Semantic Equivalence between the Linear
Call-by-Value Calculus and the Value
Substitution Calculus
(Technical Note)

February 2025
Pablo Barenbaum!, Delia Kesner? and Mariana Milicich?f

! Universidad Nacional de Quilmes (CONICET), and Instituto de Ciencias de la Computacién, UBA
Argentina
? Université Paris Cité, CNRS, IRIF
France

Abstract

In this technical note, we show that the Value Substitution Calculus (vsc) and the Lin-
ear Call-by-Value (LCBV) are observationally equivalent. We rely on the non-idempotent
intersection type system V to establish such a equivalence, as it is already known that V-
typability characterises vsc-termination. The technical development focuses on the char-
acterisation of LCBV-termination by means of system V.

1 Preliminary Notions

In this section, we recall Accattoli and Paolini’s Value Substitution Calculus [1] and give an al-

ternative specification of the Linear Call-by-Value (LCBV) [2]. Moreover, we recall a measure for

LCBV-terms from [2] and show that substitution steps in LCBV-reduction decrease (Lemma .
We recall also the type system V [3], inspired by Ehrhard’s system [5].

1.1 Syntax

We start by giving the syntax of both calculi in this work. Given a denumerable set of variables
(z,y,z2,...), the syntax for describing the sets of terms (¢, u,...), substitution contexts
(L,L/,...), and values (v,w,...) is specified by the following grammar:

tus=x|Ax.t|tu|tlx\u] L= <O | Lz\¢] vi=x | Ax.t

The set of terms includes variables, abstractions, applications, and closures t[z\u],
representing an explicit substitution (ES) [z\u] on a term t.

Free and bound occurrences of variables are defined as usual, where free occurrences
of z in ¢t are bound in t[z\u]. Terms are considered up to a-renaming of bound variables.
Substitution contexts are lists of ESs, and we write tL for the replacement of the hole < in L
by ¢, which may capture the free variables of t. For example, if L = [x\yy][y\z] and ¢ = x, then
tL = z[z\yy][y\z]. We write t{x := u} for the (capture-avoiding) substitution of the free

T- This project has received funding from the European Union’s Horizon 2020 research and inmovation
programme under the Marie Sktodowska-Curie grant agreement No 945332.

occurrences of x by w in t. The sets of free variables of a term (fv(t)) is defined as expected.
The set of reachable variables of a term ¢ is written rv(t) and defined as:

rv(z) = {x} rv(Az.t) = 0
rv(tu) = rv(t) Urv(u) rv(tfz\u]) = (rv(®) \ {z}) Urv(u)
Evaluation contexts used in both calculi are defined by the following grammar:
Woa=<C | We | tW | Wa\t] | t[z\W]

And we write W(t) for the term resulting from replacing the hole < in W by .

1.2 The Value Substitution Calculus

Reduction in the Value Substitution Calculus (vsc) is defined by the two following rewriting
rules, closed by arbitrary weak evaluation contexts:

(Az.t)Lu —gp tlx\u]L t[z\vL] =4 t{z := v}L

The db-rule (“distant beta”) is a 8-like rule that applies an abstraction Az.t¢ to an argument
u, creating an ES [z\u] that binds z to the argument u. This rule acts at a distance, meaning
an arbitrary list of ESs (L) may be in between the abstraction and its argument. For example,
Az Ay. z) tu —gp (Ay.) [2\t] v —ab z[y\u][z\t].

The sv-rule (“substitution of values”) fires an ES when « is bound to a value v surrounded
by a context L. This rule performs the meta-level substitution of = by v, potentially erasing or
producing many copies of v, while it extrudes the substitution context L, which must remain
shared. For example, the step x[y\z] —e z{y := 2} = x results in the erasure of the value
z, while (z z)[z\(Ay. 2)[2\t]] =sv ((Ay. 2) Ay. 2)[2\t] produces two copies of the value Ay. z but
keeps a single copy of the ES [z\t]. Note that a term like z[x\y y] is in VSC-normal form because
yy is not a value.

1.3 The Linear Call-by-Value Calculus

We start by giving an alternative specification of the LCBV calculus (w.r.t. [2]) using a more
conventional notation. Reduction in LCBYV is defined by the two following rewriting rules, closed
by arbitrary weak evaluation contexts that is:

(Az.t)Lu —gp t[x\u]L W(z)[x\vL] =5y W(v)[z\v]L
We say a term t is LCBV-terminating if there is no infinite LCBV-reduction sequence starting
at t.
1.3.1 Term measures

Given a term t and a variable x, the potential number of occurences of x in ¢, written
#.(t), is a natural number defined as 0 if ¢ fv(t), and otherwise is defined recursively as
follows:

#au () 1 H#o(tu) = Fo(t) + Fa(u)
#a(Ay-t) 0 #a(tly\u]) = #a(t) +#a(u) - (1+#4(2))

The measure of a term ¢ is written #(t) and defined as:

#x) = 0 #tu) = () + #(u)
#Ae.t) = 0 #tle\ul) =) + #a(t) + #(w) - (14 #2(1))

Remark 1. Let W be a weak evaluation context, = be any variable and v be any value. Then,
#(W(z)) = #(v)).

