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Abstract The signature of a permutation σ is a word sg(σ) ⊆ {a, d}∗ with ith
letter d when σ has a descent (i.e. σ(i) > σ(i + 1)) and a when σ has an ascent
(i.e. σ(i) < σ(i+1)). The combinatorics of permutations with a prescribed signature
is quite well explored. Here we introduce regular classes of permutations, the sets
Λ(L) of permutations with signature in regular languages L ⊆ {a, d}∗. Given a
regular class of permutations we (i) count the permutations of a given length
within the class; (ii) compute a closed form formula for the exponential generating
function; and (iii) sample uniformly at random the permutation of a given length.
We first recall how (i) is solved in the literature for the case of a single signature.
We then explain how to extend these methods to regular classes of permutations
using language equations from automata theory. We give two methods to solve
(ii) in terms of exponentials of matrices. For the third problem we provide both
discrete and continuous recursive methods as well as an extension of Boltzmann
sampling to uncountable union of sets parametrised by a variable ranging over an
interval. Last but not least, a part of our contributions are based on a geometric
interpretation of a subclass of regular timed languages (that is, recognised by timed
automata specific to our problem).

Keywords Regular class of permutations · Signature of a permutation · Uniform
random sampling · Exponential generating function · Timed automata · Boltzmann
sampling
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1 Introduction

Counting the permutations with a prescribed signature (described in the abstract)
is a classical combinatorial topic (see [Luc14] and reference therein).

A very well studied example of permutations given by their signatures are the
so-called alternating (or zig-zag, or down-up) permutations (see [Sta10] for a sur-
vey). Their signatures belong to the language expressed by the regular expression
(da)∗(d + ε) (in other words they satisfy σ1 > σ2 < σ3 > σ4...).

We associate to a language L ⊆ {a, d}∗ the class Λ(L) of permutations with
signature in L. When the language L is regular (namely, recognised by a finite state
automaton), we say that the class of permutations Λ(L) is regular. Many classes of
permutations can be expressed in that way; for instance, alternating permutations
or those with an even number of descents.

In this paper, we study the combinatorics of regular classes of permutations.
We are thus interested in the sequence (αn(L))n∈N of the cardinalities of the sets
of permutations of length n ∈ N with signature in L. We address the problem of
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Problem 1: computing elements of the sequence (αn(L))n∈N;
Problem 2: computing its exponential generating function (EGF), that is, the for-

mal power series GL(z)
def
=
∑
αn(L) z

n

n! ;
Problem 3: generating uniformly at random permutations in Λ(L) so that permu-

tations of length n in Λ(L) have all the same probability 1/αn(L) to
be returned.

We propose two main approaches to solve these problems.
The first approach is an extension of previous results on the subject designed

for the particular problem of counting and randomly generating permutations with
a prescribed signature. Within this approach, there are two sub-approaches: one
remains in the discrete world of permutations while the other consider vectors
(ν1, ν2, . . . , νn) of the hyper-cube [0, 1]n. To a permutation corresponds the order

polytope of all the vectors having the same ordering of its coordinates as the per-
mutation. Such order polytopes are also defined for signatures and are particular
cases of Stanley’s poset polytopes [Sta86]. The main novelty of our approach is to
introduce the dynamics of automata into the recursive equation defining the or-
der polytopes or the set of permutations. We consider families of polytopes called
ordered sets, that are parametrised by the state of an automaton recognising the
regular language under consideration. Then, we write systems of equations on these
ordered sets mimicking the equation on languages of automata theory. This allows
us to compute the coefficient αn(L) recursively and to characterise the generating
functions as the solution of a system of integral equations.

The second approach is based on a connection between the regular classes
of permutations and the volumetry of regular timed languages (the languages
recognised by the so-called timed automata). Timed automata were introduced
in [AD94] to model and verify properties of real-time systems. The volumetry of
timed language is a more recent theory initiated by Asarin and Degorre. We refer
the reader to [ABD15] and to our PhD thesis [Bas13] for an overview of results of
this theory. The connection is in two steps. First, we recall the link between the
order polytopes of the first approach and the chain polytopes which are a second
type of Stanley’s poset polytopes [Sta86]; then we interpret the chain polytopes
of a signature w as the set of delays that together with w forms a timed word of
a well chosen timed language.

A note on asymptotic behaviours and bit complexity. Another meaningful problem is
to study the asymptotic behaviour of αn(L). A first information on the asymptotic
growth rate of (αn(L))n∈N can be obtained by knowing the radius of convergence
R of the EGF:

1/R = lim sup
n→+∞

(
αn(L)

n!

)1/n

(1)

This result is known as the Cauchy-Hadamard Theorem. Note that as αn(L)
n! ≥ 1,

the quantity 1/R belongs to [0, 1]. The logarithm of this quantity is often called
the entropy. In the second approach sketched above, we interpret the sequence
(αn(L))n∈N, in terms of the volume sequence associated to a timed language.
Hence, one can use the theory of volume and entropy of timed languages pre-
sented in [ABD15] to analyse the growth rate of (αn(L))n∈N (without need for
generating function). More precisely the quantity 1/R is the spectral radius of a
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functional operator akin to the integral operators considered in the present paper.
We explained the link between the operator approach and generating function for
timed languages in [ABDP12].

