Finitary semantics and profinite \-terms

Vincent Moreau, j.w.w. Sam van Gool, Paul-André Mellies and Tito Nguyén

LoVe seminar, LIPN
November the 9th, 2023

IRIF, Université Paris Cité, Inria Paris

Motivations: on automata and
A-calculus

Automata and \-calculus: the syntactic side

Any finite word can be encoded as a A-term through the Church encoding:

abbe {a,b}* ~ AMNa:o=o0)ANb:o=0)\c:0).b(b(ac)).

More generally, any finite ranked tree can be encoded as a A-term:

c c
/ / ~ Ma:o=o0=0))\c:0)ac(acc)

Gl ——w Bl (€

1. The simply typed \-calculus generalizes finite words and trees.

1/24

Automata and)\-calculus: the semantic side

If Qis afinite set, 0,: Q@ — @, dp: @ — @ and qg € Q, then
[Aa.Ab.Ac.b(b(ac))]o(0a;0p,90) = Ib(d5(da(q0))) ,

so interpreting the encoding of a words amounts to running it in an automaton.

The same observation holds for finite ranked trees: if d,: Q@ x Q@ — @Q, then

[Aa.dc.ac(acc)]g(da;q0) = da(qo0,0a(q0, q0)) -

2. Semantics of \-calculus generalize the interpretation in finite automata.

2/24

A topological approach to automata theory

If w and w’ are two finite words on a same alphabet, then

d(w,w') =27"W%) \where r(w,w’) = min{|A| | A distinguishes w and w'}
is a metric on finite words. Intuitively, two words w and w’ are

e far if there is a small automaton distinguishing them, e.g. a®" and a?"*!.

e close if only a large automaton can distinguish them, e.g. a™ and a("*1',

The metric completion T+ of T* is the space of profinite words. In particular, if v is a
profinite run and A = (Q, d, qo) is an automaton, then we get a state g, € Q.

3. Profinite words form a syntax for interpretation into finite automata.

3/24

The topic of this talk

4. We define profinite A-terms and show some of their properties.

e They assemble into a CCC ProLam.

e The Church encoding can be extended to a homeomorphism

T~ 7\\5,7(Churchz)

T]

Y* —=— Agy(Churchsx)

They provide a structure to understand some operations on profinite words.

They are the Stone dual of regular languages of A-terms.

They live in harmony with the principles of Reynolds parametricity.

4/24

Languages

Regular languages of words

Let X be a finite alphabet, M be a finite monoid and p : ¥ — M a set-theoretic
function. We write p for the associated monoid homomorphism >* — M.

For each subset F C M, the set
Le = {weX*|p(w)eF}
is a regular language. These sets assemble into the Boolean algebra
Regy(X) := {Lr:FCM}.
When M ranges over all finite monoids, we get in this way all regular languages:

Reg(f) = [JRegm(%) .
M

5/24

The Church encoding for words

Any natural number n can be encoded in the simply typed A-calculus as

AMs:o=0)Az:0).5(...(s2)) : (0=>0)=0=0.
n applications

A natural number is just a word over a one-letter alphabet.

For any alphabet ¥ = {a1,...,an}, any word w = aj, ... aj, € £* can be encoded as
Mai:0o=0)...Many:0=0).\c:0).3;,(...(a; ¢))
which is a closed A-term of type

Chilfchy === NCyE SN (0"——C) — O —JO .

N times

6/24

Categorical interpretation

Let C be a cartesian closed category and ¢ be one of its objects.
For any simple type A built from o, we define the object [A], by induction as
[o], = ¢ and [A= B]. = [Al.=[B]. -
Using the cartesian closed structure, one defines an interpretation function
[[_]]c : /\577<A> =u C(lv[[A]]c) :
Given an object ¢ of C used to interpret o, every word w over the alphabet
Y = {a, b}, seen as a A\-term, is interpreted as a morphism
sl gieeaa=aieE @6 = ¢

which describes how the word will interact with a deterministic automaton.

