γ1 ⊢ v : M1,
and Φ2 � Γ2 ⊢ v : M2, and Γ = Γ1 + Γ2.

Moreover, sz (Φ) = sz (Φ1) + sz (Φ2)

Proof. See [4, Lemmas 4.17 and 4.20].

Lemma 7 (Partial Substitution). Let x be a variable, v be a value such that x /∈ fv(v), and
let ΦW⟨x⟩ � Γ;x : M ⊢ W⟨x⟩ : σ. Then, there exists a splitting M = M1 +M2 such that, for all
Φv � ∆ ⊢ v : M1 there exists a typing derivation ΦW⟨v⟩ � Γ +∆;x : M2 ⊢ W⟨v⟩ : σ. Moreover,

sz
(
ΦW⟨v⟩

)
= sz

(
ΦW⟨x⟩

)
+ sz (Φv)− |M1|.

Proof. We proceed by induction on W, showing only the cases W = 3 and W = W1 t, as the
remaining cases can be shown reasoning in a similar way.

• W = 3. Then, W⟨x⟩ = x and W⟨v⟩ = v. The typing derivation is of the form ΦW⟨x⟩ �

Γ;x : M ⊢ x : σ, so necessarily Γ = ∅ and σ = M, as ΦW⟨x⟩ can only be obtained from
the axiom var. We take M1 := M and M2 := [ ], yielding the splitting M = M + [ ],
and ∆ = ∆;x : [ ] by definition. So we are done, since for any Φv �∆ ⊢ v : M we yield
ΦW⟨v⟩ := Φv.

Moreover, sz
(
ΦW⟨v⟩

)
= sz (Φv) = |M|+ sz (Φv)− |M| = sz

(
ΦW⟨x⟩

)
+ sz (Φv)− |M|.

• W = W1 t. Then, ΦW⟨x⟩ is of the form:

ΦW1⟨x⟩ � Γ1;x : M′
1 ⊢ W1⟨x⟩ : [N → σ] Φt � Γ2;x : M′

2 ⊢ t : N
Γ1 + Γ2;x : (M′

1 +M′
2) ⊢ W1⟨x⟩ t : σ

app

where Γ = Γ1 + Γ2 and M = M′
1 +M′

2. By the i.h. on ΦW1⟨x⟩, there exists a splitting
M′

1 = M11 + M12 such that for all Φv � ∆ ⊢ v : M11 there exists a typing derivation
ΦW⟨v⟩ � Γ1 +∆;x : M12 ⊢ W⟨v⟩ : σ such that sz

(
ΦW1⟨v⟩

)
= sz

(
ΦW1⟨x⟩

)
+ sz (Φv)− |M11|.

Applying the rule app with ΦW1⟨v⟩ and Φt as premises, we build the derivation ΦW⟨v⟩ �

Γ1 +∆+ Γ2;x : M12 +M′
2 ⊢ W1⟨v⟩ t : T , where we let M1 := M11 and M2 := M12 +

M′
2. Note that Γ1 +∆+ Γ2 = Γ +∆.

Moreover, sz
(
ΦW⟨v⟩

)
= 1+sz

(
ΦW1⟨v⟩

)
+sz (Φt) =i.h. 1+sz

(
ΦW1⟨x⟩

)
+sz (Φv)−|M11|+

sz (Φt) = sz
(
ΦW⟨x⟩

)
+ sz (Φv)− |M1|.

• W = W1[y\t]. Then, we can assume y ̸= x by α-conversion, and ΦW⟨x⟩ is of the form

ΦW1⟨x⟩ � Γ1;x : M′
1; y : L ⊢ W1⟨x⟩ : σ Φt � Γ2;x : M′

2 ⊢ t : L
Γ1 + Γ2;x : (M′

1 +M′
2) ⊢ W1⟨x⟩[y\t] : σ

es

where Γ = Γ1 + Γ2 and M = M′
1 +M′

2.

Since x /∈ fv(v), we can then apply the i.h. on W1, yielding the splitting M′
1 =

M11 + M12 such that for all Φv � ∆ ⊢ v : M11 there exists a typing derivation



ΦW1⟨v⟩ � ((Γ1; y : L) + ∆);x : M12 ⊢ W1⟨v⟩ : σ. Moreover, sz
(
ΦW1⟨v⟩

)
= sz

(
ΦW1⟨x⟩

)
+

sz (Φv)− |M11|.
Note that y /∈ fv(v) by α-conversion, thus y /∈ dom(∆) by Lemma 3, so we can write
((Γ1; y : L) + ∆) as (Γ1 +∆); y : L.
Applying the rule es with ΦW1⟨v⟩ and Φt as premises, we build the derivation ΦW⟨v⟩ �

Γ1 + Γ2 +∆;x : M12 +M′
2 ⊢ W1⟨v⟩[y\t] : σ, where we let M1 := M11 and M2 := M12+

M′
2. Note that Γ1 +∆+ Γ2 = Γ +∆.

