Semantic Equivalence between the Linear Call-by-Value Calculus and the Value Substitution Calculus (Technical Note)

February 2025

Pablo Barenbaum¹, Delia Kesner² and Mariana Milicich^{2†}

¹ Universidad Nacional de Quilmes (CONICET), and Instituto de Ciencias de la Computación, UBA Argentina
² Université Paris Cité, CNRS, IRIF

France

Abstract

In this technical note, we show that the Value Substitution Calculus (VSC) and the Linear Call-by-Value (LCBV) are observationally equivalent. We rely on the non-idempotent intersection type system \mathcal{V} to establish such a equivalence, as it is already known that \mathcal{V} typability characterises VSC-termination. The technical development focuses on the characterisation of LCBV-termination by means of system \mathcal{V} .

1 Preliminary Notions

In this section, we recall Accattoli and Paolini's *Value Substitution Calculus* [1] and give an alternative specification of the *Linear Call-by-Value* (LCBV) [2]. Moreover, we recall a measure for LCBV-terms from [2] and show that substitution steps in LCBV-reduction decrease (Lemma 2).

We recall also the type system \mathcal{V} [3], inspired by Ehrhard's system [5].

1.1 Syntax

We start by giving the syntax of both calculi in this work. Given a denumerable set of **variables** (x, y, z, ...), the syntax for describing the sets of **terms** (t, u, ...), **substitution contexts** (L, L', ...), and **values** (v, w, ...) is specified by the following grammar:

 $t, u ::= x \mid \lambda x. t \mid t u \mid t[x \setminus u] \qquad \qquad \mathsf{L} ::= \diamondsuit \mid \mathsf{L}[x \setminus t] \qquad \qquad v ::= x \mid \lambda x. t$

The set of terms includes variables, abstractions, applications, and closures $t[x \setminus u]$, representing an explicit substitution (ES) $[x \setminus u]$ on a term t.

Free and **bound occurrences** of variables are defined as usual, where free occurrences of x in t are bound in $t[x \setminus u]$. Terms are considered up to α -renaming of bound variables. Substitution contexts are lists of ESs, and we write tL for the **replacement** of the hole \diamond in L by t, which may capture the free variables of t. For example, if $L = [x \setminus y \, y][y \setminus z]$ and t = x, then $tL = x[x \setminus y \, y][y \setminus z]$. We write $t\{x := u\}$ for the **(capture-avoiding) substitution** of the free

[†] This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945332.

occurrences of x by u in t. The sets of free variables of a term (fv(t)) is defined as expected. The set of reachable variables of a term t is written rv(t) and defined as:

Evaluation contexts used in both calculi are defined by the following grammar:

$$\mathtt{W} ::= \diamondsuit \mid \mathtt{W} t \mid t \, \mathtt{W} \mid \mathtt{W}[x \setminus t] \mid t[x \setminus \mathtt{W}]$$

And we write $W\langle t \rangle$ for the term resulting from replacing the hole \diamond in W by t.

1.2 The Value Substitution Calculus

Reduction in the Value Substitution Calculus (VSC) is defined by the two following rewriting rules, closed by arbitrary weak evaluation contexts:

$$(\lambda x. t) L u \rightarrow_{\mathsf{db}} t[x \setminus u] L \qquad t[x \setminus vL] \rightarrow_{\mathsf{sv}} t\{x := v\} L$$

The db-rule ("distant beta") is a β -like rule that applies an abstraction $\lambda x.t$ to an argument u, creating an ES $[x \setminus u]$ that binds x to the argument u. This rule acts at a *distance*, meaning an arbitrary list of ESs (L) may be in between the abstraction and its argument. For example, $(\lambda x. \lambda y. x) t u \rightarrow_{db} (\lambda y. x) [x \setminus t] u \rightarrow_{db} x[y \setminus u] [x \setminus t]$.

The sv-rule ("substitution of values") fires an ES when x is bound to a value v surrounded by a context L. This rule performs the meta-level substitution of x by v, potentially erasing or producing many copies of v, while it extrudes the substitution context L, which must remain shared. For example, the step $x[y\backslash z] \rightarrow_{sv} x\{y := z\} = x$ results in the erasure of the value z, while $(x x)[x\backslash(\lambda y. z)[z\backslash t]] \rightarrow_{sv} ((\lambda y. z) \lambda y. z)[z\backslash t]$ produces two copies of the value $\lambda y. z$ but keeps a single copy of the ES $[z\backslash t]$. Note that a term like $x[x\backslash y y]$ is in VSC-normal form because y y is not a value.

1.3 The Linear Call-by-Value Calculus

We start by giving an alternative specification of the LCBV calculus (w.r.t. [2]) using a more conventional notation. Reduction in LCBV is defined by the two following rewriting rules, closed by arbitrary weak evaluation contexts that is:

 $(\lambda x. t) \mathbf{L} \, u \to_{\mathsf{db}} t[x \backslash u] \mathbf{L} \qquad \qquad \mathbf{W} \langle x \rangle [x \backslash v \mathbf{L}] \to_{\mathsf{lsv}} \mathbf{W} \langle v \rangle [x \backslash v] \mathbf{L}$

We say a term t is LCBV-terminating if there is no infinite LCBV-reduction sequence starting at t.

1.3.1 Term measures

Given a term t and a variable x, the **potential number of occurences of** x in t, written $\#_x(t)$, is a natural number defined as 0 if $x \notin fv(t)$, and otherwise is defined recursively as follows:

$$\begin{array}{rcl} \#_x(x) &:= & 1 & & \#_x(t\,u) &:= & \#_x(t) + \#_x(u) \\ \#_x(\lambda y.\,t) &:= & 0 & & \#_x(t[y\backslash u]) &:= & \#_x(t) + \#_x(u) \cdot (1 + \#_y(t)) \end{array}$$

The **measure of a term** t is written #(t) and defined as:

$$\begin{array}{rcl} \#(x) & := & 0 & & \#(t\,u) & := & \#(t) + \#(u) \\ \#(\lambda x.t) & := & 0 & & \#(t[x \setminus u]) & := & \#(t) + \#_x(t) + \#(u) \cdot (1 + \#_x(t)) \end{array}$$

Remark 1. Let W be a weak evaluation context, x be any variable and v be any value. Then, $\#(W\langle x \rangle) = \#(W\langle v \rangle)$.

Let $\varphi : \text{Var} \to \mathbb{N}$. Given a substitution context L, the **potential number of occurrences** of x in L under φ , written $\#_x^{\varphi}(L)$, is recursively defined as follows:

$$\#_x^{\varphi}(\diamondsuit) := \varphi(x) \qquad \qquad \#_x^{\varphi}(\mathsf{L}'[y \setminus t]) := \#_x^{\varphi}(\mathsf{L}') + \#_x(t) \cdot (1 + \#_y^{\varphi}(\mathsf{L}'))$$

We define the **measure of L under** φ , written $\#^{\varphi}(L)$, as follows:

$$\#^{\varphi}(\diamondsuit) := 0 \qquad \#^{\varphi}(\mathsf{L}'[x \setminus t]) := \#^{\varphi}(\mathsf{L}') + \#^{\varphi}_{x}(\mathsf{L}') + \#(t) \cdot (1 + \#^{\varphi}_{x}(\mathsf{L}'))$$

Lemma 2. If $t \to_{lsv} t'$, then #(t) > #(t').

Proof. We proceed by induction on $t \rightarrow_{lsv} t'$. We only show the base case, that is, when the surrounding evaluation context is empty. The inductive cases are straightforward.

Then, $t = \mathbb{W}\langle x \rangle [x \setminus v \mathbb{L}] \rightarrow_{\mathsf{lsv}} \mathbb{W}\langle v \rangle [x \setminus v] \mathbb{L} = t'$, so that

$$\begin{aligned} \#(\mathbb{W}\langle x\rangle[x\backslash v\mathbf{L}]) &= \#(\mathbb{W}\langle x\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + \#(v\mathbf{L}) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) \\ &= \#(\mathbb{W}\langle x\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + (\#(v) + \#^{\varphi_{v}}(\mathbf{L})) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) \quad (\text{By [2, Lemma C.4 (2)]}) \\ &= \#(\mathbb{W}\langle v\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + \#(v) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) + \#^{\varphi_{\mathbb{W}\langle v\rangle}}(\mathbf{L}) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) \quad (\text{By Remark 1}) \\ &= \#(\mathbb{W}\langle v\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + \#(v) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) + \#^{\varphi_{\mathbb{W}\langle v\rangle}}(\mathbf{L}) \cdot (1 + (\#_{x}(\mathbb{W}\langle v\rangle) + 1)) \\ &> \#(\mathbb{W}\langle v\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + \#(v) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) + \#^{\varphi_{\mathbb{W}\langle v\rangle}}(\mathbf{L}) \cdot (1 + \#_{x}(\mathbb{W}\langle v\rangle)) \\ &\geq \#(\mathbb{W}\langle v\rangle) + \#_{x}(\mathbb{W}\langle x\rangle) + \#(v) \cdot (1 + \#_{x}(\mathbb{W}\langle x\rangle)) + \#^{\varphi_{\mathbb{W}\langle v\rangle}[x\backslash v]}(\mathbf{L}) \quad (\text{By [2, Lemma C.5 (2)]}) \\ &= \#(\mathbb{W}\langle v\rangle) + \#_{x}(\mathbb{W}\langle v\rangle) + \#(v) \cdot (1 + \#_{x}(\mathbb{W}\langle v\rangle) + 1)) + \#^{\varphi_{\mathbb{W}\langle v\rangle}[x\backslash v]}(\mathbf{L}) \\ &= \#(\mathbb{W}\langle v\rangle[x\backslash v]) + \#^{\varphi_{\mathbb{W}\langle v\rangle}[x\backslash v]}(\mathbf{L}) \\ &= \#(\mathbb{W}\langle v\rangle[x\backslash v]\mathbf{L}) \quad (\text{By [2, Lemma C.4 (2)]}) \end{aligned}$$

1.4 The Type System \mathcal{V}

Let us consider a set of base types denoted by α . The grammar of types is given by:

(Types)
$$\sigma, \tau$$
 ::= $\alpha \mid \mathcal{M} \mid \mathcal{M} \to \sigma$
(Multi-Types) \mathcal{M}, \mathcal{N} ::= $[\sigma_i]_{i \in I}$ where I is a finite set

Typing environments Γ, Δ, \ldots are functions mapping variables to multi-types. The **do**main of an environment Γ is dom $(\Gamma) := \{x \mid \Gamma(x) \neq []\}$, and \emptyset denotes the empty typing environment, mapping each variable to [].

