Finitary semantics and regular languages of λ -terms

Vincent Moreau, joint work with Tito Nguyễn

ASV day 2023 December the 6th, 2023

IRIF, Université Paris Cité, Inria Paris

Finite words

Let $\Sigma = \{a, b\}$ be a two-letter alphabet. We write the word $aab \in \Sigma^*$ as

 $a, b \vdash aab$.

Words can be encodes as finite ranked trees: each letter of Σ has arity 1, and we add a constant of arity 0.

We write the ranked tree associated to *aab* as

 $a: 1, b: 1, c: 0 \vdash b(a(a(c)))$.

Finite trees

Let Σ be the ranked alphabet $\{a : 2, b : 1, c : 0\}$. Then, the tree

is represented by the judgment

 $a: 2, b: 1, c: 0 \vdash a(a(c, b(c)), b(b(c)))$.

Adding simple types

The ranked alphabet $\{a: 2, b: 1, c: 0\}$ can be seen as the typed context

$$a: o^2 \Rightarrow o, b: o \Rightarrow o, c: o$$
.

With that in mind, the tree

is represented by the typed judgment

$$a: o^2 \Rightarrow o, b: o \Rightarrow o, c: o \vdash a(a(c, b(c)), b(b(c))): o$$
.

 \rightarrow The simply typed $\lambda\text{-calculus}$ generalizes finite ranked trees.

The λ -abstraction

Consider the typed context

$$\rightarrow$$
 : $\mathfrak{o}^2 \Rightarrow \mathfrak{o}, \ \forall$: $(\mathfrak{o} \Rightarrow \mathfrak{o}) \Rightarrow \mathfrak{o}, \ \bot$: \mathfrak{o} .

The \forall takes a function as an argument. They can be built using the λ -abstraction. The following λ -terms

 $\begin{array}{l} \forall \ (\lambda(\varphi: \mathfrak{o}). \varphi \to \varphi) \\ \forall \ (\lambda(\varphi: \mathfrak{o}). ((\varphi \to \bot) \to \bot) \to \varphi) \\ \forall \ (\lambda(\varphi: \mathfrak{o}). \forall \ (\lambda(\psi: \mathfrak{o}). ((\varphi \to \psi) \to \varphi) \to \varphi) \end{array}$

are all of type o in the fixed context.

Closing the $\lambda\text{-terms}$

The λ -abstraction moves variables from the context into the λ -term:

Repeating this on trees, we obtain closed λ -terms like

$$a: o^2 \Rightarrow o, b: o \Rightarrow o, c: o \vdash a(a(c, b(c)), b(b(c))): o$$

 $\downarrow \downarrow \downarrow \downarrow$

 $\vdash \lambda(a: \mathfrak{o}^2 \Rightarrow \mathfrak{o}). \lambda(b: \mathfrak{o} \Rightarrow \mathfrak{o}). \lambda(c: \mathfrak{o}). a(a(c, b(c)), b(b(c))): \text{Church}_{[2,1,0]}$

with no free variable and which are of type

$$\mathsf{Church}_{[2,1,0]} \quad := \quad ({\scriptscriptstyle {\mathbb O}}^2 \Rightarrow {\scriptscriptstyle {\mathbb O}}) \Rightarrow ({\scriptscriptstyle {\mathbb O}} \Rightarrow {\scriptscriptstyle {\mathbb O}}) \Rightarrow {\scriptscriptstyle {\mathbb O}} \Rightarrow {\scriptscriptstyle {\mathbb O}} \; .$$

Two notions of recognition

Language of λ -terms: the semantic side

If Q is a finite set, then any tree t: Church_[2,1,0] can be interpreted as

$$\llbracket t \rrbracket_Q \quad \in \quad (Q^2 \Rightarrow Q) \Rightarrow (Q \Rightarrow Q) \Rightarrow Q \Rightarrow Q \; .$$

For all $\delta_a : Q^2 \to Q, \, \delta_b : Q \to Q, \, \delta_c \in Q$, we have

 $\llbracket \lambda a. \lambda b. \lambda c. a(a(c, b(c)), b(b(c))) \rrbracket_Q(\delta_a, \delta_b, \delta_c)$

 $\delta_{\mathbf{a}}(\delta_{\mathbf{a}}(\delta_{c},\delta_{\mathbf{b}}(\delta_{c})),\delta_{\mathbf{b}}(\delta_{\mathbf{b}}(\delta_{c}))) .$

 \rightarrow Interpreting the λ -calculus in finite sets specializes to runs in deterministic finite bottom-up tree automata.