Moreover, if y ∈ rv(W⟨x⟩), then in particular y ∈ rv(W1⟨x⟩), since we can assume y /∈ fv(t)
by α-conversion. Then, we yield y ∈ rv(W1⟨v⟩), and we obtain the size of ΦW⟨v⟩ as follows:

sz
(
ΦW⟨v⟩

)
=y∈rv(W1⟨v⟩) 1 + sz

(
ΦW1⟨v⟩

)
+ sz (Φt)

=i.h. 1 + sz
(
ΦW1⟨x⟩

)
+ sz (Φv)− |M11|+ sz (Φt)

=y∈rv(W1⟨x⟩) sz
(
ΦW⟨x⟩

)
+ sz (Φv)− |M11|

Otherwise, y /∈ rv(W⟨x⟩), so in particular y /∈ rv(W1⟨x⟩). Then, we yield y /∈ rv(W1⟨v⟩), and
we obtain the size of ΦW⟨v⟩ as follows:

sz
(
ΦW⟨v⟩

)
=y/∈rv(W1⟨v⟩) sz

(
ΦW1⟨v⟩

)
+ sz (Φt)

=i.h. sz
(
ΦW1⟨x⟩

)
+ sz (Φv)− |M11|+ sz (Φt)

=y/∈rv(W1⟨x⟩) sz
(
ΦW⟨x⟩

)
+ sz (Φv)− |M11|

Lemma 8 (Weighted Subject Reduction). Let Φ� Γ ⊢ t : σ and t →lcbv t′. Then, there exists
a derivation Φ′ such that Φ′ � Γ ⊢ t′ : σ and moreover sz (Φ) ≥ sz (Φ′) and meas (Φ) >lex

meas (Φ′)1.

Proof. By induction on t →lcbv t′. We only show the base case t →lsv t
′, as the case t →db t

′ is
analogous to [4, Lemma 3.4]. Moreover, the inductive cases are straightforward.

Let t = W⟨x⟩[x\vL] and t′ = W⟨v⟩[x\v]L. We proceed by induction on L.

• L = 3. Then, Φ has the form:

ΦW⟨x⟩ � Γ1;x : M ⊢ W⟨x⟩ : σ Φv � Γ2 ⊢ v : M
Γ1 + Γ2 ⊢ W⟨x⟩[x\v] : σ

es

where Γ = Γ1 + Γ2.

Let M = M1 +M2 be the splitting obtained by Lemma 7 on ΦW⟨x⟩. Then, by Lemma 6
on Φv, there exist typing derivations Φ1

v �Γ21 ⊢ v : M1 and Φ2
v �Γ22 ⊢ v : M2 such that

sz (Φv) = sz
(
Φ1

v

)
+ sz

(
Φ1

v

)
.

Applying Lemma 7 on ΦW⟨x⟩ and Φ1
v, we yield a derivation ΦW⟨v⟩ �

(Γ1 + Γ21);x : M2 ⊢ W⟨v⟩ : σ and sz
(
ΦW⟨v⟩

)
= sz

(
ΦW⟨x⟩

)
+ sz

(
Φ1

v

)
− |M1|.

Thus, we conclude by building the following derivation Φ′:

ΦW⟨v⟩ � (Γ1 + Γ21);x : M2 ⊢ W⟨v⟩ : σ Φ2
v � Γ22 ⊢ v : M2

Γ1 + Γ2 ⊢ W⟨v⟩[x\v] : σ
es

1Where lex stands for the lexicographical order, as the size of a typing derivation is a pair of natural numbers.



To calculate sz (Φ) and sz (Φ′), we analyse two cases, and considering x ∈ rv(W⟨x⟩)
by Remark 5.

– If x ∈ rv(W⟨v⟩), then

sz (Φ) =x∈rv(W⟨x⟩) 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv)

= 1 + sz
(
ΦW⟨x⟩

)
+ sz

(
Φ1

v

)
+ sz

(
Φ2

v

)
≥ 1 + sz

(
ΦW⟨x⟩

)
+ sz

(
Φ1

v

)
− |M1|+ sz

(
Φ2

v

)
= 1 + sz

(
ΦW⟨v⟩

)
+ sz

(
Φ2

v

)
=x∈rv(W⟨v⟩) sz (Φ

′)

– If x /∈ rv(W⟨v⟩), then

sz (Φ) =x∈rv(W⟨x⟩) 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv)

= 1 + sz
(
ΦW⟨x⟩

)
+ sz

(
Φ1

v

)
+ sz

(
Φ2

v

)
> sz

(
ΦW⟨x⟩

)
+ sz

(
Φ1

v

)
− |M1|+ sz

(
Φ2

v

)
= sz

(
ΦW⟨v⟩

)
+ sz

(
Φ2

v

)
=x/∈rv(W⟨v⟩) sz (Φ

′)

We conclude since sz (Φ) ≥ sz (Φ′) and #(t) > #(t′) (Lemma 2) imply meas (Φ) >lex

meas (Φ′).

• L = L′[y\s]. Then, Φ has the form:

ΦW⟨x⟩ � Γ′;x : M ⊢ W⟨x⟩ : σ
ΦvL′ �∆1; y : N ⊢ vL′ : M Φs �∆2 ⊢ s : N

∆1 +∆2 ⊢ vL′[y\s] : M
es

Γ′ +∆1 +∆2 ⊢ W⟨x⟩[x\vL′[y\s]] : σ
es

Where Γ = Γ′ +∆1 +∆2. Moreover, we can assume y /∈ fv(W⟨x⟩) by α-conversion.

