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Regular languages have a central place in theoretical computer science. Profinite
methods are well established for words using finite monoids.

Salvati proposed a notion of regular language of A-terms using semantic tools.

Contribution: definition of profinite A-terms using the CCC FinSet such that
profinite words are in bijection with profinite \-terms of Church type

and living in harmony with Stone duality and the principles of Reynolds parametricity.
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Languages



Let 2 be a finite alphabet, M be a finite monoid and p : ¥ — M a set-theoretic
function. We write p for the associated monoid homomorphism >* — M.

For each subset F C M, the set
L = {weX*|p(w)eF}
is a regular language. These sets assemble into the Boolean algebra
Regy, (31— guail cREEtC M .
When M ranges over all finite monoids, we get in this way all regular languages:

Reg(S) .= | JRegu(T) .
M
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Any natural number n can be encoded in the simply typed A-calculus as
sElRI= o7 o Sl aistERon.
—_—

n applications

A natural number is just a word over a one-letter alphabet.
For example, the word abba over the two-letter alphabet {a, b}

SR0 = 0, b ol Seer e SEb(D (aCIEIoR

is encoded as the closed A-term

Aa.Ab.Xc.a(b(b(ac))) : (o=0)=(0o=0)= o= o)

letter a letter b input output

For any alphabet X, we define Churchy as (0 = 0) = ... = (0 = 0) = 0 = o.
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Let C be a cartesian closed category and @ be one of its objects.

For any simple type A built from o, we define the object [A], by induction as
Using the cartesian closed structure, one defines an interpretation function

[Hlo : As(A — C(L[Alg) -

In FinSet which is cartesian closed, given a finite set @ used to interpret o, every
word w over the alphabet ¥ = {a, b}, seen as a A\-term, is interpreted as a point

[[w]]Q € M@ 2@l = Q) = IQI=NQ

which describes how the word will interact with a deterministic automaton.
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The notion of regular language of A-terms has been introduced by Salvati.

For any finite set @ and any subset F C [A] 5, we define the language
Le = {MeAg(A)|[MlgeF} .

All the languages recognized by @ assemble into a Boolean algebra

Rego(A) = {Lr|FC[Alg} .
We can then make @ range over all finite sets, and we get the definition
Reg(A) := U Regqo(A) .
Q

Notice that Reg(A) has no reason to be a Boolean algebra for the moment.
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If @ and Q' are two finite sets and R C @ x @', for any simple type A we have
[Alg S [Alg x[Alg

In particular, if f: @ — Q' is a partial surjection, then so is [A]; : [A] o — [Al /-

Using the fundamental lemma of logical relations, one can deduce that

This shows that the diagram

(RegQ/ (Aot RegQ<A>)f:Q—»Q’

is directed so we have
Reg(A) = colimgRegqg(A) .
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Entering the profinite world



A profinite word u is a family (u,) of elements

M ranges over all finite monoids
up € M where >

p : . — M ranges over all functions

such that for every function p : ¥ — M and homomorphism ¢ : M — N, with M
and N finite monoids, we have ugop = p(up).

The monoid X* of profinite words contains £* as a submonoid, since any word

W = wi...W,, where each w; € ¥, induces a profinite word with components

p(wi)...p(wp,) forall p: X — M.
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For any finite monoid M there exists n(M) > 1 such that for all elements m of M, the
element m"(M) is the idempotent power of m, which is unique.

Let a be any letter in . The family of elements
= - plal i forallp: X - M

is an idempotent profinite word written a* which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build
another profinite word u“ which is idempotent.
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What does {a/}\* &~ N the monoid of profinite natural numbers, look like?
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What does {a/}\* &~ N the monoid of profinite natural numbers, look like?
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What does {/‘9\}* =~ N, the monoid of profinite natural numbers, look like?

0 1 2 3 II z

p prime

where Zj, is the ring of p-adic numbers, i.e. Z, = lim,Z/p"Z.
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Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a
category Stone. Boolean algebras and their homomorphisms form a category BA.