The **union of multi-types**, written $\mathcal{M}_1 + \mathcal{M}_2$, is a multiset of types defined as expected, where [] is the neutral element. For typing environments $(\Gamma_i)_{i \in I}$, we write $+_{i \in I} \Gamma_i$ for the environment mapping each variable x to $+_{i \in I} \Gamma_i(x)$, where $\Gamma + \Delta$ and $\Gamma +_{j \in J} \Delta_j$ are particular instances of the general notation. When $\operatorname{dom}(\Gamma) \cap \operatorname{dom}(\Delta) = \emptyset$ we write $\Gamma; \Delta$ instead of $\Gamma + \Delta$ to emphasise that the domains of Γ and Δ are disjoint. As a consequence, $\Gamma; x : []$ is identical to Γ .

Type assumptions are denoted $x : \mathcal{M}$, meaning that the environment assigns \mathcal{M} to x, and [] to any other variable.

Typing judgements in system \mathcal{V} are of the form $\Gamma \vdash t : \sigma$, where Γ is a type environment, t is a term, and σ is a type.

The **typing rules** of system \mathcal{V} are:

$$\frac{(\Gamma_{i}; x: \mathcal{M}_{i} \vdash t: \sigma_{i})_{i \in I}}{x: \mathcal{M} \vdash x: \mathcal{M}} \text{ABS}$$

$$\frac{\Gamma \vdash t: [\mathcal{M} \to \sigma] \quad \Delta \vdash u: \mathcal{M}}{\Gamma + \Delta \vdash t u: \sigma} \text{APP} \qquad \frac{\Gamma; x: \mathcal{M} \vdash t: \sigma \quad \Delta \vdash u: \mathcal{M}}{\Gamma + \Delta \vdash t [x \setminus u]: \sigma} \text{ES}$$

We write $\Phi \triangleright \Gamma \vdash t : \sigma$ to denote there is a **(typing) derivation** Φ in system \mathcal{V} concluding with the typing judgement $\Gamma \vdash t : \sigma$. We say a term t is \mathcal{V} -typable if there is a derivation for typing t.

Lemma 3 (Relevance). If $\Phi \rhd \Gamma \vdash t : \mathcal{T}$, then $\mathsf{rv}(t) \subseteq \mathsf{dom}(\Gamma) \subseteq \mathsf{fv}(t)$.

Proof. By a straightforward induction on typing derivations.

Let Φ be a type derivation with conclusion $\Gamma \vdash t : \mathcal{T}$. Then, the **measure** of Φ is noted by **meas** (Φ), and is a pair of natural numbers given by $\langle \mathbf{sz}(\Phi), \#(t) \rangle$, where $\mathbf{sz}(\Phi)$ is recursively defined as follows:

•
$$\operatorname{sz}\left(\frac{x: \mathcal{T} \vdash x: \mathcal{T}}{\operatorname{VAR}}\right) = |\mathcal{T}|$$

• $\operatorname{sz}\left(\frac{(\Phi_i)_{i \in I}}{\Gamma \vdash \lambda x. t: [\alpha_i]_{i \in I}} \operatorname{ABS}\right) = |I| + \sum_{i \in I} \operatorname{sz}(\Phi_i)$
• $\operatorname{sz}\left(\frac{\Phi_1 \quad \Phi_2}{\Gamma \vdash t u: \mathcal{T}} \operatorname{APP}\right) = 1 + \operatorname{sz}(\Phi_1) + \operatorname{sz}(\Phi_2)$
• $\operatorname{sz}\left(\frac{\Phi_1 \quad \Phi_2}{\Gamma \vdash t[x \setminus u]: \mathcal{T}} \operatorname{ES}\right) = 1 + \operatorname{sz}(\Phi_1) + \operatorname{sz}(\Phi_2)$ if $x \in \operatorname{rv}(t)$
• $\operatorname{sz}\left(\frac{\Phi_1 \quad \Phi_2}{\Gamma \vdash t[x \setminus u]: \mathcal{T}} \operatorname{ES}\right) = \operatorname{sz}(\Phi_1) + \operatorname{sz}(\Phi_2)$ otherwise

2 Characterisation of lcbv-termination through V-typability

In this section, we show that \mathcal{V} -typability characterises LCBV-termination. To do so, we prove that the type system \mathcal{V} is **sound** and **complete** with respect to LCBV-reduction.

2.1 Soundness

We start addressing the soundness of system \mathcal{V} with respect to the LCBV calculus, which states that \mathcal{V} -typability implies LCBV-termination. This result rely on a subject reduction property based in turn on a substitution lemma.

Remark 4. If $\Phi \triangleright \Gamma \vdash v : []$, then $sz(\Phi) = 0$.

Remark 5. Let t be a term. Then, $t = W\langle x \rangle$ if and only if $x \in rv(t)$.

Lemma 6 (Splitting/Merging). The following are equivalent:

- 1. $\Phi \rhd \Gamma \vdash v : \mathcal{M}_1 + \mathcal{M}_2$
- 2. There exist typing derivations Φ_1, Φ_2 and typing contexts Γ_1, Γ_2 such that $\Phi_1 \triangleright \Gamma_1 \vdash v : \mathcal{M}_1$, and $\Phi_2 \triangleright \Gamma_2 \vdash v : \mathcal{M}_2$, and $\Gamma = \Gamma_1 + \Gamma_2$.

Moreover, $sz(\Phi) = sz(\Phi_1) + sz(\Phi_2)$

Proof. See [4, Lemmas 4.17 and 4.20].

Lemma 7 (Partial Substitution). Let x be a variable, v be a value such that $x \notin \mathsf{fv}(v)$, and let $\Phi_{\mathsf{W}(x)} \triangleright \Gamma; x : \mathcal{M} \vdash \mathsf{W}(x) : \sigma$. Then, there exists a splitting $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$ such that, for all $\Phi_v \triangleright \Delta \vdash v : \mathcal{M}_1$ there exists a typing derivation $\Phi_{\mathsf{W}(v)} \triangleright \Gamma + \Delta; x : \mathcal{M}_2 \vdash \mathsf{W}(v) : \sigma$. Moreover, $\mathsf{sz}(\Phi_{\mathsf{W}(v)}) = \mathsf{sz}(\Phi_{\mathsf{W}(x)}) + \mathsf{sz}(\Phi_v) - |\mathcal{M}_1|.$

Proof. We proceed by induction on W, showing only the cases $W = \diamond$ and $W = W_1 t$, as the remaining cases can be shown reasoning in a similar way.

• $\mathbb{W} = \Diamond$. Then, $\mathbb{W}\langle x \rangle = x$ and $\mathbb{W}\langle v \rangle = v$. The typing derivation is of the form $\Phi_{\mathbb{W}\langle x \rangle} \rhd \Gamma$; $x : \mathcal{M} \vdash x : \sigma$, so necessarily $\Gamma = \emptyset$ and $\sigma = \mathcal{M}$, as $\Phi_{\mathbb{W}\langle x \rangle}$ can only be obtained from the axiom VAR. We take $\mathcal{M}_1 := \mathcal{M}$ and $\mathcal{M}_2 := []$, yielding the splitting $\mathcal{M} = \mathcal{M} + []$, and $\Delta = \Delta$; x : [] by definition. So we are done, since for any $\Phi_v \rhd \Delta \vdash v : \mathcal{M}$ we yield $\Phi_{\mathbb{W}\langle v \rangle} := \Phi_v$.

