Linear logic and canonical extensions

A topic explored with Sam van Gool and Paul-André Melliès.

Vincent Moreau

19th of November, 2021
A quick presentation

Now a PhD student at IRIF! On higher-order automata and recursion schemes.

You can meet me in 4033. More on my webpage: irif.fr/~moreau.
Canonical extensions: \(L \leftrightarrow L^\delta \) which is a very special complete lattice.
Canonical extensions: $L \leftrightarrow L^\delta$ which is a very special complete lattice.

Historically developed for modal logic, [JT52]:

$\square, \diamond : L \to L$ lift to maps $L^\delta \to L^\delta$ with good properties.
Canonical extensions: \(L \leftrightarrow L^\delta \) which is a very special complete lattice.

Historically developed for modal logic, [JT52]:

\[\square, \Diamond : L \to L \text{ lift to maps } L^\delta \to L^\delta \text{ with good properties.} \]

Our contribution: \(L^\delta \) can be seen as the fixpoints of an adjunction

\[
\begin{align*}
\begin{array}{cccc}
L^\delta & \downarrow \Box & \downarrow \Diamond & \downarrow L^\delta \\
F_\cup & F_\vee & F_\wedge & F_\cap \end{array}
\end{align*}
\]

\[\lambda, \lambda' \]
Why is it useful?

Provides a link between algebras and relational semantics:

\[\text{algebra } \delta \rightarrow \text{perfect algebra } \simeq \text{relational frame} \]
Why is it useful?

Provides a link between algebras and relational semantics:

\[\text{algebra} \xrightarrow{\delta} \text{perfect algebra} \simeq \text{relational frame} \]

Today: an application from the article

Relational semantics for full linear logic [CGv14]

published by Dion Coumans, Mai Gehrke and Lorijn van Rooijen in 2013.
Linear logic sees formulas as resources.

Definition of linear logic
Definition of linear logic

Linear logic sees formulas as resources. Linear formulas with atoms in P:

$$\phi ::= p \in P$$

<table>
<thead>
<tr>
<th>$\phi \otimes \phi$</th>
<th>1</th>
<th>$\phi & \phi$</th>
<th>\bot</th>
<th>$\phi \multimap \phi$</th>
<th>$\phi \circ \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplicative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\phi & \phi$</th>
<th>\top</th>
<th>$\phi \oplus \phi$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>additive</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$!\phi$</th>
<th>$?\phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exponentials</td>
<td></td>
</tr>
</tbody>
</table>
Definition of linear logic

Linear logic sees formulas as resources. Linear formulas with atoms in P:

$$
\varphi ::= p \in P \\
\mid \varphi \otimes \varphi \mid 1 \mid \varphi \& \varphi \mid \perp \mid \varphi \multimap \varphi \\
\text{multiplicative} \\
\mid \varphi \text{ & } \varphi \mid \top \mid \varphi \oplus \varphi \mid 0 \\
\text{additive} \\
\mid \!\varphi \mid ?\varphi \\
\text{exponentials}
$$

Examples:

$$(A \otimes B) \multimap A \quad (A \& B) \multimap A \quad !A \multimap ?A \quad A \multimap (B \otimes C) \quad !A \multimap !!A$$
Examples

Lafont’s restaurant, from *An Introduction to Linear Logic: Expressiveness and Phase Semantics* [Oka98]:

\[
(Vegetable\ Soup \oplus \ Consommé\ Soup) \& \ Salad \\
\otimes (Fish \& \ Meat) \\
\otimes !\ coffee \\
\otimes (2€ \rightarrow\ Cake \& \ Ice\ cream)
\]
Examples

Lafont’s restaurant, from *An Introduction to Linear Logic: Expressiveness and Phase Semantics* [Oka98]:

\[(\text{Vegetable Soup} \oplus \text{Consommé Soup}) \& \text{Salad} \]
\[\otimes (\text{Fish} \& \text{Meat}) \]
\[\otimes !\text{coffee} \]
\[\otimes (2€ \rightarrow \text{Cake} \& \text{Ice cream}) \]

The formula

\[\forall x \exists y, x < y\]

does not imply infinity as it may only be used once!
Just like boolean algebras or Heyting algebras, but for MALL.
CL-algebras

Just like boolean algebras or Heyting algebras, but for MALL.

A lattice A with min 0 and max \top together with

- a commutative monoid operation $\otimes : A \times A \to A$ with unit $1 \in A$
- a map $\rightarrow : A^{\text{op}} \times A \to A$ such that
 \[a \otimes b \leq c \iff a \leq b \rightarrow c \]
- an element $\bot \in A$ such that $(\cdot)^\bot : a \mapsto a \rightarrow \bot$ is an involution.
CL-algebras

Just like boolean algebras or Heyting algebras, but for MALL.

A lattice A with min 0 and max \top together with

- a commutative monoid operation $\otimes : A \times A \to A$ with unit $1 \in A$
- a map $\mapsto : A^{\text{op}} \times A \to A$ such that

 \[a \otimes b \leq c \iff a \leq b \mapsto c \]

- an element $\bot \in A$ such that $(\cdot)^\perp : a \mapsto a \mapsto \bot$ is an involution.

We obtain the \otimes as the De Morgan dual of \otimes

\[a \otimes b = (a^\perp \otimes b^\perp)^\perp \]
Given a valuation $u : P \rightarrow A$, one may define by induction $[\varphi]_u \in A$.

