
Finitary semantics and regular languages of λ-terms

Vincent Moreau, joint work with Tito Nguyễn

CSL 2024

Friday the 23rd of February, 2024

IRIF, Université Paris Cité, Inria Paris

Introduction & motivations

The Church encoding

The type of words over a two-letter alphabet {a, b} is

Church{a,b} := (o ⇒ o)︸ ︷︷ ︸
a

⇒ (o ⇒ o)︸ ︷︷ ︸
b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

.

Any finite word can be encoded as a λ-term through the Church encoding:

abb ∈ {a, b}∗ ⇝ λ(a : o ⇒ o).λ(b : o ⇒ o).λ(e : o). b (b (a e)) .

→ The simply typed λ-calculus generalizes finite words.

1/16

Languages of λ-terms: the semantic side

If Q is a finite set, then any M ∈ Λ(Church{a,b}) can be interpreted as

JMKQ ∈ (Q ⇒ Q) ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q = JChurch{a,b}KQ .

For all δa : Q → Q, δb : Q → Q and q0 ∈ Q, then

Jλa.λb.λc . b (b (a c))KQ(δa, δb, q0) = δb(δb(δa(q0))) ,

→ Semantics of λ-calculus in finite sets generalize the interpretation in DFAs.

2/16

Language λ-terms: the syntactic side

We consider the type

Bool := o ⇒ o ⇒ o

whose only inhabitants, up to βη-conversion, are

true := λx .λy .x and false := λx .λy .y .

Hillebrand and Kanellakis have shown how an automaton can be encoded as a λ-term

R ∈ Λ(((B ⇒ B) ⇒ (B ⇒ B) ⇒ B ⇒ B)︸ ︷︷ ︸
Church{a,b} with o replaced by B

⇒ Bool)

for some simple type B representing the set of finite states.

→ Regular languages can be recovered syntactically from the λ-calculus.

3/16

This work

→ We show that semantic and syntactic languages of λ-terms coincide.

We can reason by proving the three following implications:

Regular for some finitary CCC

Syntactically regular Regular for FinSet
We will see this!

where fintary = locally finite and well-pointed.

To achieve this, we will crucially use a new technique called squeezing.

4/16

Languages of λ-terms

Cartesian closed categories

A CCC is a category C which has cartesian products, i.e. objects a× b such that

a morphism c → a× b

∼=
two morphisms c → a and c → b

with a terminal object 1, and which has exponentials, i.e. objects a ⇒ b such that

a morphism a× c → b

∼=
a morphism c → a ⇒ b.

→ We can interpret the simply typed λ-calculus.

5/16

Interpretation: the universal property of λ-terms

The category Lam, whose objects are types and where

a morphism A → B is a λ-terms t ∈ Λ(A ⇒ B)

is the free CCC on one object o.

This means that, for every object c of C, there exists a unique CCC functor

Lam

1 C

o

c

J−Kc .

Its action on morphisms restricts to a function on closed λ-terms

J−Kc : Lam(1,A)︸ ︷︷ ︸
∼= Λ(A)

−→ C(1, JAKc) .

6/16

Semantic languages of λ-terms

For words, a morphism φ : Σ∗ → M into a finite monoid and F ⊆ M induce

LF := {w ∈ Σ∗ | φ(w) ∈ F} .

The notion of regular language of λ-terms has been introduced by Salvati.

For λ-terms of type A, any object c of C and F ⊆ C(1, JAKc) induce

LF := {M ∈ Λ(A) | JMKc ∈ F} .

Definition. A language of λ-terms is recognized by C if it is of the form LF .

Interpreting in the CCC of finite sets yields the deterministic automata semantics.

7/16

Syntactic languages of λ-terms

When we take C = Lam itself, any type B gives a CCC functor

Lam

1 Lam

o

B

(−)[B]

For example, it assigns:

(o ⇒ o) ⇒ o ⇒ o ⇝ (B ⇒ B) ⇒ B ⇒ B

λ(f : o ⇒ o).λ(x : o).f (f x) ⇝ λ(f : B ⇒ B).λ(x : B).f (f x)

Any λ-term R ∈ Λ(A[B] ⇒ Bool) induces the language of type A defined as

Lr := {M ∈ Λ(A) | R M[B] =βη true} .

Definition. A language of λ-terms is syntactically regular if it is of the form Lr .

