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Motivations: on automata and

λ-calculus



Automata and λ-calculus: the syntactic side

Any finite word can be encoded as a λ-term through the Church encoding:

abb ∈ {a, b}∗ ⇝ λ(a : o ⇒ o).λ(b : o ⇒ o).λ(c : o). b (b (a c)) .

More generally, any finite ranked tree can be encoded as a λ-term:

c c

a a c

⇝ λ(a : o ⇒ o ⇒ o).λ(c : o).a c (a c c)

1. The simply typed λ-calculus generalizes finite words and trees.

1/24



Automata and λ-calculus: the semantic side

If Q is a finite set, δa : Q → Q, δb : Q → Q and q0 ∈ Q, then

Jλa.λb.λc . b (b (a c))KQ(δa, δb, q0) = δb(δb(δa(q0))) ,

so interpreting the encoding of a words amounts to running it in an automaton.

The same observation holds for finite ranked trees: if δa : Q × Q → Q, then

Jλa.λc .a c (a c c)KQ(δa, q0) = δa(q0, δa(q0, q0)) .

2. Semantics of λ-calculus generalize the interpretation in finite automata.
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A topological approach to automata theory

If w and w ′ are two finite words on a same alphabet, then

d(w ,w ′) = 2−r(w ,w ′) where r(w ,w ′) = min{|A| | A distinguishes w and w ′}

is a metric on finite words. Intuitively, two words w and w ′ are

• far if there is a small automaton distinguishing them, e.g. a2n and a2n+1.

• close if only a large automaton can distinguish them, e.g. an! and a(n+1)!.

The metric completion Σ̂∗ of Σ∗ is the space of profinite words. In particular, if u is a

profinite run and A = (Q, δ, q0) is an automaton, then we get a state qu ∈ Q.

3. Profinite words form a syntax for interpretation into finite automata.
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The topic of this talk

4. We define profinite λ-terms and show some of their properties.

• They assemble into a CCC ProLam.

• The Church encoding can be extended to a homeomorphism

Σ̂∗ Λ̂βη⟨ChurchΣ⟩

Σ∗ Λβη⟨ChurchΣ⟩∼

∼

• They provide a structure to understand some operations on profinite words.

• They are the Stone dual of regular languages of λ-terms.

• They live in harmony with the principles of Reynolds parametricity.
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Languages



Regular languages of words

Let Σ be a finite alphabet, M be a finite monoid and p : Σ → M a set-theoretic

function. We write p̄ for the associated monoid homomorphism Σ∗ → M.

For each subset F ⊆ M, the set

LF := {w ∈ Σ∗ | p̄(w) ∈ F}

is a regular language. These sets assemble into the Boolean algebra

RegM⟨Σ⟩ := {LF : F ⊆ M} .

When M ranges over all finite monoids, we get in this way all regular languages:

Reg⟨Σ⟩ =
⋃
M

RegM⟨Σ⟩ .
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The Church encoding for words

Any natural number n can be encoded in the simply typed λ-calculus as

λ(s : o ⇒ o).λ(z : o). s (. . . (s z))︸ ︷︷ ︸
n applications

: (o ⇒ o) ⇒ o ⇒ o .

A natural number is just a word over a one-letter alphabet.

For any alphabet Σ = {a1, . . . , aN}, any word w = ai1 . . . ain ∈ Σ∗ can be encoded as

λ(a1 : o ⇒ o) . . . λ(aN : o ⇒ o).λ(c : o).ain (. . . (ai1 c))

which is a closed λ-term of type

ChurchΣ := (o ⇒ o) ⇒ . . . ⇒ (o ⇒ o)︸ ︷︷ ︸
N times

⇒ o ⇒ o .
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Categorical interpretation

Let C be a cartesian closed category and c be one of its objects.

For any simple type A built from o, we define the object JAKc by induction as

JoKc := c and JA ⇒ BKc := JAKc ⇒ JBKc .

Using the cartesian closed structure, one defines an interpretation function

J−Kc : Λβη⟨A⟩ −→ C(1, JAKc) .