Let ¢ : Var = N. Given a substitution context L, the potential number of occurrences
of z in L under ¢, written #£(L), is recursively defined as follows:

#5(0) = p(z) e (L'[y\t]) = #L (L) + #.(t) - (1 + 45 (L))
We define the measure of L under ¢, written #% (L), as follows:
#2(0) =0 #2(U'[2\t]) = 2 (L) + #2 (L) + #(1) - (1 +#2(L))
Lemma 2. Ift g t, then #(t) > #(t').

Proof. We proceed by induction on t —5, t'. We only show the base case, that is, when the
surrounding evaluation context is empty. The inductive cases are straightforward.
Then, ¢ = W{z)[z\vL] —e W(v)[z\v]L =¥/, so that

#(W(z)[x\ovL]) = #W(x)) + #, (W(x)) + #(vL) - (1 + F#.(W(z)))
= #(W(x)) + #2 (W) + (#(v) + #7° (L)) - (1 + #.(W(z))) (By [2, Lemma C.4 (2)])
= #W(v)) + #.(W(x)) + #(v) - (1 + #o(W(z))) + #7 (L) - (1 4+ #2(W(z))) (By Remark
= #(W(v)) + #o(W(z)) + #(v) - (1 + #2(W(z))) + #7 (L) - (L + (#(W(v)) + 1))
> #(W(v)) + #o(W(@)) + #(v) - (1+ #2(W(2))) + #74 (L) - (1 + #2(W(v)))
> #(W)) + #(W(z)) + #(v) - (1 + #2(W(z))) + #FI(L) - (By [2, Lemma C.5 (2)])
= #W(v)) + (FHe(W(v) + 1) + #(v) - (1 + (F#=(W(v)) + 1)) + #FH (L)
> #(W()) + #2(W(v)) + #(v) - (1 + #2(W(v))) + #F I (L)
= #(W(v)[z\v]) + #PEAI(L)
= #(W(v)[z\v]L) (By [2 Lemma C.4 (2)])
O
1.4 The Type System V
Let us consider a set of base types denoted by . The grammar of types is given by:
(Types) o,7 = a|M|M—=o
(Multi-Types) M,N == [oi]er where [is a finite set
Typing environments I', A, ... are functions mapping variables to multi-types. The do-

main of an environment I' is dom(T") := {z | T'(z) # []}, and @ denotes the empty typing
environment, mapping each variable to [].

The union of multi-types, written M; + Mas, is a multiset of types defined as expected,
where [] is the neutral element. For typing environments (T';);cr, we write +;¢;; for the
environment mapping each variable x to +;¢;I';(z), where I' + A and T' +;¢ 5 A; are particular
instances of the general notation. When dom(T') Ndom(A) = @) we write I'; A instead of T + A
to emphasise that the domains of I" and A are disjoint. As a consequence, I';z : [] is identical
toT.

Type assumptions are denoted x : M, meaning that the environment assigns M to z,
and [] to any other variable.

Typing judgements in system V are of the form I' - ¢ : o, where I is a type environment,
t is a term, and o is a type.
The typing rules of system V are:

Tz My Et:0)ier

——F VAR ABS
- MFx: M +i61ri|_)\33-t:[Mi_>Ui]iel
'ct:M—o] AbFu:M e MkEt:o AFu:M
APP ES
F'+AFtu:o F+AFtz\u]:o

We write @ >T' ¢ : o to denote there is a (typing) derivation ® in system V concluding
with the typing judgement I' -t : . We say a term ¢ is V-typable if there is a derivation for

typing t.
Lemma 3 (Relevance). If ®>TF¢: T, then rv(t) C dom(I') C fv(?).
Proof. By a straightforward induction on typing derivations. O

Let ® be a type derivation with conclusion I"' - ¢ : 7. Then, the measure of ® is noted by
meas (P), and is a pair of natural numbers given by (sz (®), #(t)), where sz (®) is recursively
defined as follows:

. 5z <MVAR> =71

(Pi)ier
ABS | = |1) D,
=z (F}_)\Cﬂt [ai]iel | |+21€ISZ()

P Dy
—— ApP | =1 P P
.SZ<F}—tu:T) + 5z (D) + sz (P2)

® sz (MES> =145z (1) + sz (D) if x € rv(t)
Dk tlz\u] : T

! 2 S| =sz(P1) + sz (P2) therwi
7}3 f—
sz | Tp Ha] sz (®1) + sz (P2 otherwise

2 Characterisation of Icbv-termination through V-typability

In this section, we show that V-typability characterises LCBV-termination. To do so, we prove
that the type system V is sound and complete with respect to LCBv-reduction.

2.1 Soundness

We start addressing the soundness of system V with respect to the LCBV calculus, which states
that V-typability implies LCBV-termination. This result rely on a subject reduction property
based in turn on a substitution lemma.

Remark 4. & >TF v : [], then sz (P) =0.
Remark 5. Let t be a term. Then, ¢t = W(z) if and only if = € rv(¢).

Lemma 6 (Splitting/Merging). The following are equivalent:
1. o T'Fv: My + My

2. There exist typing derivations ®1, P9 and typing contexts 'y, Ty such that P> F v : My,
and ®o>To b v: My, and T =T + T's.

Moreover, sz (D) = sz (®1) + sz (P3)
Proof. See [4, Lemmas 4.17 and 4.20]. O

Lemma 7 (Partial Substitution). Let x be a variable, v be a value such that ¢ fv(v), and
let yipy > T2 : M EW(z) : 0. Then, there exists a splitting M = My + My such that, for all
O, > AFv: M, there exists a typing derivation Oy, >T + Ajz: My EW(v) : 0. Moreover,
sz (Py(y)) = 52 (Py(zy) + 52 (Py) — M.