8/16

Squeezing and logical relations

Squeezing structure

Definition. A squeezing structure on a CCC C is the data of two wide

subcategories Cleft and Cright of C, with associated notations
l−→ and

r−→, such that

• Cleft and Cright are stable under finite cartesian products and exponentials1

• for every object c of C, there exists two objects Lc and Rc of C together with

morphisms

L1
l−→ 1 Lc×c ′

l−→ Lc × Lc ′ Lc⇒c ′
l−→ Rc ⇒ Lc ′

1
r−→ R1 Rc × Rc ′

r−→ Rc×c ′ Lc ⇒ Rc ′
r−→ Rc⇒c ′ .

1following the right polarities

9/16

The squeezing category

If C comes with a squeezing structure, we write Sqz(C) for the full subcategory of

objects c such that there exists morphisms

Lc
l−→ c and c

r−→ Rc .

Then, Sqz(C) is a sub-CCC of C, so for every type A, there exists morphisms

LJAKc
l−→ JAKc and JAKc

r−→ RJAKc .

This is related to normalization by evaluation and Tait’s yoga.

10/16

Logical relations, i.e. sconing

For C and D two CCCs, the category Log(C,D) of logical relations has as objects

the tuples (c , d ,⊩) where ⊩ ⊆ C(1, c)×D(1, d)

and as morphisms from (c , d ,⊩) to (c ′, d ′,⊩′) the pairs (f , g) such that for all x , y ,

if x ⊩ y , then f ◦ x ⊩′ g ◦ y . .

The assignement (c , d ,⊩) 7→ (c , d) respects the CCC structure, which gives back the

lemma of logical relation: for any type A and λ-term M ∈ Λ(A),

(JMKc , JMKd) ∈ JAK(c,d ,⊩) ⊆ JAKc × JAKd .

11/16

Logical relations, like double categories (1/2)

We represent a relation (c, d ,⊩) as

c d⊩p .

We represent a morphism (f , g) from (c , d ,⊩) to (c ′, d ′,⊩′) as a square

c d

c ′ d ′

⊩p

⊩
p

f g .

The categorical structure of Log(C,D) amounts to compose squares vertically.

12/16

Logical relations, like double categories (2/2)

If we have a relation

c d⊩p

then any type A, we have the relation

JAKc JAKd
JAK⊩p

and for every λ-term M ∈ Λ(A), we have a morphism

1 1

JAKc JAKd

p

JAK⊩
p

JMKc JMKd

which is exactly the fundamental lemma of logical relations.

13/16

Types, finite sets and their squeezing structure

We consider the category Log(Lam,FinSet), whose objects are tuples (B,Q,⊩).

For every finite set Q, there is a bijection

o
Q ⇒ o Q

∼Qp

and we let L(B,Q,⊩) and R(B,Q,⊩) be this bijection.

We define left and right morphisms to be the squares with identities on the side of

sets. By squeezing, we thus have that, for every type A, there exists morphisms

o
JAKQ ⇒ o JAKQ

A[oQ ⇒ o] JAKQ

∼JAKQp

JAK∼Q

p

Id and

A[oQ ⇒ o] JAKQ

o
JAKQ ⇒ o JAKQ

JAK∼Qp

∼JAKQ
p

Id

14/16

Proving the theorem

Let F ⊆ JAKQ represented by χ : JAKQ → 2. For every M ∈ Λ(A), we have

1 1

A[oQ ⇒ o] JAKQ

p

JAK∼Q

p

M[oQ⇒o] JMKQ

A[oQ ⇒ o] JAKQ

o
JAKQ ⇒ o JAKQ

JAK∼Qp

∼JAKQ
p

Id

o
JAKQ ⇒ o JAKQ

Bool 2

∼JAKQp

∼2
p

o
χ⇒o χ

which, when composed together, yield R such that

1 1

Bool 2

R M[oQ⇒o]

p

∼2
p

χ(JMKQ) .

In other words:

R M[oQ ⇒ o] = true if and only if JMKQ ∈ F 15/16

Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic.

• Study what kind of conditions can be encoded as regular languages of

higher-order terms.

Thank you for your attention!

Any questions?

16/16

Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic.

• Study what kind of conditions can be encoded as regular languages of

higher-order terms.

Thank you for your attention!

Any questions?

16/16

Bibliography

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. “On the Expressive Power of

Simply Typed and Let-Polymorphic Lambda Calculi”. In: Proceedings,

11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New

Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 253–263. doi:

10.1109/LICS.1996.561337.

[Mel17] Paul-André Melliès. “Higher-order parity automata”. In: Proceedings of the

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed

Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and

Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:

Springer, 2009, pp. 48–60.

https://doi.org/10.1109/LICS.1996.561337

	Introduction & motivations
	Languages of -terms
	Squeezing and logical relations
	Appendix