Semantic languages of λ -terms

In the case of words, any homomorphism $\varphi : \Sigma^* \to M$ into a finite monoid, together with a subset $F \subseteq M$, induces the regular language of finite words

$$L_F := \{w \in \Sigma^* \mid arphi(w) \in F\} \;.$$

The notion of regular language of λ -terms has been introduced by Salvati. Let A be a simple type. For any finite set Q and any subset $F \subseteq \llbracket A \rrbracket_Q$, we define

$$L_F := \{t : A \mid \llbracket t \rrbracket_c \in F\} .$$

Definition. A language of λ -terms is semantically recognizable if it is of the form L_F .

Quantified boolean formulas

We have seen that λ -terms of the type

$$\mathsf{QBF} := \underbrace{\mathfrak{O}^2 \Rightarrow \mathfrak{O}}_{\rightarrow} \Rightarrow \underbrace{(\mathfrak{O} \Rightarrow \mathfrak{O}) \Rightarrow \mathfrak{O}}_{\forall} \Rightarrow \underbrace{\mathfrak{O}}_{\perp} \Rightarrow \mathfrak{O}$$

By taking $Q = \{0, 1\}$ with the transitions

$$\delta_{
ightarrow}\in Q^2\Rightarrow Q \qquad \delta_{orall}\in (Q\Rightarrow Q)\Rightarrow Q \qquad \delta_{\perp}\in Q \;,$$

for any λ -term t : QBF, we have

t represents a true formula $\iff [t]_Q(\delta_{\rightarrow}, \delta_{\forall}, \delta_{\perp}) = 1$.

which shows that true formula form a semantically recognizable language.

Language of λ -terms: the syntactic side

We consider the type

Bool := $\circ \Rightarrow \circ \Rightarrow \circ$

whose only inhabitants, up to $\beta\eta$ -conversion, are

true := $\lambda(a: 0) \cdot \lambda(b: 0) \cdot a$ and false := $\lambda(a: 0) \cdot \lambda(b: 0) \cdot b$.

An automaton can be encoded as a closed λ -term of type

$$r$$
 : $((B^2 \Rightarrow B) \Rightarrow (B \Rightarrow B) \Rightarrow B \Rightarrow B) \Rightarrow Bool$

for some simple type B representing the set of finite states.

 \rightarrow Regular languages can be recovered syntactically from the λ -calculus.

If A is a simple type, then A[B] is the substitution of B for ϕ in A. If t is λ -term of type A, then t[B] is a λ -term of type t[A], defined inductively as $(\lambda(d:D).t)[B] = \lambda(d:D[B]).t[B]$ $(t \ u)[B] = t[B] \ u[B]$ d[B] = dFor any simple type B, any λ -term $r: A[B] \Rightarrow$ Bool induces a language $L_r := \{t:A \mid r \ t[B] =_{\beta n} \ true\}$.

Definition. A language of λ -terms is syntactically regular if it is of the form L_r .

Our theorem

It was known that, at type $\operatorname{Church}_{\Sigma}$ and L a language of λ -terms of type $\operatorname{Church}_{\Sigma}$, L is semantically recognizable $\iff L$ is syntactically regular which is also equivalent to being regular in the usual sense. **Theorem (M., Nguyen).** For every type A and L a language of λ -terms of type A, L is semantically recognizable $\iff L$ is syntactically regular.

Actually stronger: still hold when replacing finite sets by other sufficiently well-behaved finitary model of the λ -calculus! For example:

- deterministic models (finite sets and functions),
- nondeterministic models (finite Scott domains).

Conclusion

Future work:

- Finitary intensional models of the simply typed λ -calculus, e.g. sequential algorithms, some qualitative models of linear logic.
- Study different calculi, e.g. linear, polymorphic, with effects.
- Study which languages of formulas are regular languages of λ -terms.

Conclusion

Future work:

- Finitary intensional models of the simply typed λ -calculus, e.g. sequential algorithms, some qualitative models of linear logic.
- Study different calculi, e.g. linear, polymorphic, with effects.
- Study which languages of formulas are regular languages of λ -terms.

Thank you for your attention!

Any questions?

Bibliography

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. "On the Expressive Power of Simply Typed and Let-Polymorphic Lambda Calculi". In: Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 253–263. DOI: 10.1109/LICS.1996.561337.

- [Mel17] Paul-André Melliès. "Higher-order parity automata". In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 2017. 2017, pp. 1–12.
- [Sal09] Sylvain Salvati. "Recognizability in the Simply Typed Lambda-Calculus". In: 16th Workshop on Logic, Language, Information and Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan: Springer, 2009, pp. 48–60.