Moreover, $\operatorname{sz}(\Phi_{W(v)}) = \operatorname{sz}(\Phi_v) = |\mathcal{M}| + \operatorname{sz}(\Phi_v) - |\mathcal{M}| = \operatorname{sz}(\Phi_{W(v)}) + \operatorname{sz}(\Phi_v) - |\mathcal{M}|.$

• $W = W_1 t$. Then, $\Phi_{W(x)}$ is of the form:

$$\frac{\Phi_{\mathtt{W}_1\langle x\rangle} \rhd \Gamma_1; x: \mathcal{M}'_1 \vdash \mathtt{W}_1\langle x\rangle : [\mathcal{N} \to \sigma] \quad \Phi_t \rhd \Gamma_2; x: \mathcal{M}'_2 \vdash t: \mathcal{N}}{\Gamma_1 + \Gamma_2; x: (\mathcal{M}'_1 + \mathcal{M}'_2) \vdash \mathtt{W}_1\langle x\rangle t: \sigma} \text{APF}$$

where $\Gamma = \Gamma_1 + \Gamma_2$ and $\mathcal{M} = \mathcal{M}'_1 + \mathcal{M}'_2$. By the *i.h.* on $\Phi_{\mathfrak{W}_1\langle x\rangle}$, there exists a splitting $\mathcal{M}'_1 = \mathcal{M}_{11} + \mathcal{M}_{12}$ such that for all $\Phi_v \rhd \Delta \vdash v : \mathcal{M}_{11}$ there exists a typing derivation $\Phi_{\mathfrak{W}\langle v\rangle} \rhd \Gamma_1 + \Delta; x : \mathcal{M}_{12} \vdash \mathfrak{W}\langle v\rangle : \sigma$ such that $\mathfrak{sz} \left(\Phi_{\mathfrak{W}_1\langle v\rangle}\right) = \mathfrak{sz} \left(\Phi_{\mathfrak{W}_1\langle x\rangle}\right) + \mathfrak{sz} \left(\Phi_v\right) - |\mathcal{M}_{11}|$. Applying the rule APP with $\Phi_{\mathfrak{W}_1\langle v\rangle}$ and Φ_t as premises, we build the derivation $\Phi_{\mathfrak{W}\langle v\rangle} \rhd \Gamma_1 + \Delta + \Gamma_2; x : \mathcal{M}_{12} + \mathcal{M}'_2 \vdash \mathfrak{W}_1\langle v\rangle t : \mathcal{T}$, where we let $\mathcal{M}_1 := \mathcal{M}_{11}$ and $\mathcal{M}_2 := \mathcal{M}_{12} + \mathcal{M}'_2$. Note that $\Gamma_1 + \Delta + \Gamma_2 = \Gamma + \Delta$.

Moreover, $\operatorname{sz}(\Phi_{\operatorname{W}\langle v \rangle}) = 1 + \operatorname{sz}(\Phi_{\operatorname{W}_1\langle v \rangle}) + \operatorname{sz}(\Phi_t) =_{i.h.} 1 + \operatorname{sz}(\Phi_{\operatorname{W}_1\langle x \rangle}) + \operatorname{sz}(\Phi_v) - |\mathcal{M}_{11}| + \operatorname{sz}(\Phi_t) = \operatorname{sz}(\Phi_{\operatorname{W}\langle x \rangle}) + \operatorname{sz}(\Phi_v) - |\mathcal{M}_1|.$

• $\mathbb{W} = \mathbb{W}_1[y \setminus t]$. Then, we can assume $y \neq x$ by α -conversion, and $\Phi_{\mathbb{W}(x)}$ is of the form

$$\frac{\Phi_{\mathsf{W}_1\langle x\rangle} \rhd \Gamma_1; x: \mathcal{M}_1'; y: \mathcal{L} \vdash \mathsf{W}_1\langle x\rangle : \sigma \quad \Phi_t \rhd \Gamma_2; x: \mathcal{M}_2' \vdash t: \mathcal{L}}{\Gamma_1 + \Gamma_2; x: (\mathcal{M}_1' + \mathcal{M}_2') \vdash \mathsf{W}_1\langle x\rangle [y \backslash t] : \sigma} \mathsf{Es}$$

where $\Gamma = \Gamma_1 + \Gamma_2$ and $\mathcal{M} = \mathcal{M}'_1 + \mathcal{M}'_2$.

Since $x \notin fv(v)$, we can then apply the *i.h.* on W_1 , yielding the splitting $\mathcal{M}'_1 = \mathcal{M}_{11} + \mathcal{M}_{12}$ such that for all $\Phi_v \triangleright \Delta \vdash v : \mathcal{M}_{11}$ there exists a typing derivation

 $\begin{array}{ll} \Phi_{\mathtt{W}_1\langle v\rangle} \rhd \left((\Gamma_1; y: \mathcal{L}) + \Delta\right); x: \mathcal{M}_{12} \vdash \mathtt{W}_1\langle v\rangle : \sigma. & \text{Moreover, } \mathtt{sz} \left(\Phi_{\mathtt{W}_1\langle v\rangle}\right) = \mathtt{sz} \left(\Phi_{\mathtt{W}_1\langle x\rangle}\right) + \mathtt{sz} \left(\Phi_v\right) - |\mathcal{M}_{11}|. \end{array}$

Note that $y \notin \mathsf{fv}(v)$ by α -conversion, thus $y \notin \mathsf{dom}(\Delta)$ by Lemma 3, so we can write $((\Gamma_1; y : \mathcal{L}) + \Delta)$ as $(\Gamma_1 + \Delta); y : \mathcal{L}$.

Applying the rule ES with $\Phi_{\mathbb{W}_1\langle v \rangle}$ and Φ_t as premises, we build the derivation $\Phi_{\mathbb{W}\langle v \rangle} \rhd \Gamma_1 + \Gamma_2 + \Delta; x : \mathcal{M}_{12} + \mathcal{M}'_2 \vdash \mathbb{W}_1\langle v \rangle [y \setminus t] : \sigma$, where we let $\mathcal{M}_1 := \mathcal{M}_{11}$ and $\mathcal{M}_2 := \mathcal{M}_{12} + \mathcal{M}'_2$. Note that $\Gamma_1 + \Delta + \Gamma_2 = \Gamma + \Delta$.

Moreover, if $y \in \mathsf{rv}(W\langle x \rangle)$, then in particular $y \in \mathsf{rv}(W_1\langle x \rangle)$, since we can assume $y \notin \mathsf{fv}(t)$ by α -conversion. Then, we yield $y \in \mathsf{rv}(W_1\langle v \rangle)$, and we obtain the size of $\Phi_{W\langle v \rangle}$ as follows:

$$\begin{split} \operatorname{sz}\left(\Phi_{\mathsf{W}\langle v\rangle}\right) &=_{y\in \mathsf{rv}(\mathsf{W}_{1}\langle v\rangle)} 1 + \operatorname{sz}\left(\Phi_{\mathsf{W}_{1}\langle v\rangle}\right) + \operatorname{sz}\left(\Phi_{t}\right) \\ &=_{i.h.} 1 + \operatorname{sz}\left(\Phi_{\mathsf{W}_{1}\langle x\rangle}\right) + \operatorname{sz}\left(\Phi_{v}\right) - |\mathcal{M}_{11}| + \operatorname{sz}\left(\Phi_{t}\right) \\ &=_{y\in \mathsf{rv}(\mathsf{W}_{1}\langle x\rangle)} \operatorname{sz}\left(\Phi_{\mathsf{W}\langle x\rangle}\right) + \operatorname{sz}\left(\Phi_{v}\right) - |\mathcal{M}_{11}| \end{split}$$

Otherwise, $y \notin \mathsf{rv}(\mathsf{W}\langle x \rangle)$, so in particular $y \notin \mathsf{rv}(\mathsf{W}_1 \langle x \rangle)$. Then, we yield $y \notin \mathsf{rv}(\mathsf{W}_1 \langle v \rangle)$, and we obtain the size of $\Phi_{\mathsf{W}\langle v \rangle}$ as follows:

$$\begin{split} \mathsf{sz} \left(\Phi_{\mathsf{W}\langle v \rangle} \right) &=_{y \notin \mathsf{rv}(\mathsf{W}_{1}\langle v \rangle)} \mathsf{sz} \left(\Phi_{\mathsf{W}_{1}\langle v \rangle} \right) + \mathsf{sz} \left(\Phi_{t} \right) \\ &=_{i.h.} \mathsf{sz} \left(\Phi_{\mathsf{W}_{1}\langle x \rangle} \right) + \mathsf{sz} \left(\Phi_{v} \right) - |\mathcal{M}_{11}| + \mathsf{sz} \left(\Phi_{t} \right) \\ &=_{y \notin \mathsf{rv}(\mathsf{W}_{1}\langle x \rangle)} \mathsf{sz} \left(\Phi_{\mathsf{W}\langle x \rangle} \right) + \mathsf{sz} \left(\Phi_{v} \right) - |\mathcal{M}_{11}| \end{split}$$

Lemma 8 (Weighted Subject Reduction). Let $\Phi \rhd \Gamma \vdash t : \sigma$ and $t \rightarrow_{\text{LCBV}} t'$. Then, there exists a derivation Φ' such that $\Phi' \rhd \Gamma \vdash t' : \sigma$ and moreover $\operatorname{sz}(\Phi) \ge \operatorname{sz}(\Phi')$ and $\operatorname{meas}(\Phi) >_{\operatorname{lex}} \operatorname{meas}(\Phi')^1$.

Proof. By induction on $t \to_{\text{LCBV}} t'$. We only show the base case $t \to_{\text{lsv}} t'$, as the case $t \to_{\text{db}} t'$ is analogous to [4, Lemma 3.4]. Moreover, the inductive cases are straightforward.

Let $t = W\langle x \rangle [x \setminus vL]$ and $t' = W\langle v \rangle [x \setminus v]L$. We proceed by induction on L.

• $L = \Diamond$. Then, Φ has the form:

$$\frac{\Phi_{\mathsf{W}\langle x\rangle} \rhd \Gamma_1; x: \mathcal{M} \vdash \mathsf{W}\langle x\rangle : \sigma \quad \Phi_v \rhd \Gamma_2 \vdash v: \mathcal{M}}{\Gamma_1 + \Gamma_2 \vdash \mathsf{W}\langle x\rangle [x \backslash v] : \sigma} \mathsf{ES}$$

where $\Gamma = \Gamma_1 + \Gamma_2$.

