
Profinite λ-terms and parametricity

Vincent Moreau, joint work with Sam van Gool and Paul-André Melliès

MFPS XXXIX, Indiana University Bloomington

June the 22th, 2023

IRIF, Université Paris Cité, Inria Paris

Context of the talk

Regular languages have a central place in theoretical computer science. Profinite

methods are well established for words using finite monoids.

Salvati proposed a notion of regular language of λ-terms using semantic tools.

Contribution: definition of profinite λ-terms using the CCC FinSet such that

profinite words are in bijection with profinite λ-terms of Church type

and living in harmony with Stone duality and the principles of Reynolds parametricity.

1/19

Languages

Regular languages of words

Let Σ be a finite alphabet, M be a finite monoid and p : Σ → M a set-theoretic

function. We write p̄ for the associated monoid homomorphism Σ∗ → M.

For each subset F ⊆ M, the set

LF := {w ∈ Σ∗ | p̄(w) ∈ F}

is a regular language. These sets assemble into the Boolean algebra

RegM⟨Σ⟩ := {LF : F ⊆ M} .

When M ranges over all finite monoids, we get in this way all regular languages:

Reg⟨Σ⟩ =
⋃
M

RegM⟨Σ⟩ .

2/19

The Church encoding for words

Any natural number n can be encoded in the simply typed λ-calculus as

s : o ⇒ o, z : o ⊢ s (. . . (s z))︸ ︷︷ ︸
n applications

: o .

A natural number is just a word over a one-letter alphabet.

For example, the word abba over the two-letter alphabet {a, b}

a : o ⇒ o, b : o ⇒ o, c : o ⊢ a (b (b (a c))) : o .

is encoded as the closed λ-term

λa.λb.λc .a (b (b (a c))) : (o ⇒ o)︸ ︷︷ ︸
letter a

⇒ (o ⇒ o)︸ ︷︷ ︸
letter b

⇒ o︸︷︷︸
input

⇒ o︸︷︷︸
output

.

For any alphabet Σ, we define ChurchΣ as (o ⇒ o) ⇒ . . . ⇒ (o ⇒ o)︸ ︷︷ ︸
|Σ| times

⇒ o ⇒ o.

3/19

Categorical interpretation

Let C be a cartesian closed category and Q be one of its objects.

For any simple type A built from o, we define the object JAKQ by induction as

JoKQ := Q and JA ⇒ BKQ := JAKQ ⇒ JBKQ .

Using the cartesian closed structure, one defines an interpretation function

J−KQ : Λβη⟨A⟩ −→ C(1, JAKQ) .

In FinSet which is cartesian closed, given a finite set Q used to interpret o, every

word w over the alphabet Σ = {a, b}, seen as a λ-term, is interpreted as a point

JwKQ ∈ (Q ⇒ Q) ⇒ (Q ⇒ Q) ⇒ Q ⇒ Q

which describes how the word will interact with a deterministic automaton.

4/19

Regular languages of λ-terms

The notion of regular language of λ-terms has been introduced by Salvati.

For any finite set Q and any subset F ⊆ JAKQ , we define the language

LF :=
{
M ∈ Λβη⟨A⟩ | JMKQ ∈ F

}
.

All the languages recognized by Q assemble into a Boolean algebra

RegQ⟨A⟩ :=
{
LF | F ⊆ JAKQ

}
.

We can then make Q range over all finite sets, and we get the definition

Reg⟨A⟩ :=
⋃
Q

RegQ⟨A⟩ .

Notice that Reg⟨A⟩ has no reason to be a Boolean algebra for the moment.

5/19

A first observation using logical relations

If Q and Q ′ are two finite sets and R ⊆ Q × Q ′, for any simple type A we have

JAKR ⊆ JAKQ × JAKQ′

In particular, if f : Q ↠ Q ′ is a partial surjection, then so is JAKf : JAKQ ↠ JAKQ′ .

Using the fundamental lemma of logical relations, one can deduce that

if |Q| ≥ |Q ′| , then RegQ′⟨A⟩ ⊆ RegQ⟨A⟩ .