We now build the following derivation Ψ:

ΦW⟨x⟩ � Γ′;x : M ⊢ W⟨x⟩ : σ ΦvL′ �∆1; y : N ⊢ vL′ : M
Γ′ + (∆1; y : N ) ⊢ W⟨x⟩[x\vL′] : σ

es

Moreover, W⟨x⟩[x\vL′] →lsv W⟨v⟩[x\v]L′. Then, we can apply the i.h., yielding Ψ′ such that
Ψ′ � Γ′ + (∆1; y : N ) ⊢ W⟨v⟩[x\v]L′ : σ and moreover sz (Ψ) ≥ sz (Ψ′) and meas (Ψ) >lex

meas (Ψ′).

Then, we build Φ′ as follows:

Ψ′ � Γ′ + (∆1; y : N ) ⊢ W⟨v⟩[x\v]L′ : σ Φs �∆2 ⊢ s : N
Γ′ +∆1 +∆2 ⊢ W⟨v⟩[x\v]L′[y\s] : σ

es

Note that we can assume y /∈ dom(Γ′) by α-conversion and Lemma 3.

To calculate sz (Φ) and sz (Φ′), we analyse two cases, and considering x ∈ rv(W⟨x⟩)
by Remark 5.



– If y ∈ rv(W⟨v⟩[x\v]L′), recall that y /∈ fv(W⟨x⟩) by α-conversion, so y /∈ rv(W⟨x⟩). Then

sz (Φ) =x∈rv(W⟨x⟩),y∈rv(vL′) 1 + sz
(
ΦW⟨x⟩

)
+ 1 + sz (ΦvL′) + sz (Φs)

= 1 + sz (Ψ) + sz (Φs)

≥i.h. 1 + sz (Ψ′) + sz (Φs)

=y∈rv(W⟨v⟩[x\v]L′) sz (Φ
′)

– If y /∈ rv(W⟨v⟩[x\v]L′), then in particular y /∈ rv(vL′). Thus

sz (Φ) =x∈rv(W⟨x⟩),y /∈rv(vL′) 1 + sz
(
ΦW⟨x⟩

)
+ sz (ΦvL′) + sz (Φs)

= sz (Ψ) + sz (Φs)

≥i.h. sz (Ψ
′) + sz (Φs)

=y/∈rv(W⟨v⟩[x\v]L′) sz (Φ
′)

We conclude since sz (Φ) ≥ sz (Φ′) and #(t) > #(t′) (Lemma 2) imply meas (Φ) >lex

meas (Φ′).

Proposition 9 (Soundness of System U). Let t be a V-typable term. Then, t is lcbv-
terminating.

Proof. Straightforward by Lemma 8.

2.2 Completeness

We now prove the completeness of system V with respect to the lcbv calculus, which states
that lcbv-termination implies V-typability. The proof for this result follows well-understood
techniques, requiring a subject expansion property based in turn on an anti-partial substitution
lemma.

Lemma 10 (Anti-Partial Substitution). Let ΦW⟨v⟩�Γ;x : M ⊢ W⟨v⟩ : σ, where x /∈ fv(v). Then,
there exist typing derivations ΦW⟨x⟩ and Φv, typing environments ΓW⟨x⟩ and ∆, and a multi-type
N satisfying:

1. ΦW⟨x⟩ � ΓW⟨x⟩;x : M+N ⊢ W⟨x⟩ : σ

2. Φv �∆ ⊢ v : N

3. Γ = ΓW⟨x⟩ +∆

Moreover, sz
(
ΦW⟨v⟩

)
= sz

(
ΦW⟨x⟩

)
+ sz (Φv)− |N |.

Proof. By induction on W. We detail the cases when W = 3, W = W1 t, and W = W1[x\t], as all
the remaining inductive cases are similar, and follow easily from the i.h..

• W = 3. Then, W⟨v⟩ = v and W⟨x⟩ = x. The typing derivation is of the form ΦW⟨v⟩ �

Γ;x : M ⊢ v : σ, so it is the case that σ is a multi-type, i.e., σ = N . Since x /∈ fv(v), then
necessarily M = [ ] by Lemma 3. We take ΓW⟨x⟩ := ∅, ∆ := Γ, and N so that Φv := ΦW⟨v⟩
and moreover ΦW⟨x⟩ � x : N ⊢ x : N by rule var.

Furthermore, sz
(
ΦW⟨v⟩

)
= sz (Φv) = |N |+ sz (Φv)− |N | = sz

(
ΦW⟨x⟩

)
+ sz (Φv)− |N |.



• W = W1 t. Then, the typing derivation is of the form

ΦW1⟨v⟩ � Γ1;x : M1 ⊢ W1⟨v⟩ : [L → σ] Φt � Γ2;x : M2 ⊢ t : L
Γ1 + Γ2;x : (M1 +M2) ⊢ W1⟨v⟩ t : σ

app

where Γ = Γ1 + Γ2 and M = M1 +M2.