Let $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$ be the splitting obtained by Lemma 7 on $\Phi_{\mathbb{W}\langle x \rangle}$. Then, by Lemma 6 on Φ_v , there exist typing derivations $\Phi_v^1 \triangleright \Gamma_{21} \vdash v : \mathcal{M}_1$ and $\Phi_v^2 \triangleright \Gamma_{22} \vdash v : \mathcal{M}_2$ such that $sz(\Phi_v) = sz(\Phi_v^1) + sz(\Phi_v^1)$.

Applying Lemma 7 on $\Phi_{\mathsf{W}\langle x\rangle}$ and Φ_v^1 , we yield a derivation $\Phi_{\mathsf{W}\langle v\rangle} \triangleright (\Gamma_1 + \Gamma_{21}); x : \mathcal{M}_2 \vdash \mathsf{W}\langle v \rangle : \sigma \text{ and } \mathsf{sz} \left(\Phi_{\mathsf{W}\langle v \rangle} \right) = \mathsf{sz} \left(\Phi_{\mathsf{W}\langle x \rangle} \right) + \mathsf{sz} \left(\Phi_v^1 \right) - |\mathcal{M}_1|.$

Thus, we conclude by building the following derivation Φ' :

$$\frac{\Phi_{\mathsf{W}\langle v\rangle} \rhd (\Gamma_1 + \Gamma_{21}); x : \mathcal{M}_2 \vdash \mathsf{W}\langle v\rangle : \sigma \qquad \Phi_v^2 \rhd \Gamma_{22} \vdash v : \mathcal{M}_2}{\Gamma_1 + \Gamma_2 \vdash \mathsf{W}\langle v\rangle [x \setminus v] : \sigma} \mathsf{ES}$$

¹Where lex stands for the lexicographical order, as the size of a typing derivation is a pair of natural numbers.

To calculate $sz(\Phi)$ and $sz(\Phi')$, we analyse two cases, and considering $x \in rv(W\langle x \rangle)$ by Remark 5.

- If $x \in \mathsf{rv}(\mathsf{W}\langle v \rangle)$, then

$$\begin{split} \mathbf{sz} \left(\Phi \right) &=_{x \in \mathsf{rv}(\mathbb{W}\langle x \rangle)} 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v} \right) \\ &= 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{1} \right) + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &\geq 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{1} \right) - |\mathcal{M}_{1}| + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &= 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle v \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &=_{x \in \mathsf{rv}(\mathbb{W}\langle v \rangle)} \mathbf{sz} \left(\Phi' \right) \end{split}$$

- If $x \notin \mathsf{rv}(\mathbb{W}\langle v \rangle)$, then

$$\begin{split} \mathbf{sz} \left(\Phi \right) &=_{x \in \mathsf{rv}(\mathbb{W}\langle x \rangle)} 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v} \right) \\ &= 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{1} \right) + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &> \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{1} \right) - |\mathcal{M}_{1}| + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &= \mathbf{sz} \left(\Phi_{\mathbb{W}\langle v \rangle} \right) + \mathbf{sz} \left(\Phi_{v}^{2} \right) \\ &=_{x \notin \mathsf{rv}(\mathbb{W}\langle v \rangle)} \mathsf{sz} \left(\Phi' \right) \end{split}$$

We conclude since $sz(\Phi) \ge sz(\Phi')$ and #(t) > #(t') (Lemma 2) imply meas $(\Phi) >_{lex} meas(\Phi')$.

• $L = L'[y \setminus s]$. Then, Φ has the form:

$$\frac{\Phi_{\mathbb{W}\langle x\rangle} \rhd \Gamma'; x: \mathcal{M} \vdash \mathbb{W}\langle x\rangle : \sigma}{\frac{\Phi_{v\mathcal{L}'} \rhd \Delta_1; y: \mathcal{N} \vdash v\mathcal{L}': \mathcal{M} \quad \Phi_s \rhd \Delta_2 \vdash s: \mathcal{N}}{\Gamma' + \Delta_1 + \Delta_2 \vdash v\mathcal{L}'[y\backslash s]: \mathcal{M}}} \underset{\text{ES}}{\overset{\text{ES}}{=}$$

Where $\Gamma = \Gamma' + \Delta_1 + \Delta_2$. Moreover, we can assume $y \notin \mathsf{fv}(\mathsf{W}\langle x \rangle)$ by α -conversion. We now build the following derivation Ψ :

$$\frac{\Phi_{\mathsf{W}\langle x\rangle} \rhd \Gamma'; x: \mathcal{M} \vdash \mathsf{W}\langle x\rangle : \sigma \quad \Phi_{v\mathsf{L}'} \rhd \Delta_1; y: \mathcal{N} \vdash v\mathsf{L}': \mathcal{M}}{\Gamma' + (\Delta_1; y: \mathcal{N}) \vdash \mathsf{W}\langle x\rangle [x \backslash v\mathsf{L}'] : \sigma} \mathsf{ES}$$

Moreover, $\mathbb{W}\langle x \rangle [x \setminus v \mathbf{L}'] \rightarrow_{\mathsf{lsv}} \mathbb{W}\langle v \rangle [x \setminus v] \mathbf{L}'$. Then, we can apply the *i.h.*, yielding Ψ' such that $\Psi' \rhd \Gamma' + (\Delta_1; y : \mathcal{N}) \vdash \mathbb{W}\langle v \rangle [x \setminus v] \mathbf{L}' : \sigma$ and moreover $\mathsf{sz}(\Psi) \ge \mathsf{sz}(\Psi')$ and $\mathsf{meas}(\Psi) >_{\mathsf{lex}} \mathsf{meas}(\Psi')$.

Then, we build Φ' as follows:

$$\frac{\Psi' \rhd \Gamma' + (\Delta_1; y: \mathcal{N}) \vdash \mathbb{W} \langle v \rangle [x \backslash v] \mathbf{L}': \sigma \quad \Phi_s \rhd \Delta_2 \vdash s: \mathcal{N}}{\Gamma' + \Delta_1 + \Delta_2 \vdash \mathbb{W} \langle v \rangle [x \backslash v] \mathbf{L}'[y \backslash s]: \sigma} \mathbf{ES}$$

Note that we can assume $y \notin \operatorname{dom}(\Gamma')$ by α -conversion and Lemma 3.

To calculate $sz(\Phi)$ and $sz(\Phi')$, we analyse two cases, and considering $x \in rv(W\langle x \rangle)$ by Remark 5.

- If $y \in \mathsf{rv}(\mathsf{W}\langle v \rangle [x \setminus v] \mathsf{L}')$, recall that $y \notin \mathsf{fv}(\mathsf{W}\langle x \rangle)$ by α -conversion, so $y \notin \mathsf{rv}(\mathsf{W}\langle x \rangle)$. Then

$$\begin{split} \operatorname{sz}\left(\Phi\right) &=_{x \in \operatorname{rv}(\mathbb{W}\langle x \rangle), y \in \operatorname{rv}(vL')} 1 + \operatorname{sz}\left(\Phi_{\mathbb{W}\langle x \rangle}\right) + 1 + \operatorname{sz}\left(\Phi_{vL'}\right) + \operatorname{sz}\left(\Phi_s\right) \\ &= 1 + \operatorname{sz}\left(\Psi\right) + \operatorname{sz}\left(\Phi_s\right) \\ &\geq_{i.h.} 1 + \operatorname{sz}\left(\Psi'\right) + \operatorname{sz}\left(\Phi_s\right) \\ &=_{y \in \operatorname{rv}(\mathbb{W}\langle v \rangle [x \setminus v]L')} \operatorname{sz}\left(\Phi'\right) \end{split}$$

– If $y \notin \mathsf{rv}(\mathbb{W}\langle v \rangle [x \setminus v] \mathsf{L}')$, then in particular $y \notin \mathsf{rv}(v\mathsf{L}')$. Thus

$$\begin{split} \mathbf{sz} \left(\Phi \right) &=_{x \in \mathsf{rv}(\mathsf{W}(x)), y \notin \mathsf{rv}(v\mathsf{L}')} 1 + \mathbf{sz} \left(\Phi_{\mathsf{W}(x)} \right) + \mathbf{sz} \left(\Phi_{v\mathsf{L}'} \right) + \mathbf{sz} \left(\Phi_s \right) \\ &= \mathbf{sz} \left(\Psi \right) + \mathbf{sz} \left(\Phi_s \right) \\ &\geq_{i.h.} \mathbf{sz} \left(\Psi' \right) + \mathbf{sz} \left(\Phi_s \right) \\ &=_{y \notin \mathsf{rv}(\mathsf{W}(v)[x \setminus v]\mathsf{L}')} \mathbf{sz} \left(\Phi' \right) \end{split}$$

We conclude since $sz(\Phi) \ge sz(\Phi')$ and #(t) > #(t') (Lemma 2) imply $meas(\Phi) >_{lex} meas(\Phi')$.

Proposition 9 (Soundness of System \mathcal{U}). Let t be a \mathcal{V} -typable term. Then, t is LCBV-terminating.

Proof. Straightforward by Lemma 8.

2.2 Completeness

We now prove the completeness of system \mathcal{V} with respect to the LCBV calculus, which states that LCBV-termination implies \mathcal{V} -typability. The proof for this result follows well-understood techniques, requiring a subject expansion property based in turn on an anti-partial substitution lemma.