7/24

Regular languages of \-terms
The notion of regular language of A-terms has been introduced by Salvati.
For any object ¢ and any subset £ C C(1, [A]_), we define the language
Lr = {tehs, ()|l €F) .
All the languages recognized by ¢ assemble into a Boolean algebra
Reg(A) = {Lr|FCCLIAL)} -
We can then make ¢ range over all objects of C, and we get the definition

Reg(A) = URegC<A>.

Notice that Reg(A) has no reason to be a Boolean algebra for the moment.

8/24

Salvati generalizes Kleene in FinSet

The Church encoding induces an isomorphism of Boolean algebras
Reg(Churchz>F;nset = Reg(Z) .

In the CCC FinSet, maps 1 — Q are elements g € Q.

Indeed, every automaton (Q, 4, qo, Acc) induces a subset
F = {qe[Churchs], | (4, qo) € Acc}
On the other hand, every g € [Churchs] induces a finite family of automata
(Q,0,90,{q(d, q0)}) forall 6 : X x Q@ = Q and gg € Q

which determines the behavior of g, and from which one gets finite monoids.

9/24

About FinSet and other CCCs

We have seen that FinSet gives the usual notion of regular language for Church types.

If Cis a CCC, we say that it is finitely pointable if there exists a faithful

product-preserving functor
P : C — FinSet.

Finitely pointable CCCs are the ones which can be embedded into locally finite
well-pointed ones. Example: [J, FinSet], where J is a finite category.

Theorem. If C is finitely pointable!, then Reg(A)c = Reg(A)Finset.

As a corollary, we get that the set Reg(A) is a Boolean algebra.

land has two distinct parallel morphisms

10/24

Entering the profinite world

The monoid of profinite words

A profinite word v is a family (up) of elements

M ranges over all finite monoids

up € M where)
p: X — M ranges over all functions

such that for every function p : ¥ — M and homomorphism ¢ : M — N, with M
and N finite monoids, we have ugop = p(up).

The monoid X* of profinite words contains ©* as a submonoid, since any word

W = wy...W,, where each w; € X, induces a profinite word with components

p(wi)...p(wp) forall p: X — M.

11/24

A profinite word which is not a word

For any finite monoid M there exists n(M) > 1 such that for all elements m of M, the
element m"(M) is the idempotent power of m, which is unique.

Let a be any letter in . The family of elements
u, = p(a)"M forallp: X — M

is an idempotent profinite word written a* which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build

another profinite word u* which is idempotent.

From the metric viewpoint, it is the limit of the Cauchy sequence u"'.

12/24

Profinite natural numbers

What does {a/}* = I§I the monoid of profinite natural numbers, look like?

13/24

Profinite natural numbers

What does {a/}* = I§I the monoid of profinite natural numbers, look like?

13/24

Profinite natural numbers

What does {a/}* = Igl the monoid of profinite natural numbers, look like?

0 1 2 3 II z

p prime

where Zj, is the ring of p-adic numbers, i.e. Z, = |lim,Z/p"Z.

13/24

Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a
category Stone. Boolean algebras and their homomorphisms form a category BA.

There is an equivalence of categories
Stone = BA%®

which associates to every Stone space its algebra of clopens and to every Boolean
algebra its space of ultrafilters.

In particular, the monoid of profinite words X* has a natural topology such that

T+ is the Stone dual of Reg(X) .

14/24

Duality: \-terms

For any simple type A and finite set @, we consider the subset

Al = {ltoltens (A} C [Alg
of definable elements of [A],. Equivalently, it is the quotient

Agn(AY/ ~q with t ~¢ s if and only if [t]o = [s]¢ -

The finite set of definable elements is related to regular languages as

A% is the Stone dual of Rego(A)

15/24

A first observation using logical relations

If @ and Q' are two finite sets and R C @ x Q’, for any simple type A we have
[Alr < [Alg x [Aly
In particular, if f: @ — Q" is a partial surjection, then so is [A]; : [A] o — [Al /-
Using the fundamental lemma of logical relations, one can deduce that
if |Q > |Q|, then Regg(A) C RegglA) .
This shows that the diagram
(Reng<A> — RegQ<A))f:Q_»QI

is directed so we have
Reg(A) = colimgRegqg(A) .
16/24

Dualizing the diagram

Reg(A)
= (
Regg, (A) e Reg;%<A> - i Reg o, (A)