Since x /∈ fv(v), we can then apply the i.h. on W1, yielding typing derivations ΦW1⟨x⟩ and
Φv, typing environments ΓW1⟨x⟩ and ∆, and a multi-type N satisfying:

1.1 ΦW1⟨x⟩ � ΓW1⟨x⟩;x : (M1 +N ) ⊢ W1⟨x⟩ : [L → σ]

1.2 Φv �∆ ⊢ v : N
1.3 Γ1 = ΓW1⟨x⟩ +∆

And moreover, sz
(
ΦW1⟨v⟩

)
= sz

(
ΦW1⟨x⟩

)
+ sz (Φv) − |N |. Then, taking the typing envi-

ronments ΓW⟨x⟩ := ΓW1⟨x⟩ + Γ2 and ∆, and the type N , we yield the following:

1. ΦW⟨x⟩ �ΓW⟨x⟩;x : (M+N ) ⊢ W1⟨x⟩ t : σ, by applying rule app to ΦW1⟨x⟩ and the con-
clusion of Φt.

2. Φv �∆ ⊢ v : N
3. Γ = Γ1 + Γ2 =i.h. ΓW1⟨x⟩ +∆+ Γ2 = ΓW⟨x⟩ +∆

And moreover, sz
(
ΦW⟨v⟩

)
= 1 + sz

(
ΦW1⟨v⟩

)
+ sz (Φt) =i.h. 1 + sz

(
ΦW1⟨x⟩

)
+ sz (Φt) +

sz (Φv)− |N | = sz
(
ΦW⟨x⟩

)
+ sz (Φv)− |N |.

Lemma 11 (Weighted Subject Expansion). Let t →lcbv t′ and Φ′�Γ ⊢ t′ : σ. Then, there exists
a typing derivation Φ such that Φ�Γ ⊢ t : σ and moreover sz (Φ) ≥ sz (Φ′) and meas (Φ) >lex

meas (Φ′).

Proof. By induction on t →lcbv t′.
We only show the base case t →lsv t

′, as the reasoning for the base case t →db t
′ is analogous

to the one in Lemma 8, and inductive cases are straightforward.

• Let t = W⟨x⟩[x\vL] →lsv W⟨v⟩[x\v]L = t′. We proceed by induction on L.

– L = 3. Then, Φ′ has the form:

Φ′
W⟨v⟩ � Γ1;x : M ⊢ W⟨v⟩ : σ Φ′

v � Γ2 ⊢ v : M
Γ1 + Γ2 ⊢ W⟨v⟩[x\v] : T

es

where Γ = Γ1 + Γ2.

We can assume by α-conversion that x /∈ fv(v). By Lemma 10 on Φ′
W⟨v⟩, we yield

typing derivations ΦW⟨x⟩ and Φv, typing environments ΓW⟨x⟩ and ∆, and a multi-type
N satisfying

1. ΦW⟨x⟩ � ΓW⟨x⟩;x : (M+N ) ⊢ W⟨x⟩ : σ
2. Φv �∆ ⊢ v : N
3. Γ1 = ΓW⟨x⟩ +∆



Moreover, sz
(
Φ′
W⟨v⟩

)
= sz

(
ΦW⟨x⟩

)
+ sz (Φv) − |N |. We can apply Lemma 6 to Φ′

v

and Φv, yielding Φ′′
v �Γ2 +∆ ⊢ v : M+N . Moreover, sz (Φ′′

v) = sz (Φ′
v)+ sz (Φv).

Then, we build Φ as follows:

ΦW⟨x⟩ � ΓW⟨x⟩;x : (M+N ) ⊢ W⟨x⟩ : σ Φ′′
v � Γ2 +∆ ⊢ v : M+N

ΓW⟨x⟩ + Γ2 +∆ ⊢ W⟨x⟩[x\v] : σ
es

By Remark 5, x ∈ rv(W⟨x⟩), and consider two cases, depending on whether x ∈ rv(W).

∗ If x ∈ rv(W), then

sz (Φ) =x∈rv(W⟨x⟩) 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φ′′

v)

= 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv) + sz (Φ′

v)

≥ 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv) + sz (Φ′

v)− |N |

= 1 + sz
(
Φ′
W⟨v⟩

)
+ sz (Φ′

v)

=x∈rv(W) sz (Φ
′)

∗ Otherwise, x /∈ rv(W), then

sz (Φ) =x∈rv(W⟨x⟩) 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φ′′

v)

= 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv) + sz (Φ′

v)

≥ 1 + sz
(
ΦW⟨x⟩

)
+ sz (Φv) + sz (Φ′

v)− |N |

> sz
(
Φ′
W⟨v⟩

)
+ sz (Φ′

v)

=x/∈rv(W) sz (Φ
′)

We conclude since sz (Φ) ≥ sz (Φ′) in the first case, and sz (Φ) > sz (Φ′) in the
second case. Moreover, #(t) > #(t′) by Lemma 2, so meas (Φ) >lex meas (Φ

′).

