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Two different kinds of automata:

- Deterministic automata (in FinSet)

- Non-deterministic automata (in FinRel)

Profinite methods are well established for words using finite monoids.

Contribution: definition of profinite A-terms in any model and proof that
Profinite words are in bijection with deterministic profinite A-terms

using the Church encoding of words and Reynolds parametricity.

This leads to a notion of non-deterministic profinite A-term in FinRel.
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Interpreting words as A-terms



A-terms are defined by the grammar
M,N == x| M.M]|MN.
Simple types are generated by the grammar
AB 1= o|A=8B.

For simple types, typing derivations are generated by the following three rules:

_ var Fr-M:A=B FI—N:AApp MX:AFM:B Abe
Iox: g X A =MN:B M- MM:A=B
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Any natural number n can be encoded in the simply typed A-calculus as

s;to=0,z:0Fs(...(52): 0.
~——
n applications

A natural number is just a word over a one-letter alphabet.
For example, the word abba over the two-letter alphabet {a, b}

a:o0=o0, b:o=o0, c:ot a(b(b(ac))): o.

is encoded as the closed A-term
Aa.Ab.xc.a(b(b(ac))) : (o=0)=(o=0)=_o = o, .
letter a letter b input  output
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Let C be a cartesian closed category.

In order to interpret the simply typed A-calculus in C, we pick an object Q of Ciin
order to interpret the base type o and define, for any simple type A, the object

[Alq
by induction, as follows:

[olq = Q
[A=Blg = [Alq=I[Blg

The simply typed A-terms are then interpreted by structural induction on their
type derivation using the cartesian closed structure of C.
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Fact. The category FinSet is cartesian closed: there is a bijection
FinSet(A x B,C) = FinSet(B,A = ()
natural in A and C, where A = C is the set of functions from A to C.
In particular, given a finite set Q used to interpret o, every word w over the
alphabet ¥ = {a, b} seen as a A-term

Fw: (o=0)=(0c=0)= _o0o = _o
~—— ——— ~~ ~~

letter a letter b input output

can be interpreted in FinSet as

W, € (@=Q=(Q=>Q=0Q0=Q

which describes how the word will interact with a deterministic automaton.
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Entering the profinite world
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Definition. A profinite word is a family of maps
Um :  Hom(X*;M) — M where M ranges over all finite monoids

such that for every pair of homomorphisms p: ¥* — M and f: M — N, with M and
N finite monoids, we have uy(fo p) = f(um(p)), i.e. the following diagram
commutes:

Hom(X*, M) LN Hom(X*, N)

| o

M N
f

Remark. Any word w € X* induces a profinite word u whose components are

uy = p — p(w) where M ranges over all finite monoids.
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In any finite monoid M, all elements m € M have a unique power m" (for n > 1)
which is idempotent, i.e. such that m"m" = m". It is obtained for n = |M|\.

Let w be any word over X. The family of maps

Hom(X*,M) — M

um - f )M where M ranges over all finite monoids

is an profinite word written w* which is not a finite word.

The set of profinite words is endowed with a monoid structure computed
pointwise. In that setting, w® is idempotent.
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Definition. Given M, N two finite monoids and R C M x N, we say that R is a
monoidal relation M = N if it is a submonoid of M x N. This means that

(em,en) €R  and  forall (m,n)and (m’,n) in R, we have (mm’, nn’) € R.

Proposition. Let u = (um) be a family of maps. The following are equivalent:

- uis profinite
- for every pair of homomorphisms p: £* - Mand g: X* —+ N with Mand N
finite monoids, and for any monoidal relation R : M + N,

if for all w € £* we have (p(w), g(w)) € R, then (um(p), un(q)) € R.
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Parametric A\-terms



Recall that for any set Q we have defined the set
[Alg
by structural induction on the type A.

We extend the construction to set-theoretic relations R : P + Q, giving a relation

[Alg = [Alp+ [Alg -
by structural induction on the type A:
[ole = R
A=Blg = {(g)e[A=B],x[A=Blgl|

for all x € [A]p and y € [A],

if (x,y) € [Alg then (f(x),9()) € [Blg }-
/7



A double category is given by the data of objects together with

- 1-cells: vertical (—) and horizontal (-») arrows,
- 2-cells: squares between pairs of vertical and horizontal arrows (=) which
can be composed both horizontally or vertically.

More formally, a double category is a category object in Cat.

Example. the category whose objects are finite sets, vertical arrows are functions,
horizontal arrows are relations and whose squares are unique and exist when:

A—f5B

fl lg if  VaeAbeB, if(a,b)eR then (fla),g(b)) €S

C—é—)D

12/17



A double category D is cartesian if the pairs of squares

A —K B A—% B

ﬂl ﬂa lgh le ﬂcz lgz

A1 —t B1 A2 —— Bz
51 S2

is in bijection with the set of squares

A R B

i ml M(Q,cg l(gmgﬁ

A xAy —+— B xB
1 2 50ss 1 2

and the horizontal morphism Idy : 1 -+ 1is terminal.
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A cartesian double category D is closed if the set of squares

RixR
A x Ay — 52 5 By x By

il ﬂc s

A b B

is in bijection with the set of squares

Ry
t Bz

A;
Cur(]‘)l ﬂCur(C) lCur(g)