Lemma 10 (Anti-Partial Substitution). Let $\Phi_{W\langle v \rangle} \triangleright \Gamma; x : \mathcal{M} \vdash W\langle v \rangle : \sigma$, where $x \notin \mathsf{fv}(v)$. Then, there exist typing derivations $\Phi_{W\langle x \rangle}$ and Φ_v , typing environments $\Gamma_{W\langle x \rangle}$ and Δ , and a multi-type \mathcal{N} satisfying:

- 1. $\Phi_{\mathsf{W}\langle x\rangle} \rhd \Gamma_{\mathsf{W}\langle x\rangle}; x : \mathcal{M} + \mathcal{N} \vdash \mathsf{W}\langle x\rangle : \sigma$
- 2. $\Phi_v \triangleright \Delta \vdash v : \mathcal{N}$
- 3. $\Gamma = \Gamma_{W(x)} + \Delta$

Moreover, $\operatorname{sz} \left(\Phi_{\mathsf{W}\langle v \rangle} \right) = \operatorname{sz} \left(\Phi_{\mathsf{W}\langle x \rangle} \right) + \operatorname{sz} \left(\Phi_{v} \right) - |\mathcal{N}|.$

Proof. By induction on W. We detail the cases when $W = \diamond$, $W = W_1 t$, and $W = W_1[x \setminus t]$, as all the remaining inductive cases are similar, and follow easily from the *i.h.*.

• $\mathbb{W} = \diamond$. Then, $\mathbb{W}\langle v \rangle = v$ and $\mathbb{W}\langle x \rangle = x$. The typing derivation is of the form $\Phi_{\mathbb{W}\langle v \rangle} \succ \Gamma$; $x : \mathcal{M} \vdash v : \sigma$, so it is the case that σ is a multi-type, *i.e.*, $\sigma = \mathcal{N}$. Since $x \notin \mathsf{fv}(v)$, then necessarily $\mathcal{M} = []$ by Lemma 3. We take $\Gamma_{\mathbb{W}\langle x \rangle} := \emptyset$, $\Delta := \Gamma$, and \mathcal{N} so that $\Phi_v := \Phi_{\mathbb{W}\langle v \rangle}$ and moreover $\Phi_{\mathbb{W}\langle x \rangle} \succ x : \mathcal{N} \vdash x : \mathcal{N}$ by rule VAR.

Furthermore, $\mathbf{sz} \left(\Phi_{\mathsf{W}\langle v \rangle} \right) = \mathbf{sz} \left(\Phi_v \right) = |\mathcal{N}| + \mathbf{sz} \left(\Phi_v \right) - |\mathcal{N}| = \mathbf{sz} \left(\Phi_{\mathsf{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_v \right) - |\mathcal{N}|.$

• $W = W_1 t$. Then, the typing derivation is of the form

$$\frac{\Phi_{\mathbb{W}_1\langle v\rangle} \rhd \Gamma_1; x: \mathcal{M}_1 \vdash \mathbb{W}_1\langle v\rangle : [\mathcal{L} \to \sigma] \quad \Phi_t \rhd \Gamma_2; x: \mathcal{M}_2 \vdash t: \mathcal{L}}{\Gamma_1 + \Gamma_2; x: (\mathcal{M}_1 + \mathcal{M}_2) \vdash \mathbb{W}_1\langle v\rangle t: \sigma} APP$$

where $\Gamma = \Gamma_1 + \Gamma_2$ and $\mathcal{M} = \mathcal{M}_1 + \mathcal{M}_2$.

Since $x \notin fv(v)$, we can then apply the *i.h.* on W_1 , yielding typing derivations $\Phi_{W_1\langle x \rangle}$ and Φ_v , typing environments $\Gamma_{W_1\langle x \rangle}$ and Δ , and a multi-type \mathcal{N} satisfying:

$$\begin{split} &1.1 \quad \Phi_{\mathtt{W}_1\langle x\rangle} \rhd \Gamma_{\mathtt{W}_1\langle x\rangle}; x: (\mathcal{M}_1 + \mathcal{N}) \vdash \mathtt{W}_1\langle x\rangle : [\mathcal{L} \to \sigma] \\ &1.2 \quad \Phi_v \rhd \Delta \vdash v: \mathcal{N} \\ &1.3 \quad \Gamma_1 = \Gamma_{\mathtt{W}_1\langle x\rangle} + \Delta \end{split}$$

And moreover, $\mathbf{sz} \left(\Phi_{\mathsf{W}_1 \langle v \rangle} \right) = \mathbf{sz} \left(\Phi_{\mathsf{W}_1 \langle x \rangle} \right) + \mathbf{sz} \left(\Phi_v \right) - |\mathcal{N}|$. Then, taking the typing environments $\Gamma_{\mathsf{W} \langle x \rangle} := \Gamma_{\mathsf{W}_1 \langle x \rangle} + \Gamma_2$ and Δ , and the type \mathcal{N} , we yield the following:

- 1. $\Phi_{W\langle x\rangle} \triangleright \Gamma_{W\langle x\rangle}; x : (\mathcal{M} + \mathcal{N}) \vdash W_1\langle x \rangle t : \sigma$, by applying rule APP to $\Phi_{W_1\langle x \rangle}$ and the conclusion of Φ_t .
- 2. $\Phi_v \triangleright \Delta \vdash v : \mathcal{N}$
- 3. $\Gamma = \Gamma_1 + \Gamma_2 =_{i.h.} \Gamma_{\mathsf{W}_1\langle x \rangle} + \Delta + \Gamma_2 = \Gamma_{\mathsf{W}\langle x \rangle} + \Delta$

And moreover, $\operatorname{sz}(\Phi_{\operatorname{W}(v)}) = 1 + \operatorname{sz}(\Phi_{\operatorname{W}_1(v)}) + \operatorname{sz}(\Phi_t) =_{i.h.} 1 + \operatorname{sz}(\Phi_{\operatorname{W}_1(x)}) + \operatorname{sz}(\Phi_t) + \operatorname{sz}(\Phi_v) - |\mathcal{N}| = \operatorname{sz}(\Phi_{\operatorname{W}(x)}) + \operatorname{sz}(\Phi_v) - |\mathcal{N}|.$

Lemma 11 (Weighted Subject Expansion). Let $t \to_{\text{LCBV}} t'$ and $\Phi' \triangleright \Gamma \vdash t' : \sigma$. Then, there exists a typing derivation Φ such that $\Phi \triangleright \Gamma \vdash t : \sigma$ and moreover $\text{sz}(\Phi) \ge \text{sz}(\Phi')$ and $\text{meas}(\Phi) >_{\text{lex}} \text{meas}(\Phi')$.

Proof. By induction on $t \rightarrow_{\text{LCBV}} t'$.

We only show the base case $t \rightarrow_{\mathsf{lsv}} t'$, as the reasoning for the base case $t \rightarrow_{\mathsf{db}} t'$ is analogous to the one in Lemma 8, and inductive cases are straightforward.

• Let $t = W\langle x \rangle [x \setminus vL] \rightarrow_{\mathsf{lsv}} W\langle v \rangle [x \setminus v]L = t'$. We proceed by induction on L.

 $- L = \diamondsuit$. Then, Φ' has the form:

$$\frac{\Phi'_{\mathsf{W}\langle v\rangle} \rhd \Gamma_1; x: \mathcal{M} \vdash \mathsf{W}\langle v\rangle : \sigma \quad \Phi'_v \rhd \Gamma_2 \vdash v: \mathcal{M}}{\Gamma_1 + \Gamma_2 \vdash \mathsf{W}\langle v\rangle [x \backslash v] : \mathcal{T}} \mathsf{Es}$$

where $\Gamma = \Gamma_1 + \Gamma_2$.

We can assume by α -conversion that $x \notin \mathsf{fv}(v)$. By Lemma 10 on $\Phi'_{\mathsf{W}\langle v \rangle}$, we yield typing derivations $\Phi_{\mathsf{W}\langle x \rangle}$ and Φ_v , typing environments $\Gamma_{\mathsf{W}\langle x \rangle}$ and Δ , and a multi-type \mathcal{N} satisfying

1. $\Phi_{\mathsf{W}\langle x\rangle} \triangleright \Gamma_{\mathsf{W}\langle x\rangle}; x : (\mathcal{M} + \mathcal{N}) \vdash \mathsf{W}\langle x\rangle : \sigma$ 2. $\Phi_v \triangleright \Delta \vdash v : \mathcal{N}$ 3. $\Gamma_1 = \Gamma_{\mathsf{W}\langle x\rangle} + \Delta$ Moreover, $\mathbf{sz}\left(\Phi'_{\mathbb{W}\langle v\rangle}\right) = \mathbf{sz}\left(\Phi_{\mathbb{W}\langle x\rangle}\right) + \mathbf{sz}\left(\Phi_{v}\right) - |\mathcal{N}|$. We can apply Lemma 6 to Φ'_{v} and Φ_{v} , yielding $\Phi''_{v} \triangleright \Gamma_{2} + \Delta \vdash v : \mathcal{M} + \mathcal{N}$. Moreover, $\mathbf{sz}\left(\Phi''_{v}\right) = \mathbf{sz}\left(\Phi'_{v}\right) + \mathbf{sz}\left(\Phi_{v}\right)$. Then, we build Φ as follows:

$$\frac{\Phi_{\mathbb{W}\langle x\rangle} \rhd \Gamma_{\mathbb{W}\langle x\rangle}; x: (\mathcal{M} + \mathcal{N}) \vdash \mathbb{W}\langle x\rangle : \sigma \quad \Phi_v'' \rhd \Gamma_2 + \Delta \vdash v: \mathcal{M} + \mathcal{N}}{\Gamma_{\mathbb{W}\langle x\rangle} + \Gamma_2 + \Delta \vdash \mathbb{W}\langle x\rangle[x \backslash v] : \sigma} ES$$