– L = L′[y\s]. Then, Φ′ has the form:

Φ′
1 � Γ1; y : L ⊢ W⟨v⟩[x\v]L′ : σ Φ′

s � Γ2 ⊢ s : L
Γ1 + Γ2 ⊢ W⟨v⟩[x\v]L′[y\s] : σ

es

Where Γ = Γ1 + Γ2. Moreover, we can assume y /∈ fv(W⟨v⟩) by α-conversion.

Since W⟨x⟩[x\vL′] →lsv W⟨v⟩[x\v]L′, we can then apply the i.h. on Φ′
1, yielding

Φ1 such that Φ1 � Γ1; y : L ⊢ W⟨x⟩[x\vL′] : σ and moreover, sz (Φ1) ≥ sz (Φ′
1) and

meas (Φ1) >lex meas (Φ
′
1).

The conclusion of Φ1 can only be obtained as follows:

ΦW⟨x⟩ � Γ11;x : N ⊢ W⟨x⟩ : σ ΦvL′ � Γ12; y : L ⊢ vL′ : N
(Γ11 + Γ12); y : L ⊢ W⟨x⟩[x\vL′] : σ

es

where Γ1 = Γ11 +Γ12. Since y /∈ fv(W⟨v⟩) and x ̸= y by α-conversion, we can assume
that y /∈ fv(W⟨x⟩) as well. Therefore, y /∈ dom(Γ11) by Lemma 3.

We then build Φ as follows:

ΦW⟨x⟩ � Γ11;x : N ⊢ W⟨x⟩ : σ
ΦvL′ � Γ12; y : L ⊢ vL′ : N Φ′

s � Γ2 ⊢ s : L
Γ12 + Γ2 ⊢ vL′[y\s] : N

es

Γ11 + Γ12 + Γ2 ⊢ W⟨x⟩[x\vL′[y\s]] : σ
es



Moreover, to calculate sz (Φ), we consider two cases depending on whether y ∈
rv(W⟨v⟩[x\v]L′).

∗ If y ∈ rv(W⟨v⟩[x\v]L′), then in particular, y ∈ rv(vL′) and thus

sz (Φ) =x∈rv(W⟨x⟩),y∈rv(vL′) 1 + sz
(
ΦW⟨x⟩

)
+ 1 + sz (ΦvL′) + sz (Φ′

s)

=x∈rv(W⟨x⟩) 1 + sz (Φ1) + sz (Φ′
s)

≥i.h. 1 + sz (Φ′
1) + sz (Φ′

s)

=y∈rv(W⟨v⟩[x\v]L′) sz (Φ
′)

∗ Otherwise, y /∈ rv(W⟨v⟩[x\v]L′), so in particular, y /∈ rv(vL′), and thus

sz (Φ) =x∈rv(W⟨x⟩),y /∈rv(vL′) 1 + sz
(
ΦW⟨x⟩

)
+ sz (ΦvL′) + sz (Φ′

s)

=x∈rv(W⟨x⟩) 1 + sz (Φ1) + sz (Φ′
s)

≥i.h. 1 + sz (Φ′
1) + sz (Φ′

s)

>y/∈rv(W⟨v⟩[x\v]L′) sz (Φ
′)

We conclude since sz (Φ) ≥ sz (Φ′) in the first case, and sz (Φ) > sz (Φ′) in the
second case. Moreover, #(t) > #(t′) by Lemma 2, so meas (Φ) >lex meas (Φ

′).

We establish a lemma showing that lcbv-normal forms are typable to prove completeness
of system V with respect to lcbv evaluation. For that, we first define a grammar of terms
characterising lcbv-normal forms.

vr ::= x | vr[x\ne] | vr[x\no] (x /∈ rv(vr))
ne ::= vr no | ne no | ne[x\ne] | ne[x\no] (x /∈ rv(ne))
ab ::= λx. t | ab[x\ne] | ab[x\no] (x /∈ rv(ab))
no ::= vr | ne | ab

We now define the predicates abs( ), app( ), and var( ) that we use for the characterisation of
lcbv-normal forms. Let t be any term. Then, the predicate abs(t) holds if and only t = (λx. u)L
for some variable x, some term u and some substitution context L, the predicate app(t) holds
if and only t = (u s)L for some terms u, s and some substitution context L, and the predicate
var(t) holds if and only t = xL for some variable x, and some substitution context L.

Lemma 12 (Characterisation of lcbv-Normal Forms). Let t be a term. Then, t ∈ no if and
only if t is lcbv-irreducible.

Proof. We prove simultaneously the following statements:

1. t ∈ vr if and only if t is lcbv-irreducible and var(t)

2. t ∈ ne if and only if t is lcbv-irreducible and app(t)

3. t ∈ ab if and only if t is lcbv-irreducible and abs(t)

4. t ∈ no if and only if t is lcbv-irreducible

1. We first prove the only if statement, by induction on t ∈ vr:



• t = x. Then, x is lcbv-irreducible since there are no rules to reduce variables, and
by definition, var(x) trivially holds.

• t = t1[x\t2], where t1 ∈ vr and t2 ∈ ne. Applying the i.h. (1) on t1, then t1 is
lcbv-irreducible and var(t1). We thus conclude var(t).