Given an object c of C used to interpret o, every word w over the alphabet

Σ = {a, b}, seen as a λ-term, is interpreted as a morphism

JwKc ∈ C(1, (c ⇒ c) ⇒ (c ⇒ c) ⇒ c ⇒ c)

which describes how the word will interact with a deterministic automaton.
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Regular languages of λ-terms

The notion of regular language of λ-terms has been introduced by Salvati.

For any object c and any subset F ⊆ C(1, JAKc), we define the language

LF := {t ∈ Λβη⟨A⟩ | JtKc ∈ F} .

All the languages recognized by c assemble into a Boolean algebra

Regc⟨A⟩ := {LF | F ⊆ C(1, JAKc)} .

We can then make c range over all objects of C, and we get the definition

Reg⟨A⟩ :=
⋃
c

Regc⟨A⟩ .

Notice that Reg⟨A⟩ has no reason to be a Boolean algebra for the moment.
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Salvati generalizes Kleene in FinSet

The Church encoding induces an isomorphism of Boolean algebras

Reg⟨ChurchΣ⟩FinSet ∼= Reg⟨Σ⟩ .

In the CCC FinSet, maps 1 → Q are elements q ∈ Q.

Indeed, every automaton (Q, δ, q0,Acc) induces a subset

F :=
{
q ∈ JChurchΣKQ | q(δ, q0) ∈ Acc

}
On the other hand, every q ∈ JChurchΣKQ induces a finite family of automata

(Q, δ, q0, {q(δ, q0)}) for all δ : Σ× Q → Q and q0 ∈ Q

which determines the behavior of q, and from which one gets finite monoids.
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About FinSet and other CCCs

We have seen that FinSet gives the usual notion of regular language for Church types.

If C is a CCC, we say that it is finitely pointable if there exists a faithful

product-preserving functor

P : C −→ FinSet .

Finitely pointable CCCs are the ones which can be embedded into locally finite

well-pointed ones. Example: [J,FinSet], where J is a finite category.

Theorem. If C is finitely pointable1, then Reg⟨A⟩C = Reg⟨A⟩FinSet.

As a corollary, we get that the set Reg⟨A⟩ is a Boolean algebra.

1and has two distinct parallel morphisms
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Entering the profinite world



The monoid of profinite words

A profinite word u is a family (up) of elements

up ∈ M where
M ranges over all finite monoids

p : Σ → M ranges over all functions

such that for every function p : Σ → M and homomorphism φ : M → N, with M

and N finite monoids, we have uφ◦p = φ(up).

The monoid Σ̂∗ of profinite words contains Σ∗ as a submonoid, since any word

w = w1 . . .wn, where each wi ∈ Σ, induces a profinite word with components

p(w1) . . . p(wn) for all p : Σ → M.
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A profinite word which is not a word

For any finite monoid M there exists n(M) ≥ 1 such that for all elements m of M, the

element mn(M) is the idempotent power of m, which is unique.

Let a be any letter in Σ. The family of elements

up := p(a)n(M) for all p : Σ → M

is an idempotent profinite word written aω which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build

another profinite word uω which is idempotent.

From the metric viewpoint, it is the limit of the Cauchy sequence un!.
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Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3 ?
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Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3 . . . ω . . .
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Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3
∏

p prime

Zp

where Zp is the ring of p-adic numbers, i.e. Zp
∼= limn Z/pnZ.
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Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a

category Stone. Boolean algebras and their homomorphisms form a category BA.

There is an equivalence of categories

Stone ∼= BAop

which associates to every Stone space its algebra of clopens and to every Boolean

algebra its space of ultrafilters.

In particular, the monoid of profinite words Σ̂∗ has a natural topology such that

Σ̂∗ is the Stone dual of Reg⟨Σ⟩ .
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Duality: λ-terms

For any simple type A and finite set Q, we consider the subset

JAK•Q :=
{
JtKQ | t ∈ Λβη⟨A⟩

}
⊆ JAKQ

of definable elements of JAKQ . Equivalently, it is the quotient

Λβη⟨A⟩/ ≃Q with t ≃Q s if and only if JtKQ = JsKQ .