Proof. We proceed by induction on W, showing only the cases W = & and W = Wy ¢, as the
remaining cases can be shown reasoning in a similar way.

e W= O. Then, Wz) = 2 and W(v) = v. The typing derivation is of the form @y, >
iz : ME:o, so necessarily I' = () and 0 = M, as ®y,y can only be obtained from

the axiom VAR. We take M; := M and M,y := [], yielding the splitting M = M + [],
and A = A;x : [] by definition. So we are done, since for any ®, > A F v : M we yield
(I)w(v) = ®,.

Moreover, sz (Py(yy) = 52 () = M|+ 52 (®,) — M| = sz (Pyay) + 52 (D) — [M].
e W="W;t. Then, &y, is of the form:

Dy oy DLz My FW(z): [N = 0] $>Toz: Myt N

APP
[y 4Tz (M 4+ My EW(z)t:o

where I' = I'y +- T’y and M = M| + M5. By the i.h. on ®y, (), there exists a splitting
M) = My + Miys such that for all &, > At v: My there exists a typing derivation
Pyypy > T1 4 Asx : Myg - W(v) : o such that sz (By, () = 52 (Py, (2)) + 52 (Dy) — [Mu1].
Applying the rule APP with ®y, () and ®; as premises, we build the derivation @y, >
I+ A4Toz: Mg+ My EWi{v)t: T, where we let My := My and My := Mz +
M. Note that Ty + A+ Ty =T 4+ A.

Moreover, sz (<I>w<1,>) =1+sz (<I>w1 (1,>) +8z(Py) =ip 1+s2z (<I>w1 <x>) +s5z(P,) — | Mi1|+
sz (¥;) = sz (Py(y)) + 52 (D) — M.

e W=W;[y\t]. Then, we can assume y # = by a-conversion, and Py, is of the form

Dy, oy DTz My LEW(z):0 O >Toyz: Mybt: L

ES
[y +Toja s (M) + M) Fuy(z)y\t] : o

where I' =T'; + T's and M = M| + M.

Since = ¢ fv(v), we can then apply the i.h. on Wy, yielding the splitting M} =
Mi; + Myo such that for all &, > AFwv: Mjp; there exists a typing derivation

Py oy > (T3 : L) +A);z: Mg EWi(v) : 0. Moreover, sz (CI)W1<U>) = sz ((I)w1<z>) +
sz (®y) — M.

Note that y ¢ fv(v) by a-conversion, thus y ¢ dom(A) by Lemma |3) so we can write
(T;y: L)+ A)as (T +A);y: L

Applying the rule ES with @y, () and ®; as premises, we build the derivation @y, >
Iy 4T+ Az : Myg + M E W {v)[y\t] : o, where we let M7 := Mj; and Mo := Mo+
M. Note that Ty + A+ Ty =T + A,

Moreover, if y € rv(W(z)), then in particular y € rv(W(z)), since we can assume y ¢ fv(t)
by a-conversion. Then, we yield y € rv(W;(v)), and we obtain the size of ®y,, as follows:
5z (Putw)) =yenin () 1 +52 (Puyy) + 52 (1)

=in 1+sz (<I>w1<z>) + sz (®,) — [Mi1| + sz (Dy)

=yen(i () 52 (Puizy) + 52 (D) — M1
Otherwise, y ¢ rv(W(x)), so in particular y ¢ rv(Wi(x)). Then, we yield y ¢ rv(W1(v)), and
we obtain the size of @y, as follows:

52 (Pugw)) =ygn(n o)) 52 (Puy () + 52 (2)
=ih. 52 (Puy()) +52(Py) — [M| + 52 ()
=ygriin () 52 (Puiz)) + 52 (P0) — [M1]

O

Lemma 8 (Weighted Subject Reduction). Let ®>T +t: 0 andt —cpy . Then, there exists
a derivation ® such that ® > Tt :0 and moreover sz (®) > sz (P') and meas (D) >yex
meas ().

Proof. By induction on t —; ¢y t'. We only show the base case t —, t/, as the case t —vgp t' is
analogous to [4, Lemma 3.4]. Moreover, the inductive cases are straightforward.
Let t = W(x)[z\vL] and ¢’ = W(v)[z\v]L. We proceed by induction on L.

e L = <. Then, ¢ has the form:

Qypy DTz MEW(E) 0 @,>Tokv: M

I+ Ty Fw(x)[z\v] : o 8

where I' = 1"y + I's.

Let M = M; + M, be the splitting obtained by Lemma m on ®y,y. Then, by Lemma@
on ®,, there exist typing derivations @11) >I91 Fov: M;and <I)12) > I'99 v : My such that
sz (®,) = sz () + sz (P}).

Applying Lemma on Py, and ®l we yield a derivation Dyry >
(T1+To1);2 : Mo FW(v) : 0 and sz (<I>w<v>) = sz ((I)w<z)) + sz() |My].

Thus, we conclude by building the following derivation ®:

Dyroy > (D1 +Ta1)jz : Mo F W) 1o @2 >Ton kv Mo -
I+ Ty Fww)a\v]: o

IWhere lex stands for the lexicographical order, as the size of a typing derivation is a pair of natural numbers.