Applying the i.h. (2) on t2, then t2 is lcbv-irreducible and app(t2), so even if
x ∈ fv(t1), t cannot lcbv-reduce by performing an lsv-step. Since t1 and t2 are
lcbv-irreducible, we conclude t to be lcbv-irreducible.

• t = t1[x\t2], where t1 ∈ vr, t2 ∈ no, and x /∈ rv(t1). Applying the i.h. (1) on t1,
then t1 is lcbv-irreducible and var(t1). We thus conclude var(t). Applying the i.h.
(4) on t2, then t2 is lcbv-irreducible.

Since x /∈ rv(t1), t cannot lcbv-reduce by performing an lsv-step by Remark 5. And
since t1 and t2 are lcbv-irreducible, we then conclude that t is lcbv-irreducible.

We now prove the if statement, by induction on t. Cases t = λx. u and t = t1 t2 do not
hold, as these terms do not satisfy var(t).

• t = x. Straightforward by definition of the grammar of vr.

• t = t1[x\t2]. Then, both t1 and t2 are lcbv-irreducible, since otherwise t would
lcbv-reduce.

Moreover, var(t1) since var(t) holds. Then, t1 ∈ vr by the i.h. (1) on t1. Also,
t2 ∈ no by the i.h. (4) on t2.

On the other hand, there are two cases: app(t2), or x /∈ rv(t1) since otherwise t2
would be of the form vL, and t would reduce by performing an lsv-step. Then, if
the former, t2 ∈ ne by the i.h. (2) on t2. Therefore, we conclude t1[x\t2] ∈ vr with
t1 ∈ vr and t2 ∈ ne. If the latter, we conclude t1[x\t2] ∈ vr with t1 ∈ vr and t2 ∈ no,
and x /∈ rv(t1).

2. We first prove the only if statement, by induction on t ∈ ne:

• t = t1 t2, where t1 ∈ vr and t2 ∈ no. Applying the i.h. (1) on t1, then t1 is
lcbv-irreducible and var(t1). Then, t does not reduce by performing a db-step.
Applying the i.h. (4) on t2, then t2 is lcbv-irreducible. We then conclude t to be
lcbv-irreducible, and by the form t has, then app(t).

• t = t1 t2, where t1 ∈ ne and t2 ∈ no. Applying the i.h. (2) on t1, then t1 is
lcbv-irreducible and app(t1). Then, t does not reduce by performing a db-step.
Applying the i.h. (4) on t2, then t2 is lcbv-irreducible. We then conclude t to be
lcbv-irreducible, and by the form t has, then app(t).

• t = t1[x\t2], where t1 ∈ ne and t2 ∈ ne. Applying the i.h. (2) on t1, then t1 is
lcbv-irreducible and app(t1). We thus conclude app(t).

Applying the i.h. (2) on t2, then t2 is lcbv-irreducible and app(t2), so even if
x ∈ fv(t1), t cannot lcbv-reduce by performing an lsv-step. And since t1 and t2 are
lcbv-irreducible, we conclude t to be lcbv-irreducible.

• t = t1[x\t2], where t1 ∈ ne, t2 ∈ no, and x /∈ rv(t1). Applying the i.h. (2) on t1,
then t1 is lcbv-irreducible and app(t1). We thus conclude app(t). Applying the i.h.
(4) on t2, then t2 is lcbv-irreducible.

Since x /∈ rv(t1), then t cannot lcbv-reduce by performing an lsv-step by Remark 5.
And since t1 and t2 are lcbv-irreducible, we then conclude that t is lcbv-irreducible.



We now prove the if statement, by induction on t. Cases t = x and t = λx. u do not hold,
as these terms do not satisfy app(t).

• t = t1 t2. Then, both t1 and t2 are lcbv-irreducible, since otherwise t would lcbv-
reduce. By the i.h. (4) on t2, then t2 ∈ no. Moreover, ¬abs(t1) since otherwise t
would reduce by performing a db-step. And it is easy to note that syntactically, t1
satisfy either var(t1) or app(t1). If the former, then t1 ∈ vr by i.h. (1). If the latter,
then t1 ∈ ne by i.h. (2). Either way, we conclude t1 t2 ∈ ne, so we are done.

• t = t1[x\t2]. Then, both t1 and t2 are lcbv-irreducible, since otherwise t would
lcbv-reduce.

Moreover, app(t1) since app(t) holds. Then, t1 ∈ ne by the i.h. (2) on t1. Also,
t2 ∈ no by the i.h. (4) on t2.

On the other hand, there are two cases: app(t2), or x /∈ rv(t1) since otherwise t2
would be of the form vL, and t would reduce by performing an lsv-step. Then, if
the former, t2 ∈ ne by the i.h. (2) on t2. Therefore, we conclude t1[x\t2] ∈ ne with
t1 ∈ ne and t2 ∈ ne. If the latter, we conclude t1[x\t2] ∈ ne with t1 ∈ ne and t2 ∈ no,
and x /∈ rv(t1).

3. We first prove the only if statement, by induction on t ∈ ab:

• t = λx. u. Then, t is lcbv-irreducible since there are no rules to reduce abstractions.
Moreover, abs(t) trivially holds.