To get finer measures, one can study more precisely the generating function
around the convergence radius or alternatively study more precisely the spectral
theory of the integral operator under consideration. The former option is exten-
sively described in [FS09] while the latter has been explored in [EKP11,EJ12] for
classes of permutations defined by consecutive descent pattern avoidance.

In the present paper, we establish complexity results in terms of elementary
arithmetic operations (we speak of arithmetic complexity). In practice, the bit
complexity comes into play. Indeed the numbers handled such as αn(L) needs
Θ(n log n) bits to be stored as they have order of magnitude n!. An idea to reduce

this complexity is to handle and store directly numbers of the form αn(L)
n! . Ac-

cording to (1), to store these numbers, one needs asymptotically Θ(n logR) bits
assuming that R < +∞.

Contribution summary We propose the following contributions. In the following m
is the size of an automaton that recognises the regular languages of signature of
interest, and n is the length of permutation one wants to count or generate.

– In the first approach we extend the discrete and the continuous recursive meth-
ods for counting permutations of a single signature to the case of a regular class
of signatures (Corollary 1 and Proposition 6). This method has an arithmetic
time complexity O(n2m). These recursive methods of counting transfers natu-
rally to a recursive method of uniform sampling for regular classes of permu-
tations (Algorithm 3). We further characterise in Proposition 7 the generating
functions in terms of a system of integral equations (derived from a system
of language equations) and give explicit solutions in terms of (integrals of)
exponentials of matrices (Theorem 1).

– We describe in the second approach, the link between regular classes of permu-
tations and the volumetry of regular timed languages. In particular, the wanted
EGF is equal to a volume generating function associated to a well chosen timed
language. We characterise the generating function using a new system of inte-
gral equations (Theorem 3) that yields a characterisation in terms of exponen-
tial of a matrix (Theorem 4). This second approach also allows one to describe
signatures of permutations directly in terms of straights (aka. double-ascents
and double-descents) and turns (aka. peaks and valleys).

– From the characterisation of the generating function of Theorem 4, one can
compute a closed form formula in exponential time complexity with respect to
m.

– Given an automaton of size m, Algorithm 2 allows one to find the first n terms
of the generating function in arithmetic time complexity O(n log(n)m3).

– We show with Theorem 8 how random generation of timed words can be used
for random generation of permutations. Then we describe a continuous recur-
sive method to generate timed words and hence to give another solution to
Problem 3.

– We extend Boltzmann sampling to our framework involving uncountable union
of sets parametrised by a real valued variable, giving a third solution to Problem
3.
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– We have implemented a part of the algorithms using the computer algebra
system Sage [S+15] and illustrate them on a running example.

1.1 Related works

A part of the present paper is the chapter 8 of the PhD thesis [Bas13] and was pre-
sented in [Bas14]. Our work is mainly inspired by our previous work on volumetry,
entropy and generating functions for timed languages [ABDP12,ABD15,Bas13].
In particular, the link between enumerative combinatorics and timed languages
that we establish here was foreseen in [ABDP12]. No particular knowledge of the
(timed) automata theory or the combinatorics of permutations is required to read
the paper.

Other classes of permutations considered. The random generation of permutations
with signature following an arbitrary signature has been addressed very recently
by Philippe Marchal [Mar14]. In this work the computation of the exponential
generating function for classes of permutations that follow a periodic pattern is
also addressed. In another recent work [Luc14], this latter problem is also solved.
This paper also establishes a link between the discrete and the continuous approach
of previous works and the study of the entropy for classes of permutations following
a periodic pattern. Another interest of this paper is its motivation from statistical
physics.

Particular regular languages of signatures are considered in [EJ12] under the
name of consecutive descent pattern avoidance. Numerous other works treat more
general cases of (consecutive) pattern avoidance (see [EN03], [Kit11]) and are quite
incomparable to our work. Indeed, certain classes of permutations avoiding a finite
set of patterns cannot be described as a language of signatures while some classes
of permutations involving regular languages cannot be described by finite pattern
avoidance (for instance, the permutations with an even number of descents).

About the recursive method for uniform random sampling. We use the so-called recur-
sive method introduced by [NW78] and developed by [FZVC94]. This method has
been improved for the particular case of uniform random generation of words in
regular languages [BG12,ODG13] (see the latter reference for experimental com-
parison). Bit complexity issues were already discussed above. It is known that one
can decrease the bit complexity of the recursive method by using floating point
arithmetic, even without introducing a bias in the sampling [DZ99,BG12]. The
random sampler of timed words (Algorithm 4) is an adaptation of this method to
the timed case. We give related works on Boltzmann sampling in Section 6.