To calculate sz (®) and sz (®’), we analyse two cases, and considering x € rv(W(z))
by Remark

— If x € rv(W(v)), then

— If ¢ rv(W(v)), then

sz () =sen(i(z)) 1+ 52 (Pury) + 52 (D)
—1—|—sz(<I>w)—i—sz((I))+sz(<I>2)
> 5z (Py(py) + 52 () — [My| + sz (D)
= sz (CI)W) + sz (<I>2)
=sgr(i(v)) 52 (P

We conclude since sz (®) > sz (®') and #(¢) > #(t') (Lemma [2) imply meas (D) >1ex
meas (®').

L =1'[y\s]. Then, ® has the form:

O, >AYy NEFL M O ,>Agks: N
Bypy >z MEW(z) : 0 A1+ Ag Fol/[y\s] : M
I+ Ap + Ag FW(z)[z\vL' [y\s]] : &

ES

ES

Where I' = IV + A; + Ay. Moreover, we can assume y ¢ fv(W(z)) by a-conversion.
We now build the following derivation W¥:

®w<I>DF/IE'MFw<> UL/[>A15y NFUL M ES
I+ Ay : N) Fu(z)[z\ol] : o

Moreover, W(x)[z\vL'] —s W(v)[z\v]L'. Then, we can apply the i.h., yielding ¥’ such that
U >T+ (A y: N) EW(w)[z\v]L' : ¢ and moreover sz (V) > sz (V') and meas (V) >4y
meas (U').

Then, we build ®' as follows:

U eT'+ (Apy: N)FW)z\vl' : 0 @Ak s: N
I+ Ay + Ag F W) [z\v]L' [y\s] : &

ES

Note that we can assume y ¢ dom(I") by a-conversion and Lemma

To calculate sz (®) and sz (®’), we analyse two cases, and considering z € rv(W(z))
by Remark [f]

— Ify € rv(W(v)[z\v]L'), recall that y ¢ fv(W(x)) by a-conversion, so y ¢ rv(W(x)). Then

sz ((P) =zerv(W(z)),yerv(vl’) 1+ sz ((I)w(r)) +1+sz ((I)UL') + sz ((I)S)

=1+ sz(V)+ sz (PDs)

>in. 1452 (V) + 52 (P)

=yerv(W(v)[z\v]L') S2 (q)/)

— If y ¢ rv(W{v)[x\v]L'), then in particular y ¢ rv(vL'). Thus
sz ((I)) =zerv(W(z)),yérv(vl’) 1+ sz ((I)w(m)) + sz ((I)uL’) + sz ((I)S)

=35z (V) + sz (Dy)
>in 8z (V') + sz ()
=ygn(i(o)[o\ol) 52 (2)

We conclude since sz (®) > sz (®') and #(t) > #(t') (Lemma [2) imply meas () >1ex
meas (D).
O

Proposition 9 (Soundness of System U). Let t be a V-typable term. Then, t is LCBV-
terminating.

Proof. Straightforward by Lemma [§] O

2.2 Completeness

We now prove the completeness of system)V with respect to the LCBV calculus, which states
that LOBV-termination implies V-typability. The proof for this result follows well-understood
techniques, requiring a subject expansion property based in turn on an anti-partial substitution
lemma.

Lemma 10 (Anti-Partial Substitution). Let @y, >I';2: M EW(v) : 0, where x ¢ fv(v). Then,
there exist typing derivations ®yy and @, typing environments Uy, and A, and a multi-type
N satisfying:

1 Qyipy > Tyyiz - M+NFW(z) o
2., > AFv:N
3. T =Ty + A
Moreover, sz (Pyqy) = sz (Pyry) + sz () — [NV].

Proof. By induction on W. We detail the cases when W = &, W =Wy ¢, and W = Wy[z\¢], as all
the remaining inductive cases are similar, and follow easily from the i.h..

e W= . Then, W(v) = v and W(x) = . The typing derivation is of the form ®y, >
;2 : MEv:o,so it is the case that o is a multi-type, i.e., 0 = N. Since z ¢ fv(v), then
necessarily M = [] by Lemma We take I'y(py := 0, A:=T, and N so that ®, := Py,
and moreover ®yi,y > x : N F 2 : N by rule VAR.

Furthermore, sz (Py(y) = sz (o) = [N |+ 52 (Dy) — |N| = sz (Pyay) + 52 (0) — [N

e W=W;t. Then, the typing derivation is of the form

Cy oy >z My EW ()i [L—=0] &>Toz: Mokt L
Iy +F2;$:(M1+M2) |_W1<U>t

APP

where I' =T +T's and M = M; + Ms.
Since = ¢ fv(v), we can then apply the i.h. on Wy, yielding typing derivations ®y, (,) and
®,, typing environments I'y, () and A, and a multi-type N satisfying:

L1 @y,) > Ty ys 20 (My +N) EWi(z) 2 [£ — 0]

1.2 o, Al w: N

1.3 Ty =Ty + A

And moreover, sz (®y, () = 5z (Py, () + 52 (®y) — |N]. Then, taking the typing envi-
ronments [y = Ty, (z) + T2 and A, and the type N, we yield the following:

L. @yipy > Tyay; 2 (M +N) EWi(z)t: o, by applying rule APP to ®y, (,) and the con-
clusion of <I>t

2. D, >AFV N
3T =T1+Ty=in Tyy@) +A+T2 =Ty +A

And moreover, sz (<I>w< >) =1+sz ((I)w1< >) + 582 (P) =5 1+ 82 ((I>w1<z>) + 8z (P) +
sz (®,) — [N| = sz (Pyry) + 52 (B0) — |N].