By Remark 5, $x \in rv(W\langle x \rangle)$, and consider two cases, depending on whether $x \in rv(W)$. * If $x \in rv(W)$, then

$$\begin{split} \operatorname{sz}\left(\Phi\right) &=_{x \in \operatorname{rv}\left(\operatorname{W}\left(x\right)\right)} 1 + \operatorname{sz}\left(\Phi_{\operatorname{W}\left(x\right)}\right) + \operatorname{sz}\left(\Phi''_{v}\right) \\ &= 1 + \operatorname{sz}\left(\Phi_{\operatorname{W}\left(x\right)}\right) + \operatorname{sz}\left(\Phi_{v}\right) + \operatorname{sz}\left(\Phi'_{v}\right) \\ &\geq 1 + \operatorname{sz}\left(\Phi_{\operatorname{W}\left(x\right)}\right) + \operatorname{sz}\left(\Phi_{v}\right) + \operatorname{sz}\left(\Phi'_{v}\right) - |\mathcal{N}| \\ &= 1 + \operatorname{sz}\left(\Phi'_{\operatorname{W}\left(v\right)}\right) + \operatorname{sz}\left(\Phi'_{v}\right) \\ &=_{x \in \operatorname{rv}\left(\operatorname{W}\right)} \operatorname{sz}\left(\Phi'\right) \end{split}$$

* Otherwise, $x \notin rv(W)$, then

$$\begin{split} \mathbf{sz} \left(\Phi \right) &=_{x \in \mathsf{rv}(\mathbb{W}\langle x \rangle)} 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi''_{v} \right) \\ &= 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v} \right) + \mathbf{sz} \left(\Phi'_{v} \right) \\ &\geq 1 + \mathbf{sz} \left(\Phi_{\mathbb{W}\langle x \rangle} \right) + \mathbf{sz} \left(\Phi_{v} \right) + \mathbf{sz} \left(\Phi'_{v} \right) - |\mathcal{N}| \\ &> \mathbf{sz} \left(\Phi'_{\mathbb{W}\langle v \rangle} \right) + \mathbf{sz} \left(\Phi'_{v} \right) \\ &=_{x \notin \mathsf{rv}(\mathbb{W})} \mathbf{sz} \left(\Phi' \right) \end{split}$$

We conclude since $sz(\Phi) \ge sz(\Phi')$ in the first case, and $sz(\Phi) > sz(\Phi')$ in the second case. Moreover, #(t) > #(t') by Lemma 2, so meas $(\Phi) >_{lex} meas(\Phi')$. - $L = L'[y \setminus s]$. Then, Φ' has the form:

$$\frac{\Phi_1' \rhd \Gamma_1; y : \mathcal{L} \vdash \mathbb{W}\langle v \rangle [x \setminus v] \mathsf{L}' : \sigma \quad \Phi_s' \rhd \Gamma_2 \vdash s : \mathcal{L}}{\Gamma_1 + \Gamma_2 \vdash \mathbb{W}\langle v \rangle [x \setminus v] \mathsf{L}'[y \setminus s] : \sigma} \mathsf{ES}$$

Where $\Gamma = \Gamma_1 + \Gamma_2$. Moreover, we can assume $y \notin \mathsf{fv}(\mathbb{W}\langle v \rangle)$ by α -conversion. Since $\mathbb{W}\langle x \rangle [x \backslash v \mathbf{L}'] \rightarrow_{\mathsf{lsv}} \mathbb{W}\langle v \rangle [x \backslash v] \mathbf{L}'$, we can then apply the *i.h.* on Φ'_1 , yielding Φ_1 such that $\Phi_1 \rhd \Gamma_1; y : \mathcal{L} \vdash \mathbb{W}\langle x \rangle [x \backslash v \mathbf{L}'] : \sigma$ and moreover, $\mathsf{sz}(\Phi_1) \ge \mathsf{sz}(\Phi'_1)$ and $\mathsf{meas}(\Phi_1) >_{\mathsf{lex}} \mathsf{meas}(\Phi'_1)$.

The conclusion of Φ_1 can only be obtained as follows:

$$\frac{\Phi_{\mathbb{W}\langle x\rangle} \rhd \Gamma_{11}; x: \mathcal{N} \vdash \mathbb{W}\langle x\rangle : \sigma \qquad \Phi_{vL'} \rhd \Gamma_{12}; y: \mathcal{L} \vdash vL': \mathcal{N}}{(\Gamma_{11} + \Gamma_{12}); y: \mathcal{L} \vdash \mathbb{W}\langle x\rangle [x \backslash vL'] : \sigma} ES$$

where $\Gamma_1 = \Gamma_{11} + \Gamma_{12}$. Since $y \notin \mathsf{fv}(\mathsf{W}\langle v \rangle)$ and $x \neq y$ by α -conversion, we can assume that $y \notin \mathsf{fv}(\mathsf{W}\langle x \rangle)$ as well. Therefore, $y \notin \mathsf{dom}(\Gamma_{11})$ by Lemma 3. We then build Φ as follows:

$$\frac{\Phi_{\mathtt{W}\langle x\rangle} \rhd \Gamma_{11}; x: \mathcal{N} \vdash \mathtt{W}\langle x\rangle : \sigma}{\frac{\Phi_{\mathtt{vL}'} \rhd \Gamma_{12}; y: \mathcal{L} \vdash \mathtt{vL}': \mathcal{N} \quad \Phi_s' \rhd \Gamma_2 \vdash s: \mathcal{L}}{\Gamma_{12} + \Gamma_2 \vdash \mathtt{vL}'[y\backslash s]: \mathcal{N}}}_{\mathrm{ES}}$$

Moreover, to calculate $\mathbf{sz}(\Phi)$, we consider two cases depending on whether $y \in \mathsf{rv}(\mathbb{W}\langle v \rangle [x \setminus v] L')$.

* If $y \in \mathsf{rv}(W\langle v \rangle [x \setminus v] L')$, then in particular, $y \in \mathsf{rv}(vL')$ and thus

$$\begin{split} \operatorname{sz}\left(\Phi\right) &=_{x \in \operatorname{rv}(\mathbb{W}\langle x \rangle), y \in \operatorname{rv}(v \operatorname{L}')} 1 + \operatorname{sz}\left(\Phi_{\mathbb{W}\langle x \rangle}\right) + 1 + \operatorname{sz}\left(\Phi_{v \operatorname{L}'}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ &=_{x \in \operatorname{rv}(\mathbb{W}\langle x \rangle)} 1 + \operatorname{sz}\left(\Phi_{1}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ &\geq_{i.h.} 1 + \operatorname{sz}\left(\Phi'_{1}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ &=_{y \in \operatorname{rv}(\mathbb{W}\langle v \rangle[x \setminus v]\operatorname{L}')} \operatorname{sz}\left(\Phi'\right) \end{split}$$

* Otherwise, $y \notin \mathsf{rv}(\mathsf{W}\langle v \rangle [x \setminus v]\mathsf{L}')$, so in particular, $y \notin \mathsf{rv}(v\mathsf{L}')$, and thus

$$\begin{split} \operatorname{sz}\left(\Phi\right) =_{x \in \operatorname{rv}(\mathbb{W}\langle x \rangle), y \notin \operatorname{rv}(v \operatorname{L}')} 1 + \operatorname{sz}\left(\Phi_{\mathbb{W}\langle x \rangle}\right) + \operatorname{sz}\left(\Phi_{v \operatorname{L}'}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ =_{x \in \operatorname{rv}(\mathbb{W}\langle x \rangle)} 1 + \operatorname{sz}\left(\Phi_{1}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ \geq_{i.h.} 1 + \operatorname{sz}\left(\Phi'_{1}\right) + \operatorname{sz}\left(\Phi'_{s}\right) \\ >_{y \notin \operatorname{rv}(\mathbb{W}\langle v \rangle[x \setminus v]\operatorname{L}')} \operatorname{sz}\left(\Phi'\right) \end{split}$$

We conclude since $sz(\Phi) \ge sz(\Phi')$ in the first case, and $sz(\Phi) > sz(\Phi')$ in the second case. Moreover, #(t) > #(t') by Lemma 2, so meas $(\Phi) >_{lex} meas(\Phi')$.