A formula φ is true in A together with the valuation u iff $1 \leq J\varphi_K u$. If φ is of the form $\varphi \rightarrow \varphi'$, then this is equivalent to $J\varphi_K u \leq J\varphi'_K u$.

The axioms on CL-algebras ensure that any formula that has a proof in the sequent calculus of linear logic is true with respect to all valuations.

We apply this to show that the formula $A \otimes B \nrightarrow A`B$ has no proof.
Interpretation of formulas

Given a valuation $u : P \to A$, one may define by induction $[\varphi]_u \in A$. A formula φ is true in A together with the valuation u iff

$$1 \leq [\varphi]_u$$

If φ is of the form $\psi \to \psi'$, then this is equivalent to

$$[\psi]_u \leq [\psi']_u$$
Interpretation of formulas

Given a valuation \(u : P \rightarrow A \), one may define by induction \([\varphi]_u \in A\).

A formula \(\varphi \) is true in \(A \) together with the valuation \(u \) iff

\[1 \leq [\varphi]_u \]

If \(\varphi \) is of the form \(\psi \rightarrow \psi' \), then this is equivalent to

\[[\psi]_u \leq [\psi']_u \]

The axioms on CL-algebras ensure that any formula that has a proof in the sequent calculus of linear logic is true with respect to all valuations.

▶ We apply this to show that the formula \(A \otimes B \vdash A \multimap B \) has no proof.
A counterexample for a specific formula

Let φ be $A \otimes B \rightarrow A \bowtie B$. We consider the CL-algebra:

$$A = \{0, 1, 2, 3, 4, 5\}$$

which is a bounded lattice where we consider that:

- the \otimes is the bounded addition: $1 \otimes 2 = 3$ but $3 \otimes 4 = 5$.
- the involution $(\cdot)^\perp$ is the symmetry $a \mapsto 5 - a$.

Therefore, we have $J_{A \otimes B}^K u \nleq J_{A \bowtie B}^K u$, hence the counterexample.
A counterexample for a specific formula

Let φ be $A \otimes B \rightarrow A \nbigvee B$. We consider the CL-algebra:

$$A = \{0, 1, 2, 3, 4, 5\}$$

which is a bounded lattice where we consider that:

- the \otimes is the bounded addition: $1 \otimes 2 = 3$ but $3 \otimes 4 = 5$.
- the involution $(\cdot)^\perp$ is the symmetry $a \mapsto 5 - a$.

Let us take the valuation u such that $u(A) = 1$ and $u(B) = 2$. Then:

- $J_{A \otimes B}^K u = 3$
- $J_{A \nbigvee B}^K u = (u(A)^\perp \otimes u(B)^\perp)^\perp = (4 \otimes 3)^\perp = 5^\perp = 0$

Therefore, we have $J_{A \otimes B}^K u \ngtr J_{A \nbigvee B}^K u$ hence the counterexample.
A counterexample for a specific formula

Let \(\varphi \) be \(A \otimes B \to A \supset B \). We consider the CL-algebra:

\[
A = \{0, 1, 2, 3, 4, 5\}
\]

which is a bounded lattice where we consider that:

- the \(\otimes \) is the bounded addition: \(1 \otimes 2 = 3 \) but \(3 \otimes 4 = 5 \).
- the involution \((\cdot)^\perp \) is the symmetry \(a \mapsto 5 - a \).

Let us take the valuation \(u \) such that \(u(A) = 1 \) and \(u(B) = 2 \). Then:

\[
\begin{align*}
[A \otimes B]_u &= 3 \\
[A \supset B]_u &= (u(A)^\perp \otimes u(B)^\perp)^\perp = (4 \otimes 3)^\perp = 5^\perp = 0
\end{align*}
\]

Therefore, we have \([A \otimes B]_u \not\leq [A \supset B]_u \) hence the counterexample.
Main theorem

Gehrke et al. proved the following general theorem:

Theorem
Let \mathcal{E} be a set of inequalities of formulas. If we have a class of frames \mathcal{K} such that $\text{Alg}_\delta^\mathcal{E} \subseteq \mathcal{K}^+ \subseteq \text{Alg}_\mathcal{E}$, then the semantics given by \mathcal{K} are sound and complete with respect to the one given by $\text{Alg}_\mathcal{E}$. Notice that, because of this theorem, we could have worked in the relational frame associated to the previous algebra.
Gehrke et al. proved the following general theorem:

Theorem

Let \mathcal{E} be a set of inequalities of formulas. If we have a class of frames \mathcal{K} such that $\text{Alg}^{\delta}_{\mathcal{E}} \subseteq \mathcal{K}^+ \subseteq \text{Alg}_{\mathcal{E}}$, then the semantics given by \mathcal{K} are sound and complete with respect to the one given by $\text{Alg}_{\mathcal{E}}$.

Notice that, because of this theorem, we could have worked in the relational frame associated to the previous algebra.
Conclusion

Canonical extensions are useful to link algebras and relational semantics.

Modal algebras \leftrightarrow Kripke frames

CL-algebras \leftrightarrow CL-frames
Canonical extensions are useful to link algebras and relational semantics.

Modal algebras \leftrightarrow Kripke frames

CL-algebras \leftrightarrow CL-frames

Future work: extend this construction to categories to use it for first-order logic
Conclusion

Canonical extensions are useful to link algebras and relational semantics.

Modal algebras \leftrightarrow Kripke frames

CL-algebras \leftrightarrow CL-frames

Future work: extend this construction to categories to use it for first-order logic

Thank you for your attention!

Any question?