O

Lemma 11 (Weighted Subject Expansion). Lett —cpy t' and ®'>T ' : 0. Then, there exists
a typing derivation ® such that ®>T F t: o and moreover sz (®) > sz (') and meas (D) >1ey
meas ().

Proof. By induction on t —cpy t'.
We only show the base case t —5, ', as the reasoning for the base case t —qp ¢’ is analogous
to the one in Lemma [8) and inductive cases are straightforward.

o Let t = W(z)[x\vL] =5 W(w)[z\v]L = ¢'. We proceed by induction on L.
— L = <. Then, @’ has the form:

Dy >l MEW(w) o &y >Tokv: M
Iy + T FW)[x\v] : T

ES

where I' =1"7 + I's.
We can assume by a-conversion that z ¢ fv(v). By Lemma on Dy, We yield
typing derivations ®y(,) and ®,, typing environments I'y(,y and A, and a multi-type
N satisfying

1. @yrpy > Dyggay z:(M+N)FW(Z) 0o

2. o, >AFw: N

3. It = Fw@) + A

Moreover, sz ((I);m)) = sz (Py(z)) + 52 (P,) — |[N]. We can apply Lemma 6] to @,
and @,, yielding ®//>T's + A+ v : M+ N. Moreover, sz (?!)) = sz (P) + sz (D).
Then, we build ® as follows:

(I)<>I>Fw (M+N)|_W<> o (I)HI>F2+A|_U M+N
F<)+F2+AFW< >[T\’U}

By Remark 5] = € rv(W(z)), and consider two cases, depending on whether z € rv(W).
« If x € rv(W), then

) (‘I>')
> 1+ sz (Pygy)) + 52 () + sz(") — N
=1+sz (@"J(U)) + sz (P))
=zcrv(W) SZ ((I)/)

% Otherwise, x ¢ rv(W), then
52 (®) =zenuz)) 1 +52 (Pu(y) + 52 (P7)
=1+ sz (Pyy) +52(Py) + 52 (D))
> 1+ sz (Pygy)) +52(Py) + 52 (P),) — |V
> sz (‘I)Cuw) + 52 ()
=z¢rv(W) SZ ((I)/)

We conclude since sz (®) > sz (P’) in the first case, and sz (®) > sz (P’) in the
second case. Moreover, #(t) > #(t') by Lemma [2] so meas (®) >1ox meas (¢').

— L =L'[y\s]. Then, &' has the form:

O >y LEWRz\WL 0 @ >Taks: L
[y + o F W) [z\v]L [y\s] : o

ES

Where I' = T'; 4+ T's. Moreover, we can assume y ¢ fv(W(v)) by a-conversion.

Since W(z)[x\vL'] —5y W(v)[z\v]L', we can then apply the i.h. on @}, yielding
®; such that & > I'y;y: L F W(z)[x\vLl'] : ¢ and moreover, sz (®;) > sz (P)) and
meas (1) >1ey meas (D).

The conclusion of ®; can only be obtained as follows:

CI)w<x>>F11;x:N}—w<x>:U G, >Tigy: LEVL N
(Fll + Flg); Yy ,C l_ W<£L’> [x\UL/] Hye)

ES

where I'y =T'1; +T'12. Since y ¢ fv(W(v)) and = # y by a-conversion, we can assume
that y ¢ fv(W(z)) as well. Therefore, y ¢ dom(T'11) by Lemma [3]

We then build ® as follows:
G >Tiojy: LEOL N B p>Toks: L
(DW<I>DF117TN}’W<$> O F12+F2F0Ll[y\8} :N
11 + Ty + Do W) [z \oL'[y\s]] : o

ES
ES

Moreover, to calculate sz (®), we consider two cases depending on whether y €
rv(W(v)[z\v]L).

x If y € rv(W(v)[z\v]L'), then in particular, y € rv(vL') and thus

sz ((I)) —zerv(W(z)),yerv(vl’) 1+ sz ((I)w(z)) +1+sz ((I)UL’) + sz ((I);)

=zerv(W(z)) 1+ sz ((bl) + sz ((I)is)

>in 1+s5z(®)) +s52(9))

=yen(i(v)z\v]L) 52 (D)

* Otherwise, y ¢ rv(W(v)[xz\v]L'), so in particular, y ¢ rv(vL'), and thus
52 (P®) =sen(i(a)) werv(r) 1+ 82 (Pymy) + 52 (Do) + 52 (PY)

=zerv(W(z)) 1+sz ((I)l) +sz ((I);)
>in 148z (9)) + sz (P))
>y¢rvu(v)z\o]L) SZ (P)

We conclude since sz (®) > sz (®’) in the first case, and sz (®) > sz (®’) in the
second case. Moreover, #(t) > #(t') by Lemma [2] so meas (®) >1¢x meas (97).