We establish a lemma showing that LCBV-normal forms are typable to prove completeness of system \mathcal{V} with respect to LCBV evaluation. For that, we first define a grammar of terms characterising LCBV-normal forms.

$$\begin{array}{rcl} \mathrm{vr} & ::= & x \mid \mathrm{vr}[x \backslash \mathrm{ne}] \mid \mathrm{vr}[x \backslash \mathrm{no}] \; (x \notin \mathrm{rv}(\mathrm{vr})) \\ \mathrm{ne} & ::= & \mathrm{vr} \operatorname{no} \mid \mathrm{ne} \operatorname{no} \mid \mathrm{ne}[x \backslash \mathrm{ne}] \mid \mathrm{ne}[x \backslash \mathrm{no}] \; (x \notin \mathrm{rv}(\mathrm{ne})) \\ \mathrm{ab} & ::= & \lambda x.t \mid \mathrm{ab}[x \backslash \mathrm{ne}] \mid \mathrm{ab}[x \backslash \mathrm{no}] \; (x \notin \mathrm{rv}(\mathrm{ab})) \\ \mathrm{no} & ::= & \mathrm{vr} \mid \mathrm{ne} \mid \mathrm{ab} \end{array}$$

We now define the predicates abs(-), app(-), and var(-) that we use for the characterisation of LCBV-normal forms. Let t be any term. Then, the predicate abs(t) holds if and only $t = (\lambda x. u)L$ for some variable x, some term u and some substitution context L, the predicate app(t) holds if and only t = (u s)L for some terms u, s and some substitution context L, and the predicate var(t) holds if and only t = xL for some variable x, and some substitution context L.

Lemma 12 (Characterisation of LCBV-Normal Forms). Let t be a term. Then, $t \in no$ if and only if t is LCBV-irreducible.

Proof. We prove simultaneously the following statements:

- 1. $t \in vr$ if and only if t is LCBV-irreducible and var(t)
- 2. $t \in \text{ne}$ if and only if t is LCBV-irreducible and app(t)
- 3. $t \in ab$ if and only if t is LCBV-irreducible and abs(t)
- 4. $t \in no$ if and only if t is LCBV-irreducible
- 1. We first prove the *only if* statement, by induction on $t \in vr$:

- t = x. Then, x is LCBV-irreducible since there are no rules to reduce variables, and by definition, var(x) trivially holds.
- $t = t_1[x \setminus t_2]$, where $t_1 \in vr$ and $t_2 \in ne$. Applying the *i.h.* (1) on t_1 , then t_1 is LCBV-irreducible and $var(t_1)$. We thus conclude var(t). Applying the *i.h.* (2) on t_2 , then t_2 is LCBV-irreducible and $app(t_2)$, so even if $x \in fv(t_1)$, t cannot LCBV-reduce by performing an lsv-step. Since t_1 and t_2 are LCBV-irreducible, we conclude t to be LCBV-irreducible.
- t = t₁[x\t₂], where t₁ ∈ vr, t₂ ∈ no, and x ∉ rv(t₁). Applying the *i.h.* (1) on t₁, then t₁ is LCBV-irreducible and var(t₁). We thus conclude var(t). Applying the *i.h.* (4) on t₂, then t₂ is LCBV-irreducible.

Since $x \notin rv(t_1)$, t cannot LCBV-reduce by performing an lsv-step by Remark 5. And since t_1 and t_2 are LCBV-irreducible, we then conclude that t is LCBV-irreducible.

We now prove the *if* statement, by induction on t. Cases $t = \lambda x. u$ and $t = t_1 t_2$ do not hold, as these terms do not satisfy var(t).

- t = x. Straightforward by definition of the grammar of vr.
- $t = t_1[x \setminus t_2]$. Then, both t_1 and t_2 are LCBV-irreducible, since otherwise t would LCBV-reduce.

Moreover, $var(t_1)$ since var(t) holds. Then, $t_1 \in vr$ by the *i.h.* (1) on t_1 . Also, $t_2 \in no$ by the *i.h.* (4) on t_2 .

On the other hand, there are two cases: $app(t_2)$, or $x \notin rv(t_1)$ since otherwise t_2 would be of the form vL, and t would reduce by performing an lsv-step. Then, if the former, $t_2 \in ne$ by the *i.h.* (2) on t_2 . Therefore, we conclude $t_1[x \setminus t_2] \in vr$ with $t_1 \in vr$ and $t_2 \in ne$. If the latter, we conclude $t_1[x \setminus t_2] \in vr$ with $t_1 \in vr$ and $t_2 \in no$, and $x \notin rv(t_1)$.

- 2. We first prove the *only if* statement, by induction on $t \in ne$:
 - $t = t_1 t_2$, where $t_1 \in vr$ and $t_2 \in no$. Applying the *i.h.* (1) on t_1 , then t_1 is LCBV-irreducible and $var(t_1)$. Then, t does not reduce by performing a db-step. Applying the *i.h.* (4) on t_2 , then t_2 is LCBV-irreducible. We then conclude t to be LCBV-irreducible, and by the form t has, then app(t).
 - $t = t_1 t_2$, where $t_1 \in \text{ne}$ and $t_2 \in \text{no}$. Applying the *i.h.* (2) on t_1 , then t_1 is LCBV-irreducible and $app(t_1)$. Then, t does not reduce by performing a db-step. Applying the *i.h.* (4) on t_2 , then t_2 is LCBV-irreducible. We then conclude t to be LCBV-irreducible, and by the form t has, then app(t).
 - $t = t_1[x \setminus t_2]$, where $t_1 \in$ ne and $t_2 \in$ ne. Applying the *i.h.* (2) on t_1 , then t_1 is LCBV-irreducible and $app(t_1)$. We thus conclude app(t). Applying the *i.h.* (2) on t_2 , then t_2 is LCBV-irreducible and $app(t_2)$, so even if $x \in fv(t_1)$, t cannot LCBV-reduce by performing an lsv-step. And since t_1 and t_2 are LCBV-irreducible, we conclude t to be LCBV-irreducible.
 - t = t₁[x\t₂], where t₁ ∈ ne, t₂ ∈ no, and x ∉ rv(t₁). Applying the *i.h.* (2) on t₁, then t₁ is LCBV-irreducible and app(t₁). We thus conclude app(t). Applying the *i.h.* (4) on t₂, then t₂ is LCBV-irreducible.

Since $x \notin rv(t_1)$, then t cannot LCBV-reduce by performing an lsv-step by Remark 5. And since t_1 and t_2 are LCBV-irreducible, we then conclude that t is LCBV-irreducible. We now prove the *if* statement, by induction on t. Cases t = x and $t = \lambda x. u$ do not hold, as these terms do not satisfy app(t).

- $t = t_1 t_2$. Then, both t_1 and t_2 are LCBV-irreducible, since otherwise t would LCBV-reduce. By the *i.h.* (4) on t_2 , then $t_2 \in no$. Moreover, $\neg abs(t_1)$ since otherwise t would reduce by performing a db-step. And it is easy to note that syntactically, t_1 satisfy either $var(t_1)$ or $app(t_1)$. If the former, then $t_1 \in vr$ by *i.h.* (1). If the latter, then $t_1 \in ne$ by *i.h.* (2). Either way, we conclude $t_1 t_2 \in ne$, so we are done.
- $t = t_1[x \setminus t_2]$. Then, both t_1 and t_2 are LCBV-irreducible, since otherwise t would LCBV-reduce.

Moreover, $app(t_1)$ since app(t) holds. Then, $t_1 \in ne$ by the *i.h.* (2) on t_1 . Also, $t_2 \in no$ by the *i.h.* (4) on t_2 .

On the other hand, there are two cases: $\operatorname{app}(t_2)$, or $x \notin \operatorname{rv}(t_1)$ since otherwise t_2 would be of the form vL, and t would reduce by performing an lsv-step. Then, if the former, $t_2 \in \operatorname{ne}$ by the *i.h.* (2) on t_2 . Therefore, we conclude $t_1[x \setminus t_2] \in \operatorname{ne}$ with $t_1 \in \operatorname{ne}$ and $t_2 \in \operatorname{ne}$. If the latter, we conclude $t_1[x \setminus t_2] \in \operatorname{ne}$ with $t_1 \in \operatorname{ne}$ and $t_2 \in \operatorname{no}$, and $x \notin \operatorname{rv}(t_1)$.

- 3. We first prove the *only if* statement, by induction on $t \in ab$:
 - $t = \lambda x. u$. Then, t is LCBV-irreducible since there are no rules to reduce abstractions. Moreover, abs(t) trivially holds.
 - $t = t_1[x \setminus t_2]$, where $t_1 \in ab$ and $t_2 \in ne$. Applying the *i.h.* (3) on t_1 , then t_1 is LCBV-irreducible and $abs(t_1)$, so that we conclude abs(t). Applying the *i.h.* (2) on t_2 , then t_2 is LCBV-irreducible and $app(t_2)$. Then, t cannot LCBV-reduce by performing an lsv-step. And since t_1 and t_2 are LCBV-irreducible, we conclude t to be LCBV-irreducible.
 - t = t₁[x\t₂], where t₁ ∈ ab and t₂ ∈ no and x ∉ rv(t₁). Applying the *i.h.* (3) on t₁, then t₁ is LCBV-irreducible and abs(t₁), so that we conclude abs(t). Applying the *i.h.* (4) on t₂, then t₂ is LCBV-irreducible. If t₂ ∈ ne, then we proceed as the previous case. Otherwise, if t₂ ∈ vr or t₂ ∈ ab, then t cannot LCBV-reduce by performing an lsv-step by Remark 5, as x ∉ rv(t₁). And since t₁ and t₂ are LCBV-irreducible, t must also be LCBV-irreducible.

We now prove the *if* statement. Since abs(t), then $t = (\lambda x. u)L$. We proceed by induction on L.

