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Finite words

Let ¥ = {a, b} be a two-letter alphabet. We write the word aab € ¥* as
aybplk a5

Words can be encodes as finite ranked trees: each letter of ¥ has arity 1, and we add a
constant of arity 0.

We write the ranked tree associated to aab as

a s @ e | b@EIC))) -
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Finite trees

Let X be the ranked alphabet {a:2,5:1,¢c:0}. Then, the tree
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0 —=ab~ =5~

is represented by the judgment

a:2,b:1,c:0 F a(a(c, b(c)), b(b(c))) -
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Adding simple types

The ranked alphabet {a:2,5:1,¢c:0} can be seen as the typed context
a:0°=>0, b:0o=0,c:0.

With that in mind, the tree
a
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GG
is represented by the typed judgment
a:0°=o0,b:0=o0,c:0 F a(a(c, b(c)), b(b(c))) : o .

— The simply typed \-calculus generalizes finite ranked trees. 3/13



The )\-abstraction

Consider the typed context

—:0°=>0, V:(0=0)=>0, L:0.

The V takes a function as an argument. They can be built using the A-abstraction.

The following A-terms

V(Aep:0).0 = o)
V(Me:0).((p— 1) = 1) = ¢)
V (Alp:0).V (A(# : 0)-((¢ = ) = ©) = ¢)

are all of type o in the fixed context.
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Closing the \-terms

The M-abstraction moves variables from the context into the \-term:
a:Ab:B,c:C,d:D + t:T

$
a WA b B'cG P X(d Dy ¥: DI=T 4

Repeating this on trees, we obtain closed A-terms like
a:0°=>o0,b:0=0,c:0 F a(ac, b(c)), b(b(c))) : o

$4¢
F AMa:o® = 0).\(b: o= o0).\(c: o). a(a(c, b(c)), b(b(c))) : Churchpy 1 g

with no free variable and which are of type

Churchp 19 = (0®’=0)= (0=>0)=>0=>0.
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Two notions of recognition

finite words

[

finite trees

/

A-terms

A VR

semantical recognition . syntactic recognition
g They are the same languages. Y g

6/13



Language of \-terms: the semantic side

If Q is a finite set, then any tree t : Churchpy; o] can be interpreted as

[tlo € (@=Q=QR=Q)=Q=Q.

Forall 6,: Q2 = Q, 6,: Q = Q, 6. € Q, we have

[Aa. Ab. Ac. a(a(c, b(c)), b(b(c)))](da;s,dc)

0a(8a(de, 05(dc)) 06(35(0c))) -

— Interpreting the \-calculus in finite sets specializes to runs in deterministic
finite bottom-up tree automata.
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Semantic languages of \-terms

In the case of words, any homomorphism ¢ : ¥* — M into a finite monoid, together
with a subset F C M, induces the regular language of finite words

Le = {weX*|p(w)eF}.

The notion of regular language of A-terms has been introduced by Salvati.

Let A be a simple type. For any finite set Q and any subset F C [A],, we define

B = {t A [t]E£F; .

Definition. A language of A-terms is semantically recognizable if it is of the form L.
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Quantified boolean formulas

We have seen that A-terms of the type

QBF = o’=o0o=(0=0)=0=_0 =o0
N —~—
— ’ L

By taking Q = {0, 1} with the transitions
i,e@=Q &e(@=>Q=>Q d.€Q,

for any A-term t : QBF, we have

t represents a true formula <= [t[o(d-,6,,0.)=1.

which shows that true formula form a semantically recognizable language.
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Language of \-terms: the syntactic side

We consider the type
Bool = o=o0=o0

whose only inhabitants, up to Sn-conversion, are
true := Aa:0).\(b:0).a and false := A(a:0).A\(b:0).
An automaton can be encoded as a closed A-term of type
r : ((B>= B)= (B= B)= B = B)= Bool

for some simple type B representing the set of finite states.

— Regular languages can be recovered syntactically from the \-calculus.
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Syntactic languages of \-terms

If Ais a simple type, then A[B] is the substitution of B for o in A.

If tis A-term of type A, then t[B] is a A-term of type t[A], defined inductively as
(Md : D).t)[B] = A(d: D[B]).t[B] (t u)[B] = t[B] u[B] dB] = d
For any simple type B, any A-term r : A[B] = Bool induces a language

= {t AN (Bl =gNrue] .

Definition. A language of A-terms is syntactically regular if it is of the form L,.
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Our theorem

It was known that, at type Churchy and L a language of A-terms of type Churchy,
L is semantically recognizable = <= L is syntactically regular

which is also equivalent to being regular in the usual sense.

Theorem (M., Nguyen). For every type A and L a language of A-terms of type A,

L is semantically recognizable = <= L is syntactically regular.

Actually stronger: still hold when replacing finite sets by other sufficiently well-behaved
finitary model of the A-calculus! For example:

e deterministic models (finite sets and functions),

e nondeterministic models (finite Scott domains).
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Conclusion

Future work:

e Finitary intensional models of the simply typed A-calculus, e.g. sequential
algorithms, some qualitative models of linear logic.
e Study different calculi, e.g. linear, polymorphic, with effects.

e Study which languages of formulas are regular languages of \-terms.
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Thank you for your attention!

Any questions?
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