O

We establish a lemma showing that LCBV-normal forms are typable to prove completeness
of system V with respect to LCBV evaluation. For that, we first define a grammar of terms
characterising LCBV-normal forms.

vr == x| vr[z\ne]| vr[z\no] (z ¢ rv(vr))

ne = vrno|neno |nel[zr\ne]|ne[zr\no] (z & rv(ne))
ab =)\x.|t | a|b[ac\ne] | ab[z\no| (x ¢ rv(ab))

no = vVr|ne|ab

We now define the predicates abs(_), app(_), and var(_) that we use for the characterisation of
LeBV-normal forms. Let ¢ be any term. Then, the predicate abs(t) holds if and only ¢t = (Ax. u)L
for some variable x, some term u and some substitution context L, the predicate app(t) holds
if and only ¢t = (us)L for some terms u, s and some substitution context L, and the predicate
var(t) holds if and only ¢ = zL for some variable =, and some substitution context L.

Lemma 12 (Characterisation of LcBV-Normal Forms). Let ¢t be a term. Then, t € no if and
only if t is LCBV-irreducible.

Proof. We prove simultaneously the following statements:
1. t € vr if and only if ¢ is LcBV-irreducible and var(t)
2. t € ne if and only if ¢ is LCBV-irreducible and app(t)
3. t € ab if and only if ¢ is LcBV-irreducible and abs(t)

4. t € no if and only if ¢ is LCcBV-irreducible

1. We first prove the only if statement, by induction on t € vr:

e t = x. Then, = is LCBV-irreducible since there are no rules to reduce variables, and
by definition, var(x) trivially holds.

e t = t1[z\t2], where t; € vr and t2 € ne. Applying the i.h. on ti, then ¢ is
LCBV-irreducible and var(t;). We thus conclude var(t).
Applying the i.h. on ty, then ty is LCBV-irreducible and app(ts), so even if
x € fv(ty), t cannot LCBV-reduce by performing an Isv-step. Since t; and ty are
LCBV-irreducible, we conclude ¢ to be LCBV-irreducible.

o t = ty[x\ta], where t; € vr, to € no, and = ¢ rv(t1). Applying the i.h. on t,
then ¢; is LeBV-irreducible and var(t1). We thus conclude var(t). Applying the i.h.
(4) on t9, then ty is LCBV-irreducible.

Since x ¢ rv(t1), t cannot LCBV-reduce by performing an Isv-step by Remark 5 And
since t; and to are LCBV-irreducible, we then conclude that ¢ is LCBV-irreducible.

We now prove the if statement, by induction on ¢t. Cases t = Az.u and ¢t = t1 t2 do not
hold, as these terms do not satisfy var(t).

e ¢t = x. Straightforward by definition of the grammar of vr.

e t = t1[z\t2]. Then, both ¢; and ¢, are LCBV-irreducible, since otherwise ¢ would
LCBV-reduce.
Moreover, var(t;) since var(t) holds. Then, ¢; € vr by the i.h. on t;. Also,
to € no by the .h. on to.
On the other hand, there are two cases: app(tz), or x ¢ rv(t;) since otherwise o
would be of the form vL, and ¢ would reduce by performing an Isv-step. Then, if
the former, t5 € ne by the i.h. on ty. Therefore, we conclude t1[z\t2] € vr with
t1 € vr and t2 € ne. If the latter, we conclude ¢; [x\t3] € vr with ¢; € vr and ¢3 € no,
and = ¢ rv(ty).

2. We first prove the only if statement, by induction on ¢ € ne:

e { = t1ty, where t; € vr and t; € no. Applying the i.h. on ty, then t; is
LCBV-irreducible and var(t1). Then, ¢ does not reduce by performing a db-step.
Applying the i.h. on to, then t5 is LCBV-irreducible. We then conclude t to be
LCBV-irreducible, and by the form ¢ has, then app(¢).

e { = t1ty, where t;1 € ne and t; € no. Applying the i.h. on t1, then t; is
LCBV-irreducible and app(t;). Then, t does not reduce by performing a db-step.
Applying the i.h. on to, then t5 is LCBV-irreducible. We then conclude t to be
LCBV-irreducible, and by the form ¢ has, then app(¢).

e t = t1[x\t2], where {; € ne and ty € ne. Applying the i.h. on t1, then ¢ is
LCBV-irreducible and app(t1). We thus conclude app(t).

Applying the i.h. on tg, then ty is LCBV-irreducible and app(ts2), so even if
x € fv(t1), t cannot LCBV-reduce by performing an Isv-step. And since ¢; and to are
LCBV-irreducible, we conclude t to be LcBV-irreducible.

o ¢t = t1[z\t2], where t; € ne, t2 € no, and = ¢ rv(¢1). Applying the i.h. on ty,
then ¢; is LcBV-irreducible and app(t1). We thus conclude app(t). Applying the i.h.
on tg, then t5 is LCBV-irreducible.

Since @ ¢ rv(t1), then ¢ cannot LCBV-reduce by performing an Isv-step by Remark [5]
And since t1 and t5 are LCBV-irreducible, we then conclude that ¢ is LOBV-irreducible.

We now prove the if statement, by induction on ¢t. Cases ¢t = z and t = Ax. v do not hold,
as these terms do not satisfy app(¢).

e t =ty ty. Then, both t; and t5 are LCBV-irreducible, since otherwise ¢t would LCBV-
reduce. By the i.h. on to, then to € no. Moreover, —abs(¢1) since otherwise ¢
would reduce by performing a db-step. And it is easy to note that syntactically, ¢;
satisfy either var(¢1) or app(t1). If the former, then ¢; € vr by i.h. . If the latter,
then t; € ne by i.h. . Either way, we conclude t; to € ne, so we are done.

e t = t1[z\t2]. Then, both ¢; and ¢, are LCBV-irreducible, since otherwise ¢ would
LCBV-reduce.