- $L = \Diamond$. Then, $t = \lambda x. u$. Straightforward by definition of the grammar **ab**.
- L = L'[y\s]. Then, t = (λx. u)L'[y\s] and since (λx. u)L'[y\s] is LCBV-irreducible, so is t' = (λx. u)L'. Moreover, abs(t') holds. Applying the *i.h.* (3) on t', then t' ∈ ab. On the other hand, s is LCBV-irreducible since t is LCBV-irreducible. Applying the *i.h.* (4) on s, then s ∈ no. We now consider two cases, depending on whether y ∈ rv(t'). If y ∉ rv(t'), then t' ∈ ab, and s ∈ no imply t'[y\s] = t ∈ ab. If y ∈ rv(t'), then app(s) since otherwise t = t'[y\s] would be LCBV-irreducible. Applying the *i.h.* (2) on s, we yield s ∈ ne, which implies t = t'[y\s] ∈ ab.
- 4. We first prove the *only if* statement, by induction on $t \in no$:
 - $t \in vr$. Then, t is LCBV-irreducible by Item 1.

- $t \in \text{ne.}$ Then, t is LCBV-irreducible by Item 2.
- $t \in ab$. Then, t is LCBV-irreducible by Item 3.

We now prove the *if* statement, by cases.

- If var(t), then $t \in vr$ by the *i.h.* (1). We conclude since $vr \subseteq no$.
- If app(t), then $t \in ne$ by the *i.h.* (2). We conclude since $ne \subseteq no$.
- If abs(t), then $t \in ab$ by the *i.h.* (3). We conclude since $ab \subseteq no$.

Lemma 13 (LCBV-Normal Forms are \mathcal{V} -Typable). Let t be a LCBV-normal form. Then, t is \mathcal{V} -typable.

Proof. We prove simultaneously the following statements:

- 1. If $t \in vr$, then for every multi-type \mathcal{M} there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : \mathcal{M}$.
- 2. If $t \in \mathbf{ne}$, then for every type σ there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : \sigma$.
- 3. If $t \in ab$, then there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : []$.
- 4. If $t \in no$, then there exist Φ , Γ , and \mathcal{M} such that $\Phi \triangleright \Gamma \vdash t : \mathcal{M}$.

Moreover, in the four cases, for any variable x, if $x \notin rv(t)$, then $x \notin dom(\Gamma)$.

1. We proceed by induction on $t \in vr$.

- t = x. Let \mathcal{M} by any multi-type. Then, we yield $\Phi \triangleright x : \mathcal{M} \vdash x : \mathcal{M}$ by rule VAR. So, it is sufficient to take $\Gamma := x : \mathcal{M}$.
- $t = t_1[x \setminus t_2]$, where $t_1 \in vr$ and $t_2 \in ne$. Let \mathcal{M} by any multi-type. By the *i.h.* (1) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : \mathcal{M}$. By the *i.h.* (2) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : \Gamma_1(x)$. Let us write $\Gamma_1 = \Gamma'_1; x : \Gamma_1(x)$. Then, applying rule ES, we yield $\Phi \triangleright \Gamma'_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : \mathcal{M}$, so that $\Gamma := \Gamma'_1 + \Gamma_2$.
- $t = t_1[x \setminus t_2]$, where $t_1 \in vr$, $t_2 \in no$, and $x \notin rv(t_1)$. Let \mathcal{M} by any multi-type. If $t_2 \in ne$, then we proceed as in the previous case. If $t_2 \in vr$ or $t_2 \in ab$, then by the *i.h.* (1) or (3) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2$: []. By the *i.h.* (1) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : \mathcal{M}$. Moreover, given that $x \notin rv(t_1)$, then $x \notin dom(\Gamma_1)$ also holds by the *i.h.*, and thus $\Gamma_1 = \Gamma_1; x : []$. Then, applying the rule ES, we yield $\Phi \triangleright \Gamma_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : []$, so that $\Gamma := \Gamma_1 + \Gamma_2$.
- 2. We proceed by induction on $t \in ne$.
 - $t = t_1 t_2$, where $t_1 \in vr$ and $t_2 \in no$. Let σ be any type. By the *i.h.* (4) on t_2 , there exist Φ_2 , Γ_2 , and \mathcal{M} such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : \mathcal{M}$. By the *i.h.* (1) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : [\mathcal{M} \to \sigma]$. Then, taking $\Gamma := \Gamma_1 + \Gamma_2$, we yield $\Phi \triangleright \Gamma_1 + \Gamma_2 \vdash t_1 t_2 : \sigma$ by rule APP.
 - $t = t_1 t_2$, where $t_1 \in ne$ and $t_2 \in no$. Analogous to the previous case.
 - $t = t_1[x \setminus t_2]$, where $t_1 \in \mathbf{ne}$ and $t_2 \in \mathbf{ne}$. Let σ be any type. By the *i.h.* (2) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : \sigma$. By the *i.h.* (2) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : \Gamma_1(x)$. Let us write $\Gamma_1 = \Gamma'_1; x : \Gamma_1(x)$. Then, applying the rule ES, we yield $\Phi \triangleright \Gamma'_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : \sigma$, so that $\Gamma := \Gamma'_1 + \Gamma_2$.

• $t = t_1[x \setminus t_2]$, where $t_1 \in ne$, $t_2 \in no$, and $x \notin rv(t_1)$. Let σ be any type. If $t_2 \in ne$, then we proceed as in the previous case.

If $t_2 \in vr$, then by the *i.h.* (2) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : \sigma$. Let $\Gamma_1 = \Gamma'_1; x : \mathcal{M}$. By the *i.h.* (1) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : \mathcal{M}$. Then, applying the rule ES, we yield $\Phi \triangleright \Gamma'_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : \sigma$, so that $\Gamma := \Gamma'_1 + \Gamma_2$. If $t_2 \in ab$, then by the *i.h.* (3) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : []$. By the *i.h.* (2) on t_1 , there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : \sigma$. Given that $x \notin rv(t_1)$, then $x \notin dom(\Gamma_1)$, and thus $\Gamma_1 = \Gamma_1; x : []$. Then, applying the rule ES,

- 3. We proceed by induction on $t \in ab$.
 - $t = \lambda x. u$. Then, the statement holds with typing rule ABS applied to an empty set of premises, *i.e.*, $\Gamma := \emptyset$.

we yield $\Phi \triangleright \Gamma_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : \sigma$, so that $\Gamma := \Gamma_1 + \Gamma_2$.

- $t = t_1[x \setminus t_2]$, where $t_1 \in ab$ and $t_2 \in ne$. By the *i.h.* (3), there exist Φ_1 and Γ_1 such that $\Phi_1 \triangleright \Gamma_1 \vdash t_1 : []$. By the *i.h.* (2) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2 : \Gamma_1(x)$. Let us write $\Gamma_1 = \Gamma'_1; x : \Gamma_1(x)$. Then, applying rule ES, we yield $\Phi \triangleright \Gamma'_1 + \Gamma_2 \vdash t_1[x \setminus t_2] : []$, so that $\Gamma := \Gamma'_1 + \Gamma_2$.
- $t = t_1[x \setminus t_2]$, where $t_1 \in ab$ and $t_2 \in no$ and $x \notin rv(t_1)$. If $t_2 \in ne$, then we proceed as in the previous case.

If $t_2 \in vr$ or $t_2 \in ab$, then by the *i.h.* (1) or (3) on t_2 , there exist Φ_2 and Γ_2 such that $\Phi_2 \triangleright \Gamma_2 \vdash t_2$: []. Moreover, given that $x \notin rv(t_1)$, then $x \notin dom(\Gamma_1)$ also holds by the *i.h.*, and thus $\Gamma_1 = \Gamma_1; x$: []. Then, applying the rule ES, we yield $\Phi \triangleright \Gamma_1 + \Gamma_2 \vdash t_1[x \setminus t_2]$: [], so that $\Gamma := \Gamma_1 + \Gamma_2$.

- 4. We proceed by induction on $t \in no$.
 - $t \in vr$. By Item 1, for any type σ , there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : \sigma$, so we are done.
 - $t \in$ ne. By Item 2, for any type σ , there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : \sigma$, so we are done.
 - $t \in ab$. By Item 3, there exist Φ and Γ such that $\Phi \triangleright \Gamma \vdash t : []$, so we are done.

Proposition 14 (Completeness of System \mathcal{V}). Let t be a LCBV-terminating term. Then, t is \mathcal{V} -typable.

Proof. The proof follows from Lemmas 11 and 13.

Combining the results of soundness and completeness, we yield:

Theorem 15 (System \mathcal{V} characterises LCBV-termination). A term is \mathcal{V} -typable if and only it is LCBV-terminating.

Proof. The only if direction holds by Proposition 9, while the *if* direction follows from Proposition 14. \Box

We already know that system \mathcal{V} characterises vsc-termination [3, Theorem 5]. Therefore, we conclude this section with the main result in this note, establishing a semantic equivalence between LCBV and VSC:

Theorem 16. A term terminates in VSC if and only if it terminates in LCBV.

References

- Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom Schrijvers and Peter Thiemann, editors, Functional and Logic Programming - 11th International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings, volume 7294 of Lecture Notes in Computer Science, pages 4–16. Springer, 2012.
- [2] Pablo Barenbaum, Delia Kesner, and Mariana Milicich. Useful evaluation: Syntax and semantics (technical report), 2025.
- [3] Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus revisited. In Keisuke Nakano and Konstantinos Sagonas, editors, Functional and Logic Programming - 15th International Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings, volume 12073 of Lecture Notes in Computer Science, pages 13–32. Springer, 2020.
- [4] Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus revisited. Inf. Comput., 293:105047, 2023.
- [5] Thomas Ehrhard. Collapsing non-idempotent intersection types. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 259–273. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.