There is an equivalence of categories
Stone =~ BA®

which associates to every Stone space its algebra of clopens and to every Boolean
algebra its space of ultrafilters.

In particular, the monoid of profinite words X* has a natural topology such that

b+ is the Stone dual of Reg(X) .
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For any simple type A and finite set @, we consider the subset
[Al = {[Mlg|Mes(A)} C [Alg
of definable elements of [A] 5. Equivalently, it is the quotient

Ngp(A)/ =@ with M ~q N if and only if [M], = [N], -

The finite set of definable elements is related to regular languages as
A% is the Stone dual of Regq(A)

and the inclusion Regg/ (A) < Regg(A) induced by a partial surjection f : Q - Q'
dualizes to the surjection [A]} : [A]g — [Alg: which is the restriction of [A],.
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profinite A-terms of type A

!
¥

/ [Al%, \ / 7 Al
\ /

[[A]] Q3
[[A]] (@]

AL

e

[[A]] @2
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By dualizing the diagram defining Reg(A), we obtain a codirected diagram
(A1 : 1415 — [AIY)

and we define 7\\5,7<A> as its limit. As expected,

Kﬁ,Z(A) is the Stone dual of Reg(A) .

Concretely: a profinite A-term 0 of type A is a family of elements f¢g € [[A]]'Q s.t.

[Al}(8q) = O¢ for every partial surjection f : @ — Q'.

13/19



Theorem. The profinite A-terms assemble into a CCC ProLam such that
ProLam(A,B) = Ag, (A= B).

This means that we a compositional notion of profinite A-calculus.

The interpretation of the simply typed A-calculus into ProLam yields a functor
Lam — ProLam
which sends a simply typed A-term M of type A on the profinite A-term
M] o where Q ranges over all finite sets.

This assignment is injective thanks to Statman's finite completeness theorem.
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The Church encoding gives a bijection
A et alis: MBI * |

This extends to the profinite setting. Indeed, profinite A-terms of simple type Churchy
are exactly profinite words as we have a homeomorphism

—

Agp(Churchs) = T*.
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We consider the profinite A-term Q of type (0 = ©) = © = o such that

ey BT 0
—

n times

where f" is the idempotent power of the element f of the finite monoid Q = Q.

Using Q, for any X of cardinal n, one gets the profinite A-term
P . \a,-Q) (v e aan i E@h urchy =—Chukchs:
which is the representation in the profinite A-calculus of the operator
g 85 L - N
on profinite words.
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Profinite \-terms and Reynolds
parametricity



Let A be a simple type. A parametric family 6 is a family of elements ¢ € [[A]]Q s.t.
(0q.0¢) € [Alg  forall relations R C Q x Q'.

Two differences with profinite A\-terms:

o the element O is not asked to be definable...

e ...but the family is parametric with respect to all relations.
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We first have a general theorem at every type.

Theorem. Every profinite A-term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type Churchy is a profinite A-term.

The proof of the converse uses the unfolding terms, which generalize the constructors
AsAz.z : Nat and AnAsAz.s(nsz) : Nat = Nat

of the simple type Nat := Church; to any Church type.
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Future work:

e study the situation in other locally finite CCCs;
e generalize the notion of unfolding term to any simple type;

e investigate a generalization of logic on words, which uses monadic second-order
logic (MSO), to a logic on A-terms.
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Future work:

e study the situation in other locally finite CCCs;
e generalize the notion of unfolding term to any simple type;

e investigate a generalization of logic on words, which uses monadic second-order
logic (MSO), to a logic on A-terms.

Thank you for your attention!

Any questions?
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The Church encoding induces an isomorphism of Boolean algebras
Reg(Churchy) = Reg(X) .
Indeed, every automaton (@, 0, go, Acc) induces a subset
F = {qe[Churchs], | q(4, qo) € Acc}
On the other hand, every g € [[Church):]]Q induces a finite family of automata

(Q,0,90,{q(d,q0)}) forall 6 : X x Q@ = Q and gg € Q

which determines the behavior of g, and from which one gets finite monoids.
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