This shows that the diagram(
RegQ′⟨A⟩ RegQ⟨A⟩

)
f :Q↠Q′

is directed so we have

Reg⟨A⟩ = colimQ RegQ⟨A⟩ .
6/19

Entering the profinite world

The monoid of profinite words

A profinite word u is a family (up) of elements

up ∈ M where
M ranges over all finite monoids

p : Σ → M ranges over all functions

such that for every function p : Σ → M and homomorphism φ : M → N, with M

and N finite monoids, we have uφ◦p = φ(up).

The monoid Σ̂∗ of profinite words contains Σ∗ as a submonoid, since any word

w = w1 . . .wn, where each wi ∈ Σ, induces a profinite word with components

p(w1) . . . p(wn) for all p : Σ → M.

7/19

A profinite word which is not a word

For any finite monoid M there exists n(M) ≥ 1 such that for all elements m of M, the

element mn(M) is the idempotent power of m, which is unique.

Let a be any letter in Σ. The family of elements

up := p(a)n(M) for all p : Σ → M

is an idempotent profinite word written aω which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build

another profinite word uω which is idempotent.

8/19

Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3 ?

9/19

Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3 . . . ω . . .

9/19

Profinite natural numbers

What does {̂a}∗ ∼= N̂, the monoid of profinite natural numbers, look like?

0 1 2 3
∏

p prime

Zp

where Zp is the ring of p-adic numbers, i.e. Zp
∼= limn Z/pnZ.

9/19

Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a

category Stone. Boolean algebras and their homomorphisms form a category BA.

There is an equivalence of categories

Stone ∼= BAop

which associates to every Stone space its algebra of clopens and to every Boolean

algebra its space of ultrafilters.

In particular, the monoid of profinite words Σ̂∗ has a natural topology such that

Σ̂∗ is the Stone dual of Reg⟨Σ⟩ .

10/19

Duality: λ-terms

For any simple type A and finite set Q, we consider the subset

JAK•Q :=
{
JMKQ | M ∈ Λβη⟨A⟩

}
⊆ JAKQ

of definable elements of JAKQ . Equivalently, it is the quotient

Λβη⟨A⟩/ ≈Q with M ≈Q N if and only if JMKQ = JNKQ .

The finite set of definable elements is related to regular languages as

JAK•Q is the Stone dual of RegQ⟨A⟩

and the inclusion RegQ′⟨A⟩ ↪→ RegQ⟨A⟩ induced by a partial surjection f : Q ↠ Q ′

dualizes to the surjection JAK•f : JAK•Q → JAK•Q′ which is the restriction of JAKf .

11/19

Dualizing the diagram

Reg⟨A⟩

RegQ4
⟨A⟩ . . . RegQ5

⟨A⟩ . . . RegQ6
⟨A⟩

RegQ2
⟨A⟩ . . . RegQ3

⟨A⟩

RegQ1
⟨A⟩

12/19

Dualizing the diagram

profinite λ-terms of type A

JAK•Q4
. . . JAK•Q5

. . . JAK•Q6

JAK•Q2
. . . JAK•Q3

JAK•Q1

12/19

Definition of profinite λ-terms

By dualizing the diagram defining Reg⟨A⟩, we obtain a codirected diagram(
JAK•f : JAK•Q JAK•Q′

)
f :Q↠Q′

and we define Λ̂βη⟨A⟩ as its limit. As expected,

Λ̂βη⟨A⟩ is the Stone dual of Reg⟨A⟩ .

Concretely: a profinite λ-term θ of type A is a family of elements θQ ∈ JAK•Q s.t.

JAK•f (θQ) = θQ′ for every partial surjection f : Q ↠ Q ′.

13/19

The CCC of profinite λ-terms

Theorem. The profinite λ-terms assemble into a CCC ProLam such that

ProLam(A,B) := Λ̂βη⟨A ⇒ B⟩ .

This means that we a compositional notion of profinite λ-calculus.

The interpretation of the simply typed λ-calculus into ProLam yields a functor

Lam −→ ProLam

which sends a simply typed λ-term M of type A on the profinite λ-term

JMKQ where Q ranges over all finite sets.