A’|:>A4R1:>|R—>B’|:>B

Fact. The double category of finite sets is cartesian closed.
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Let us consider a cartesian closed double category.
Definition. Let A be a simple type. A parametric A-term of type A is the data

- a family of vertical maps g : 1 — [A], where Q ranges over all objects
- a family of squares 6 : Id; = [A]z where R ranges over all horizontal arrows

such that the horizontal source and target of a square g for R : P + Q are the
maps 6p and g, which we can represent as

Id
1T —

ol Pl
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In the case of FinSet, a parametric A\-term of type A amounts to a family
b € [Alg where Q ranges over all finite sets,
such that, for every binary relation R: P + Q, we have
(0p,00) € [Alg-
Theorem. Parametric A-terms define a cartesian closed category, and the
parametric A-terms of type

Churchy = (0=0)=...= (0=0)= (0= 0)

7/

|X]| times

are in bijection with the profinite words on X.
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Current & future work:

- find a syntax for parametric A-terms of any type in the deterministic model;

- determine the parametric A-terms of type Churchy in the model associated
to nondeterministic automata;

- investigate a generalization of logic on words with MSO to a logic on A-terms.
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Current & future work:

- find a syntax for parametric A-terms of any type in the deterministic model;

- determine the parametric A-terms of type Churchy in the model associated
to nondeterministic automata;

- investigate a generalization of logic on words with MSO to a logic on A-terms.

Thank you for your attention!

Any questions?
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The X-calculus is about applying functions to arguments.
The simply typed A-calculus is interpreted using cartesian closed categories.

A cartesian closed category C is a category:

- with finite products
- such that for every object A, the functor

Ax—-—:C—=C

has a right adjoint
A= —:C—C

This is the categorified version of an implicative A-semilattice.



Para — Pro. Let p: ©* — M. Any morphism u : M — N induces a monoidal
relation R : M + N which is its graph. By parametricity, uy(fo p) = f(um(p)).

Pro — Para. letp:¥X* - Mand g:X* — N be homomorphismsand R: M + N
be a monoidal relation such that

forallwe X*, (p(w),g(w)) € R.
The monoidal relation R induces a submonoid i : S < M x N. Because of the
above-stated property, there is h : ©* — S such thatioh = (p, g). Therefore,
(um(p), un(q)) = (m(umxn({p; a))), m2(Umxn({p; a))))
= umxn({P, 3))
= i(us(h)).

We obtain that (um(p), un(q)) € R, so u is parametric. [



Pro — Para. Every profinite word u induces a parafinite term with components
Y= (Q=Q) — Q=21Q

p —  Ug=q(p)
given the fact that Q = Q is a monoid for the function composition.

T(U)q

Para — Pro. Every parametric term 6 induces a profinite word with components

Y= (M=M) M= M
(em)

W(O)m p > Ou(im o p)(em) iMO_T

where iy : M — (M = M) is the Cayley embedding.

These are bijections between profinite words and parametric A\-terms.



Let u be a profinite word. Recall that uy: (X = M) — M.

Its associated parametric A-term T(u) has components
T(U)a = Ua=0)
Its associated profinite word W(T(u)), for p: ¥ — M, is equal to
W(T(u)u(p) = T(U)m(im © p)(em) = Uqu=my(im © p)(em)
In order to show that W(T(u)) is u, we use the parametricity of profinite words.

We consider the moinoidal logical relation R C (M = M) x M defined as

R = {(fimeM=M)xM|VneM, f(n)=m-n}



We have that (im o p,p) € [o x --- x 0] because foralla € ¥,
forallm e, (im o p)(a)(m) = p(a) - m.
By parametricity of u applied to R, we have that

(Um=my(imop),um(p)) € [o=o]g

which means, by definition of [o = o], that

forall (f,m) € R, we have (uw=m)(im o p)(f), um(p)(m)) € R

which gives the desired result:

W(T(u)) = Um=my(im o p)(em) = um(p)(m).



Let 6 be a parafinite term. Recall that g € (X = (Q = Q)) = (Q = Q).
Its associated profinite word W(#) is equal, forp : ¥ — M, to
W(O)m(p) = Om(im o p)(em).
Its reassociated parametric A-term T(W(#)) has components
T(W(0))a = W(a=q)-
We want to show that, forall p : ¥ — (Q = Q), we have 6q(p) = T(W(0))a(p), i.e.
forall go € Q, 0(a=0q)(i(a=q) © P)(1da)(do) = 0a(P)(Go)

To show that, we introduce, for any go € Q, the logical relation

Ry = {(f,9) €(Q=Q)xQJf(q0) =a}-



First, we have (igmqyop,p) € [(o=0) x -+ x (0 = ®)]]Rqo because foralla € L,

forall (f,q) € R, we have (ig=q) © P)(a)(f)(q0) = P(a)(f(qo)) = p(a)(q)

By parametricity of 6, we obtain that (6(q-0)(i(a=q) © P), 0a(p)) € [0 = ®]]Rao'
Given the fact that (Idg, o) € Rq, and by definition of Jo = o]]Rqo, we obtain that

0(0=0)(i(a=0) © P)(Ida)(q0) = ba(p)(qo)

which concludes the proof. [
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