17/24

Dualizing the diagram

profinite A-terms of type A

!
!
!
- I ~
!
I

(AL, < no 7 AL,

\
/

[[A]] @]

[[A]] Q3

A%, /
\»

17/24

Definition of profinite \-terms

By dualizing the diagram defining Reg(A), we obtain a codirected diagram
(141 : 141 — [AIY)

and we define /A\gn(A) as its limit. As expected,

Kﬁn<A> is the Stone dual of Reg(A) .

Concretely: a profinite \-term 6 of type A is a family of elements f¢g € [[A]]'Q s.t.

[Al}(8g) = O¢ for every partial surjection f : @ — Q'.

18/24

The CCC of profinite \-terms

Theorem. The profinite A\-terms assemble into a CCC ProLam such that
ProLam(A,B) = Ag, (A= B).

This means that we a compositional notion of profinite A-calculus.

The interpretation of the simply typed A-calculus into ProLam vyields a functor
Lam — ProLam
which sends a simply typed A-term t of type A on the profinite A-term
[tlo where Q ranges over all finite sets.

This assignment is injective thanks to Statman's finite completeness theorem.

19/24

Profinite \-terms of Church type are profinite words

The Church encoding gives a bijection
o Churchise—— S5 A

This extends to the profinite setting. Indeed, profinite A-terms of simple type Churchy
are exactly profinite words as we have a homeomorphism

—

Agp(Churchs) = T*.

20/24

The profinite \-term

We consider the profinite A-term Q of type (0 = ©) = © = o such that

Qg9 : f +— fo---of
—_——

n times

where f" is the idempotent power of the element f of the finite monoid Q = Q.

Using Q, for any X of cardinal n, one gets the profinite A-term
Auday ... Aap.Q(vay ... a,) : Churchy = Churchy
which is the representation in the profinite A\-calculus of the operator
(S
on profinite words.

21/24

Parametric families

Let A be a simple type. A parametric family 6 is a family of elements f¢g € [[A]}Q s.t.
(0q.0¢) € [Alg for all relations R C Q x Q".

Two differences with profinite A-terms:

o the element O is not asked to be definable...

e ...but the family is parametric with respect to all relations.

22/24

A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite A-term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type Churchy is a profinite A-term.

The proof of the converse uses the A-terms
AsAz.z : Nat and AnAsAz.s(nsz) : Nat = Nat

which behave like constructors of the simple type Nat := Church;.

23/24

Conclusion

Current work:

e show that the natural categorical definition of profinite trees coincides with
profinite A-terms of tree-Church types.

Future work:

e generalize the parametricity theorem to any simple type;

e investigate the universal property of ProLam.

24/24

Conclusion

Current work:

e show that the natural categorical definition of profinite trees coincides with
profinite A-terms of tree-Church types.

Future work:

e generalize the parametricity theorem to any simple type;

e investigate the universal property of ProLam.

Thank you for your attention!

Any questions?

24/24

Bibliography

[Geh16]

[Mel17]

[Pin]

[Sal09]

Mai Gehrke. “Stone duality, topological algebra, and recognition”. In:
Journal of Pure and Applied Algebra 220.7 (2016), pp. 2711-2747. 1sSN: 0022-4049.
DOL: https://doi.org/10.1016/j.jpaa.2015.12.007.

Paul-André Melliés. “Higher-order parity automata”. In: Proceedings of the
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, 2017. 2017, pp. 1-12.

Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: 26th
International Symposium on Theoretical Aspects of Computer Science STACS 2009.
IBFI Schloss Dagstuhl. URL: https://hal.inria.fr/inria-00359677.

Sylvain Salvati. ““Recognizability in the Simply Typed
Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and
Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:
Springer, 2009, pp. 48-60.

https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://hal.inria.fr/inria-00359677

	Motivations: on automata and -calculus
	Languages
	Entering the profinite world
	Appendix