• t = t1[x\t2], where t1 ∈ ab and t2 ∈ ne. Applying the i.h. (3) on t1, then t1
is lcbv-irreducible and abs(t1), so that we conclude abs(t). Applying the i.h. (2)
on t2, then t2 is lcbv-irreducible and app(t2). Then, t cannot lcbv-reduce by
performing an lsv-step. And since t1 and t2 are lcbv-irreducible, we conclude t to
be lcbv-irreducible.

• t = t1[x\t2], where t1 ∈ ab and t2 ∈ no and x /∈ rv(t1). Applying the i.h. (3) on t1,
then t1 is lcbv-irreducible and abs(t1), so that we conclude abs(t). Applying the i.h.
(4) on t2, then t2 is lcbv-irreducible. If t2 ∈ ne, then we proceed as the previous
case. Otherwise, if t2 ∈ vr or t2 ∈ ab, then t cannot lcbv-reduce by performing an
lsv-step by Remark 5, as x /∈ rv(t1). And since t1 and t2 are lcbv-irreducible, t must
also be lcbv-irreducible.

We now prove the if statement. Since abs(t), then t = (λx. u)L. We proceed by induction
on L.

• L = 3. Then, t = λx. u. Straightforward by definition of the grammar ab.

• L = L′[y\s]. Then, t = (λx. u)L′[y\s] and since (λx. u)L′[y\s] is lcbv-irreducible, so
is t′ = (λx. u)L′. Moreover, abs(t′) holds. Applying the i.h. (3) on t′, then t′ ∈ ab.

On the other hand, s is lcbv-irreducible since t is lcbv-irreducible. Applying the
i.h. (4) on s, then s ∈ no. We now consider two cases, depending on whether
y ∈ rv(t′). If y /∈ rv(t′), then t′ ∈ ab, and s ∈ no imply t′[y\s] = t ∈ ab. If y ∈ rv(t′),
then app(s) since otherwise t = t′[y\s] would be lcbv-irreducible. Applying the i.h.
(2) on s, we yield s ∈ ne, which implies t = t′[y\s] ∈ ab.

4. We first prove the only if statement, by induction on t ∈ no:

• t ∈ vr. Then, t is lcbv-irreducible by Item 1.



• t ∈ ne. Then, t is lcbv-irreducible by Item 2.

• t ∈ ab. Then, t is lcbv-irreducible by Item 3.

We now prove the if statement, by cases.

• If var(t), then t ∈ vr by the i.h. (1). We conclude since vr ⊆ no.

• If app(t), then t ∈ ne by the i.h. (2). We conclude since ne ⊆ no.

• If abs(t), then t ∈ ab by the i.h. (3). We conclude since ab ⊆ no.

Lemma 13 (lcbv-Normal Forms are V-Typable). Let t be a lcbv-normal form. Then, t is
V-typable.

Proof. We prove simultaneously the following statements:

1. If t ∈ vr, then for every multi-type M there exist Φ and Γ such that Φ� Γ ⊢ t : M.

2. If t ∈ ne, then for every type σ there exist Φ and Γ such that Φ� Γ ⊢ t : σ.

3. If t ∈ ab, then there exist Φ and Γ such that Φ� Γ ⊢ t : [ ].

4. If t ∈ no, then there exist Φ, Γ, and M such that Φ� Γ ⊢ t : M.

Moreover, in the four cases, for any variable x, if x /∈ rv(t), then x /∈ dom(Γ).

1. We proceed by induction on t ∈ vr.

• t = x. Let M by any multi-type. Then, we yield Φ � x : M ⊢ x : M by rule var.
So, it is sufficient to take Γ := x : M.

• t = t1[x\t2], where t1 ∈ vr and t2 ∈ ne. Let M by any multi-type. By the i.h. (1)
on t1, there exist Φ1 and Γ1 such that Φ1 �Γ1 ⊢ t1 : M. By the i.h. (2) on t2, there
exist Φ2 and Γ2 such that Φ2 � Γ2 ⊢ t2 : Γ1(x). Let us write Γ1 = Γ′

1;x : Γ1(x).
Then, applying rule es, we yield Φ� Γ′

1 + Γ2 ⊢ t1[x\t2] : M, so that Γ := Γ′
1 + Γ2.

• t = t1[x\t2], where t1 ∈ vr, t2 ∈ no, and x /∈ rv(t1). Let M by any multi-type. If
t2 ∈ ne, then we proceed as in the previous case. If t2 ∈ vr or t2 ∈ ab, then by the
i.h. (1) or (3) on t2, there exist Φ2 and Γ2 such that Φ2 � Γ2 ⊢ t2 : [ ]. By the i.h.
(1) on t1, there exist Φ1 and Γ1 such that Φ1 � Γ1 ⊢ t1 : M. Moreover, given that
x /∈ rv(t1), then x /∈ dom(Γ1) also holds by the i.h., and thus Γ1 = Γ1;x : [ ]. Then,
applying the rule es, we yield Φ� Γ1 + Γ2 ⊢ t1[x\t2] : [ ], so that Γ := Γ1 + Γ2.