This assignment is injective thanks to Statman’s finite completeness theorem.

14/19

Profinite λ-terms of Church type are profinite words

The Church encoding gives a bijection

Λβη⟨ChurchΣ⟩ ∼= Σ∗ .

This extends to the profinite setting. Indeed, profinite λ-terms of simple type ChurchΣ

are exactly profinite words as we have a homeomorphism

Λ̂βη⟨ChurchΣ⟩ ∼= Σ̂∗ .

15/19

The profinite λ-term Ω

We consider the profinite λ-term Ω of type (o ⇒ o) ⇒ o ⇒ o such that

ΩQ : f 7−→ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

where f n is the idempotent power of the element f of the finite monoid Q ⇒ Q.

Using Ω, for any Σ of cardinal n, one gets the profinite λ-term

λuλa1 . . . λan.Ω (u a1 . . . an) : ChurchΣ ⇒ ChurchΣ

which is the representation in the profinite λ-calculus of the operator

(−)ω : Σ̂∗ −→ Σ̂∗

on profinite words.

16/19

Profinite λ-terms and Reynolds

parametricity

Parametric families

Let A be a simple type. A parametric family θ is a family of elements θQ ∈ JAKQ s.t.

(θQ , θQ′) ∈ JAKR for all relations R ⊆ Q × Q ′.

Two differences with profinite λ-terms:

• the element θQ is not asked to be definable...

• ...but the family is parametric with respect to all relations.

17/19

A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite λ-term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type ChurchΣ is a profinite λ-term.

The proof of the converse uses the unfolding terms, which generalize the constructors

λsλz .z : Nat and λnλsλz .s (n s z) : Nat ⇒ Nat

of the simple type Nat := Church1 to any Church type.

18/19

Conclusion

Future work:

• study the situation in other locally finite CCCs;

• generalize the notion of unfolding term to any simple type;

• investigate a generalization of logic on words, which uses monadic second-order

logic (MSO), to a logic on λ-terms.

Thank you for your attention!

Any questions?

19/19

Conclusion

Future work:

• study the situation in other locally finite CCCs;

• generalize the notion of unfolding term to any simple type;

• investigate a generalization of logic on words, which uses monadic second-order

logic (MSO), to a logic on λ-terms.

Thank you for your attention!

Any questions?

19/19

Bibliography

[Geh16] Mai Gehrke. “Stone duality, topological algebra, and recognition”. In:

Journal of Pure and Applied Algebra 220.7 (2016), pp. 2711–2747. issn: 0022-4049.

doi: https://doi.org/10.1016/j.jpaa.2015.12.007.

[Mel17] Paul-André Melliès. “Higher-order parity automata”. In: Proceedings of the

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,

Reykjavik, Iceland, 2017. 2017, pp. 1–12.

[Pin] Jean-Eric Pin. “Profinite Methods in Automata Theory”. In: 26th

International Symposium on Theoretical Aspects of Computer Science STACS 2009.

IBFI Schloss Dagstuhl. url: https://hal.inria.fr/inria-00359677.

[Sal09] Sylvain Salvati. “Recognizability in the Simply Typed

Lambda-Calculus”. In: 16th Workshop on Logic, Language, Information and

Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan:

Springer, 2009, pp. 48–60.

https://doi.org/https://doi.org/10.1016/j.jpaa.2015.12.007
https://hal.inria.fr/inria-00359677

Salvati generalizes Kleene

The Church encoding induces an isomorphism of Boolean algebras

Reg⟨ChurchΣ⟩ ∼= Reg⟨Σ⟩ .

Indeed, every automaton (Q, δ, q0,Acc) induces a subset

F :=
{
q ∈ JChurchΣKQ | q(δ, q0) ∈ Acc

}
On the other hand, every q ∈ JChurchΣKQ induces a finite family of automata

(Q, δ, q0, {q(δ, q0)}) for all δ : Σ× Q → Q and q0 ∈ Q

which determines the behavior of q, and from which one gets finite monoids.

	Languages
	Entering the profinite world
	Profinite -terms and Reynolds parametricity
	Appendix