Moreover, app(t;) since app(t) holds. Then, ¢; € ne by the i.h. on ti. Also,
to € no by the i.h. on to.

On the other hand, there are two cases: app(tz), or x ¢ rv(t1) since otherwise to
would be of the form vL, and ¢t would reduce by performing an Isv-step. Then, if
the former, to € ne by the i.h. on ty. Therefore, we conclude t1[z\t2] € ne with
t; € ne and t5 € ne. If the latter, we conclude t; [x\¢3] € ne with ¢; € ne and 5 € no,
and = & rv(ty).

3. We first prove the only if statement, by induction on t € ab:

e t = Az.u. Then, t is LCBV-irreducible since there are no rules to reduce abstractions.
Moreover, abs(t) trivially holds.

o t = t1[x\t2], where t; € ab and ty € ne. Applying the i.h. (3) on ¢1, then
is LCBV-irreducible and abs(¢1), so that we conclude abs(¢). Applying the i.h.
on to, then to is LCBv-irreducible and app(t2). Then, ¢ cannot LCBV-reduce by
performing an Isv-step. And since t; and t; are LCBV-irreducible, we conclude ¢ to
be LcBv-irreducible.

o t = ty[x\t2], where ¢; € ab and ¢3 € no and x ¢ rv(¢1). Applying the i.h. on ty,
then t; is LCBV-irreducible and abs(t1), so that we conclude abs(t). Applying the i.h.
(4) on t9, then to is LCBV-irreducible. If t5 € ne, then we proceed as the previous
case. Otherwise, if t3 € vr or t5 € ab, then ¢ cannot LCBV-reduce by performing an
Isv-step by Remark 5] as ¢ rv(t1). And since ¢; and ¢, are LCBV-irreducible, ¢ must
also be LCBV-irreducible.

We now prove the if statement. Since abs(t), then ¢ = (Az. u)L. We proceed by induction
on L.

e L = <. Then, t = Az.u. Straightforward by definition of the grammar ab.

e L =L'[y\s]. Then, t = (Az.u)L'[y\s] and since (Az.u)L'[y\s] is LCBV-irreducible, so
is ' = (Az.u)L'. Moreover, abs(t') holds. Applying the i.h. on t/, then t’ € ab.
On the other hand, s is LOBV-irreducible since t is LCBV-irreducible. Applying the
i.h. on s, then s € no. We now consider two cases, depending on whether
yer(t). If y ¢ rv(t'), then ¢’ € ab, and s € no imply ¢'[y\s] =t € ab. If y € rv(t’),
then app(s) since otherwise ¢t = '[y\s] would be LCBV-irreducible. Applying the i.h.
on s, we yield s € ne, which implies t = t'[y\s] € ab.

4. We first prove the only if statement, by induction on ¢ € no:

e ¢ € vr. Then, ¢ is LCBV-irreducible by Item [I]

e ¢ € ne. Then, ¢ is LCBV-irreducible by Item [2]
e { € ab. Then, ¢ is LCBV-irreducible by Item [3]

We now prove the if statement, by cases.

e If var(t), then ¢ € vr by the i.h. (I). We conclude since vr C no.
e If app(t), then ¢t € ne by the i.h. . We conclude since ne C no.
e If abs(t), then ¢ € ab by the i.h. ([3). We conclude since ab C no.

O

Lemma 13 (LcBvV-Normal Forms are V-Typable). Let t be a LCBV-normal form. Then, t is
V-typable.

Proof. We prove simultaneously the following statements:

1. If t € vr, then for every multi-type M there exist ® and I' such that >TF¢: M.
If t € ne, then for every type o there exist ® and I" such that ?>T'F ¢ : 0.
If ¢t € ab, then there exist ® and I' such that @ >TF¢: [].

L

If t € no, then there exist ®, I', and M such that d>1TF¢: M.
Moreover, in the four cases, for any variable z, if « ¢ rv(t), then = ¢ dom(T).
1. We proceed by induction on t € vr.

e t = x. Let M by any multi-type. Then, we yield ® > 2 : M x : M by rule VAR.
So, it is sufficient to take I' := x : M.

o { = t1[x\t2], where t; € vr and ty € ne. Let M by any multi-type. By the i.h.
on t1, there exist ®; and I'; such that ®; >T'1 - ¢; : M. By the i.h. on ty, there
exist @5 and T'y such that o > Ty Fto : Ty(z). Let us write I'y = T2 @ Ty(x).
Then, applying rule ES, we yield ® >TY + T's F ¢1[z\t2] : M, so that T' :=T" + T's.

o ¢t = ti[x\ta], where t; € vr, ts € no, and x ¢ rv(t1). Let M by any multi-type. If
to € ne, then we proceed as in the previous case. If t5 € vr or t; € ab, then by the
i.h. or on to, there exist @5 and 'y such that ®o > T's Fto: [|. By the i.h.
on t1, there exist ®; and I'; such that ®; >1I'; ¢ : M. Moreover, given that
x & rv(ty), then z ¢ dom(T'y) also holds by the i.h., and thus 'y = T'y;2 : []. Then,
applying the rule ES, we yield ® > T'y + T's F ¢1[z\t2] : [], so that T':=Ty + T's.