The finite set of definable elements is related to regular languages as

JAK•Q is the Stone dual of RegQ⟨A⟩
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A first observation using logical relations

If Q and Q ′ are two finite sets and R ⊆ Q × Q ′, for any simple type A we have

JAKR ⊆ JAKQ × JAKQ′

In particular, if f : Q ↠ Q ′ is a partial surjection, then so is JAKf : JAKQ ↠ JAKQ′ .

Using the fundamental lemma of logical relations, one can deduce that

if |Q| ≥ |Q ′| , then RegQ′⟨A⟩ ⊆ RegQ⟨A⟩ .

This shows that the diagram(
RegQ′⟨A⟩ RegQ⟨A⟩

)
f :Q↠Q′

is directed so we have

Reg⟨A⟩ = colimQ RegQ⟨A⟩ .
16/24



Dualizing the diagram

Reg⟨A⟩

RegQ4
⟨A⟩ . . . RegQ5

⟨A⟩ . . . RegQ6
⟨A⟩

RegQ2
⟨A⟩ . . . RegQ3

⟨A⟩

RegQ1
⟨A⟩
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Dualizing the diagram

profinite λ-terms of type A

JAK•Q4
. . . JAK•Q5

. . . JAK•Q6

JAK•Q2
. . . JAK•Q3

JAK•Q1
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Definition of profinite λ-terms

By dualizing the diagram defining Reg⟨A⟩, we obtain a codirected diagram(
JAK•f : JAK•Q JAK•Q′

)
f :Q↠Q′

and we define Λ̂βη⟨A⟩ as its limit. As expected,

Λ̂βη⟨A⟩ is the Stone dual of Reg⟨A⟩ .

Concretely: a profinite λ-term θ of type A is a family of elements θQ ∈ JAK•Q s.t.

JAK•f (θQ) = θQ′ for every partial surjection f : Q ↠ Q ′.
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The CCC of profinite λ-terms

Theorem. The profinite λ-terms assemble into a CCC ProLam such that

ProLam(A,B) := Λ̂βη⟨A ⇒ B⟩ .

This means that we a compositional notion of profinite λ-calculus.

The interpretation of the simply typed λ-calculus into ProLam yields a functor

Lam −→ ProLam

which sends a simply typed λ-term t of type A on the profinite λ-term

JtKQ where Q ranges over all finite sets.

This assignment is injective thanks to Statman’s finite completeness theorem.
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Profinite λ-terms of Church type are profinite words

The Church encoding gives a bijection

Λβη⟨ChurchΣ⟩ ∼= Σ∗ .

This extends to the profinite setting. Indeed, profinite λ-terms of simple type ChurchΣ

are exactly profinite words as we have a homeomorphism

Λ̂βη⟨ChurchΣ⟩ ∼= Σ̂∗ .
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The profinite λ-term Ω

We consider the profinite λ-term Ω of type (o ⇒ o) ⇒ o ⇒ o such that

ΩQ : f 7−→ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

where f n is the idempotent power of the element f of the finite monoid Q ⇒ Q.

Using Ω, for any Σ of cardinal n, one gets the profinite λ-term

λuλa1 . . . λan.Ω (u a1 . . . an) : ChurchΣ ⇒ ChurchΣ

which is the representation in the profinite λ-calculus of the operator

(−)ω : Σ̂∗ −→ Σ̂∗

on profinite words.
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Parametric families

Let A be a simple type. A parametric family θ is a family of elements θQ ∈ JAKQ s.t.

(θQ , θQ′) ∈ JAKR for all relations R ⊆ Q × Q ′.

Two differences with profinite λ-terms:

• the element θQ is not asked to be definable...

• ...but the family is parametric with respect to all relations.
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A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite λ-term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type ChurchΣ is a profinite λ-term.

The proof of the converse uses the λ-terms

λsλz .z : Nat and λnλsλz .s (n s z) : Nat ⇒ Nat

which behave like constructors of the simple type Nat := Church1.
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Conclusion

Current work:

• show that the natural categorical definition of profinite trees coincides with

profinite λ-terms of tree-Church types.

Future work:

• generalize the parametricity theorem to any simple type;

• investigate the universal property of ProLam.

Thank you for your attention!

Any questions?
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