2. We proceed by induction on t ∈ ne.

• t = t1 t2, where t1 ∈ vr and t2 ∈ no. Let σ be any type. By the i.h. (4) on t2, there
exist Φ2, Γ2, and M such that Φ2 � Γ2 ⊢ t2 : M. By the i.h. (1) on t1, there exist
Φ1 and Γ1 such that Φ1 � Γ1 ⊢ t1 : [M → σ]. Then, taking Γ := Γ1 + Γ2, we yield
Φ� Γ1 + Γ2 ⊢ t1 t2 : σ by rule app.

• t = t1 t2, where t1 ∈ ne and t2 ∈ no. Analogous to the previous case.

• t = t1[x\t2], where t1 ∈ ne and t2 ∈ ne. Let σ be any type. By the i.h. (2) on t1,
there exist Φ1 and Γ1 such that Φ1 � Γ1 ⊢ t1 : σ. By the i.h. (2) on t2, there exist
Φ2 and Γ2 such that Φ2 � Γ2 ⊢ t2 : Γ1(x). Let us write Γ1 = Γ′

1;x : Γ1(x). Then,
applying the rule es, we yield Φ� Γ′

1 + Γ2 ⊢ t1[x\t2] : σ, so that Γ := Γ′
1 + Γ2.



• t = t1[x\t2], where t1 ∈ ne, t2 ∈ no, and x /∈ rv(t1). Let σ be any type. If t2 ∈ ne,
then we proceed as in the previous case.

If t2 ∈ vr, then by the i.h. (2) on t1, there exist Φ1 and Γ1 such that Φ1�Γ1 ⊢ t1 : σ.
Let Γ1 = Γ′

1;x : M. By the i.h. (1) on t2, there exist Φ2 and Γ2 such that
Φ2�Γ2 ⊢ t2 : M. Then, applying the rule es, we yield Φ�Γ′

1 + Γ2 ⊢ t1[x\t2] : σ, so
that Γ := Γ′

1 + Γ2.

If t2 ∈ ab, then by the i.h. (3) on t2, there exist Φ2 and Γ2 such that Φ2�Γ2 ⊢ t2 : [ ].
By the i.h. (2) on t1, there exist Φ1 and Γ1 such that Φ1 � Γ1 ⊢ t1 : σ. Given that
x /∈ rv(t1), then x /∈ dom(Γ1), and thus Γ1 = Γ1;x : [ ]. Then, applying the rule es,
we yield Φ� Γ1 + Γ2 ⊢ t1[x\t2] : σ, so that Γ := Γ1 + Γ2.

3. We proceed by induction on t ∈ ab.

• t = λx. u. Then, the statement holds with typing rule abs applied to an empty set
of premises, i.e., Γ := ∅.

• t = t1[x\t2], where t1 ∈ ab and t2 ∈ ne. By the i.h. (3), there exist Φ1 and Γ1

such that Φ1 � Γ1 ⊢ t1 : [ ]. By the i.h. (2) on t2, there exist Φ2 and Γ2 such that
Φ2 � Γ2 ⊢ t2 : Γ1(x). Let us write Γ1 = Γ′

1;x : Γ1(x). Then, applying rule es, we
yield Φ� Γ′

1 + Γ2 ⊢ t1[x\t2] : [ ], so that Γ := Γ′
1 + Γ2.

• t = t1[x\t2], where t1 ∈ ab and t2 ∈ no and x /∈ rv(t1). If t2 ∈ ne, then we proceed
as in the previous case.

If t2 ∈ vr or t2 ∈ ab, then by the i.h. (1) or (3) on t2, there exist Φ2 and Γ2

such that Φ2 � Γ2 ⊢ t2 : [ ]. Moreover, given that x /∈ rv(t1), then x /∈ dom(Γ1) also
holds by the i.h., and thus Γ1 = Γ1;x : [ ]. Then, applying the rule es, we yield
Φ� Γ1 + Γ2 ⊢ t1[x\t2] : [ ], so that Γ := Γ1 + Γ2.

4. We proceed by induction on t ∈ no.

• t ∈ vr. By Item 1, for any type σ, there exist Φ and Γ such that Φ � Γ ⊢ t : σ, so
we are done.

• t ∈ ne. By Item 2, for any type σ, there exist Φ and Γ such that Φ � Γ ⊢ t : σ, so
we are done.

• t ∈ ab. By Item 3, there exist Φ and Γ such that Φ� Γ ⊢ t : [ ], so we are done.

Proposition 14 (Completeness of System V). Let t be a lcbv-terminating term. Then, t is
V-typable.
Proof. The proof follows from Lemmas 11 and 13.

Combining the results of soundness and completeness, we yield:

Theorem 15 (System V characterises lcbv-termination). A term is V-typable if and only it
is lcbv-terminating.

Proof. The only if direction holds by Proposition 9, while the if direction follows from Propo-
sition 14.

We already know that system V characterises vsc-termination [3, Theorem 5]. Therefore,
we conclude this section with the main result in this note, establishing a semantic equivalence
between lcbv and vsc:

Theorem 16. A term terminates in vsc if and only if it terminates in lcbv.
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