2. We proceed by induction on ¢ € ne.

e t =1 t9, where t; € vr and t; € no. Let o be any type. By the i.h. on to, there
exist @5, I's, and M such that &5 > I's -ty : M. By the i.h. on t1, there exist
®; and T’y such that ®; > T’y F#1 : [M — o]. Then, taking T :=T'; + I'y, we yield
®r>T'1 4+ T's - tyts: o by rule APP.

e { =11 ty, where t; € ne and t2 € no. Analogous to the previous case.

e ¢t = t1[x\t2], where ¢; € ne and ¢y € ne. Let o be any type. By the i.h. on t,
there exist ®; and I'y such that ®; > Ty - ¢; : 0. By the i.h. on to, there exist
®y and 'y such that @5 > Ty Ftg : Ty (2). Let us write I'y = ;2 : T'y(x). Then,
applying the rule Es, we yield ® > T} 4+ T's F t1[2x\t2] : 0, so that T':=T% + T's.

o t = ty[x\l2], where t; € ne, 2 € no, and x ¢ rv(t1). Let o be any type. If t5 € ne,
then we proceed as in the previous case.
If t, € vr, then by the i.h. on t1, there exist ®; and I'y such that &, T4 ¢ : 0.
Let I'y = I'j;2 : M. By the i.h. on to, there exist ®5 and I's such that
Oy 1>T'9 F ¢ : M. Then, applying the rule ES, we yield ® >T + T'a F #1[z\t2] : o, so
that I' :=T"] + T's.
If t5 € ab, then by the i.h. on tg, there exist @5 and 'y such that Po>To Fto : [].
By the i.h. on ty, there exist ®; and I'y such that &, >1I'1 - ¢; : 0. Given that
x ¢ rv(ty), then z ¢ dom(T'y), and thus I'y = T'y;2 : []. Then, applying the rule Es,
we yield ® > T’y + 'y - t1[x\to] : 0, so that T' := Ty 4+ T's.

3. We proceed by induction on t € ab.

e ¢t = Ax.u. Then, the statement holds with typing rule ABS applied to an empty set
of premises, i.e., I' := ().

e t = ty[x\t2], where t; € ab and t2 € ne. By the i.h. , there exist ®; and I'y
such that ®; > T'; F¢1 : []. By the i.h. on tg, there exist ®5 and I's such that
Oy > Ty bty : Ti(x). Let us write I'y = I'j;2 : Ty (). Then, applying rule ES, we
yield ® > T + 'y - t1[z\to] : [], so that ' := T + T's.

o t = t1[x\t2], where ¢; € ab and t3 € no and x ¢ rv(t1). If t5 € ne, then we proceed

as in the previous case.
If t5 € vr or to € ab, then by the i.h. or on to, there exist ®5 and I'y
such that ®o > Ty - t9 : []. Moreover, given that x ¢ rv(t1), then « ¢ dom(I';) also
holds by the i.h., and thus T'y = T'j;2 : []. Then, applying the rule ES, we yield
O >T + Ty b tyx\te] : [], so that T' ;=T 4+ I's.

4. We proceed by induction on t € no.

e ¢t € vr. By Item [I} for any type o, there exist ® and I" such that ®>T'F¢: o, so
we are done.

e { € ne. By Item 2] for any type o, there exist ® and I" such that ®>TF¢: 0, so
we are done.

e ¢ € ab. By Item[3] there exist ® and I' such that ® > T ¢ : [], so we are done.
O

Proposition 14 (Completeness of System V). Let t be a LCBV-terminating term. Then, t is
V-typable.

Proof. The proof follows from Lemmas [11] and O

Combining the results of soundness and completeness, we yield:

Theorem 15 (System V characterises LCBV-termination). A term is V-typable if and only it
18 LCBV-terminating.

Proof. The only if direction holds by Proposition [0] while the if direction follows from Propo-
sition [I4] O

We already know that system V characterises vsc-termination [3, Theorem 5]. Therefore,
we conclude this section with the main result in this note, establishing a semantic equivalence
between LCBV and VSC:

Theorem 16. A term terminates in VSC if and only if it terminates in LCBV.

References

1]

Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom Schrijvers
and Peter Thiemann, editors, Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume 7294 of Lecture Notes in Com-
puter Science, pages 4-16. Springer, 2012.

Pablo Barenbaum, Delia Kesner, and Mariana Milicich. Useful evaluation: Syntax and semantics
(technical report), 2025.

Antonio Bucciarelli, Delia Kesner, Alejandro Rios, and Andrés Viso. The bang calculus revisited.
In Keisuke Nakano and Konstantinos Sagonas, editors, Functional and Logic Programming - 15th
International Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings, volume
12073 of Lecture Notes in Computer Science, pages 13-32. Springer, 2020.

Antonio Bucciarelli, Delia Kesner, Alejandro Rios, and Andrés Viso. The bang calculus revisited.
Inf. Comput., 293:105047, 2023.

Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégielski and Arnaud
Durand, editors, Computer Science Logic (CSL’12) - 26th International Workshop/21st Annual
Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of
LIPIcs, pages 259-273. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2012.

	Preliminary Notions
	Syntax
	The Value Substitution Calculus
	The Linear Call-by-Value Calculus
	Term measures

	The Type System V

	Characterisation of lcbv-termination through V-typability
	Soundness
	Completeness

