
Finitary semantics and regular languages of λ-terms

Vincent Moreau, joint work with Tito Nguyễn

ASV day 2023

December the 6th, 2023

IRIF, Université Paris Cité, Inria Paris



Finite words

Let Σ = {a, b} be a two-letter alphabet. We write the word aab ∈ Σ∗ as

a, b ⊢ aab .

Words can be encodes as finite ranked trees: each letter of Σ has arity 1, and we add a

constant of arity 0.

We write the ranked tree associated to aab as

a : 1, b : 1, c : 0 ⊢ b(a(a(c))) .

1/13



Finite trees

Let Σ be the ranked alphabet {a : 2, b : 1, c : 0}. Then, the tree

a

a

c b

c

b

b

c

is represented by the judgment

a : 2, b : 1, c : 0 ⊢ a(a(c , b(c)), b(b(c))) .

2/13



Adding simple types

The ranked alphabet {a : 2, b : 1, c : 0} can be seen as the typed context

a : o2 ⇒ o, b : o ⇒ o, c : o .

With that in mind, the tree

a

a

c b

c

b

b

c

is represented by the typed judgment

a : o2 ⇒ o, b : o ⇒ o, c : o ⊢ a(a(c , b(c)), b(b(c))) : o .

→ The simply typed λ-calculus generalizes finite ranked trees. 3/13



The λ-abstraction

Consider the typed context

→ : o2 ⇒ o, ∀ : (o ⇒ o) ⇒ o, ⊥ : o .

The ∀ takes a function as an argument. They can be built using the λ-abstraction.

The following λ-terms

∀ (λ(φ : o). φ → φ)

∀ (λ(φ : o). ((φ → ⊥) → ⊥) → φ)

∀ (λ(φ : o). ∀ (λ(ψ : o). ((φ → ψ) → φ) → φ)

are all of type o in the fixed context.

4/13



Closing the λ-terms

The λ-abstraction moves variables from the context into the λ-term:

a : A, b : B, c : C , d : D ⊢ t : T

⇝

a : A, b : B, c : C ⊢ λ(d : D). t : D ⇒ T .

Repeating this on trees, we obtain closed λ-terms like

a : o2 ⇒ o, b : o ⇒ o, c : o ⊢ a(a(c , b(c)), b(b(c))) : o

⇝ ⇝ ⇝

⊢ λ(a : o2 ⇒ o). λ(b : o ⇒ o). λ(c : o). a(a(c , b(c)), b(b(c))) : Church[2,1,0]

with no free variable and which are of type

Church[2,1,0] := (o2 ⇒ o) ⇒ (o ⇒ o) ⇒ o ⇒ o .

5/13



Two notions of recognition

finite words

finite trees

λ-terms

semantical recognition syntactic recognition
They are the same languages.

6/13



Language of λ-terms: the semantic side

If Q is a finite set, then any tree t : Church[2,1,0] can be interpreted as

JtKQ ∈ (Q2 ⇒ Q) ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q .

For all δa : Q
2 → Q, δb : Q → Q, δc ∈ Q, we have

Jλa. λb. λc . a(a(c , b(c)), b(b(c)))KQ(δa, δb, δc)

=

δa(δa(δc , δb(δc)), δb(δb(δc))) .

→ Interpreting the λ-calculus in finite sets specializes to runs in deterministic

finite bottom-up tree automata.

7/13



Semantic languages of λ-terms

In the case of words, any homomorphism φ : Σ∗ → M into a finite monoid, together

with a subset F ⊆ M, induces the regular language of finite words

LF := {w ∈ Σ∗ | φ(w) ∈ F} .

The notion of regular language of λ-terms has been introduced by Salvati.

Let A be a simple type. For any finite set Q and any subset F ⊆ JAKQ , we define

LF := {t : A | JtKc ∈ F} .

Definition. A language of λ-terms is semantically recognizable if it is of the form LF .

8/13



Quantified boolean formulas

We have seen that λ-terms of the type

QBF := o
2 ⇒ o︸ ︷︷ ︸
→

⇒ (o ⇒ o) ⇒ o︸ ︷︷ ︸
∀

⇒ o︸︷︷︸
⊥

⇒ o

By taking Q = {0, 1} with the transitions

δ→ ∈ Q2 ⇒ Q δ∀ ∈ (Q ⇒ Q) ⇒ Q δ⊥ ∈ Q ,

for any λ-term t : QBF, we have

t represents a true formula ⇐⇒ JtKQ(δ→, δ∀, δ⊥) = 1 .

which shows that true formula form a semantically recognizable language.

9/13



Language of λ-terms: the syntactic side

We consider the type

Bool := o ⇒ o ⇒ o

whose only inhabitants, up to βη-conversion, are

true := λ(a : o).λ(b : o). a and false := λ(a : o).λ(b : o). b .

An automaton can be encoded as a closed λ-term of type

r : ((B2 ⇒ B) ⇒ (B ⇒ B) ⇒ B ⇒ B) ⇒ Bool

for some simple type B representing the set of finite states.

→ Regular languages can be recovered syntactically from the λ-calculus.

10/13



Syntactic languages of λ-terms

If A is a simple type, then A[B] is the substitution of B for o in A.

If t is λ-term of type A, then t[B] is a λ-term of type t[A], defined inductively as

(λ(d : D).t) [B] = λ(d : D[B]).t[B] (t u) [B] = t[B] u[B] d [B] = d

For any simple type B, any λ-term r : A[B] ⇒ Bool induces a language

Lr := {t : A | r t[B] =βη true} .

Definition. A language of λ-terms is syntactically regular if it is of the form Lr .

11/13



Our theorem

It was known that, at type ChurchΣ and L a language of λ-terms of type ChurchΣ,

L is semantically recognizable ⇐⇒ L is syntactically regular

which is also equivalent to being regular in the usual sense.

Theorem (M., Nguyen). For every type A and L a language of λ-terms of type A,

L is semantically recognizable ⇐⇒ L is syntactically regular.

Actually stronger: still hold when replacing finite sets by other sufficiently well-behaved

finitary model of the λ-calculus! For example:

• deterministic models (finite sets and functions),

• nondeterministic models (finite Scott domains).

12/13



Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic, with effects.

• Study which languages of formulas are regular languages of λ-terms.

Thank you for your attention!

Any questions?

13/13



Conclusion

Future work:

• Finitary intensional models of the simply typed λ-calculus, e.g. sequential

algorithms, some qualitative models of linear logic.

• Study different calculi, e.g. linear, polymorphic, with effects.

• Study which languages of formulas are regular languages of λ-terms.

Thank you for your attention!

Any questions?

13/13



Bibliography

[HK96] Gerd G. Hillebrand and Paris C. Kanellakis. “On the Expressive Power of

Simply Typed and Let-Polymorphic Lambda Calculi”. In: Proceedings, 11th

Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,

USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 253–263. doi:

10.1109/LICS.1996.561337.

[Mel17] Paul-André Melliès. “Higher-order parity automata”. In: Proceedings of the

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed Lambda-Calculus”.

In: 16th Workshop on Logic, Language, Information and Computation. Vol. 5514.

Lecture Notes in Computer Science. Tokyo Japan: Springer, 2009, pp. 48–60.

https://doi.org/10.1109/LICS.1996.561337

	Appendix