1.2 Paper structure

In Section 2, we give some preliminary definitions and discuss how certain classes
of permutations considered in the literature can be seen as regular classes of per-
mutations. In Section 3 and 4 we describe the first and the second approaches
sketched above. Section 5 is devoted to uniform random sampling. We discuss the
results and perspectives as well as further related works in Section 6.
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2 Preliminaries

Throughout this paper we use two alphabets, {a, d} and {s, t}, whose elements
should be respectively read as “ascent”, “descent”, “straight” and “turn”. A sig-

nature is a word on the alphabet {a, d}. The empty word (the unique 0-length
word) is denoted by ε. The concatenation of two languages A and B is denoted
by AB = {uw | u ∈ A and w ∈ B}. If A = l where l is a single letter, we write lB
instead of {l}B. Given a language A and a natural number k, we denote by Ak

the set {u1 . . . uk | ui ∈ A}, in particular A0 = {ε}. The Kleene star closure of A is
defined by A∗ = ∪k∈NAk. In particular, the set of all words over the alphabet Σ
is denoted by Σ∗.

Example 1 We consider as a running example the regular language

L(run) = ({aa, dd})∗{a, d}.

It is composed of words that are concatenation of blocks of consecutive ascents (or
descents) of even length followed by an odd length block of ascents (or descents).
For example the following three words are in L(run): aaa, aad and ddddaaddd.

Automata and regular languages A deterministic finite state automaton (hereafter
simply called automaton) is a tuple T = (Σ,Q, q0, F, δ) where Σ is a finite alphabet;
Q is a finite set of states; q0 ∈ Q is the initial state; F ⊆ Q is the set of final states;
and δ : Q × Σ → Q is a partial transition function. For a state p and a letter
l ∈ Σ, we let p.l stand for δ(p, l) whenever it is defined, otherwise we use the
convention that sets and real-valued functions parametrised by p.l (e.g. in (2) or
(30)) are respectively empty and null. This notation extends inductively on words
as follows p.ε = p and p.ua = (p.u).a for u ∈ Σ∗ and a ∈ Σ.

We denote by [Tp]n the set of words of length n ∈ N recognised by T from a
state p defined recursively as follows: [Tp]0 = {ε} if p is a final state, i.e. p ∈ F ,
and [Tp]0 = ∅ otherwise; and for n ∈ N

[Tp]n+1 =
⋃
l∈Σ

l[Tp.l]n (2)

The language recognised by T from the state p ∈ Q is [Tp]
def
=
⋃
n∈N[Tp]n. The

language recognised by T is the language [Tq0 ], that is, recognised from the initial
state q0. The languages recognised by automata are called regular languages.

Alternatively one can define directly the languages ([Tp])p∈Q as the unique
solution of the following language equation:

[Tp] =
⋃
l∈Σ

l[Tp.l] (∪{ε} if p ∈ F ). (3)

We assume without loss of generality that all the states of automata considered
in this paper are reachable, that is, of the form q0.u for some u ∈ Σ∗ (non reachable
states can be deleted without changing the language of the automaton).

In this paper, automata will be denoted by A when their alphabet is {a, d} and
by B when their alphabet is {s, t}.



Counting and generating permutations in regular classes. 7

q0

q2

q1

a a

dd

q0

q2

q1

a a

dd
q0 q3

s, t

s

Fig. 1 From left to right: automata for L(run), L(run)′ ∪{ε} and sta(L(run)′ )∪{ε} . The final
states are marked with double circle, the initial state q0 by an incoming arrow and labelled

arrows qi
l−→ qj mean that qi.l = qj

Example 2 Consider the automaton A on Figure 1. (2) and (3) gives
[Tq0 ]n+1 = a[Tq1 ]n

⋃
d[Tq2 ]n;

[Tq1 ]n+1 = a[Tq0 ]n;
[Tq2 ]n+1 = d[Tq0 ]n.

and


[Tq0 ] = a[Tq1 ]

⋃
d[Tq2 ];

[Tq1 ] = a[Tq0 ]
⋃
{ε};

[Tq2 ] = d[Tq0 ]
⋃
{ε}.

It can be seen that the language recognised by A is exactly the language L(run)

described in Example 1.

Matrix notation for system of equations parametrised by states of an automaton. Let
T = (Σ,Q, q0, F, δ) be an automaton. In several places in this paper, we will
consider the family of functions fp : x, z 7→ fp(x, z) indexed by states p ∈ Q

of the automaton under consideration. We denote by f(x, z), the column vector
with qth component fq(x, z). Integration and derivation of vectors of functions are

taken componentwise; for instance,
∫ 1

0
f(y, z)dy is the vector with qth component∫ 1

0
fq(y, z)dy. We denote by F the column vector with qth component 1 if q ∈ F

and 0 otherwise. For l ∈ Σ, the Q × Q-matrix Ml for l ∈ Σ is the adjacency ma-
trix corresponding to letter l. That is, for p, q ∈ Q, Ml(p, q) = 1 if p.l = q and 0
otherwise.

The signature of a permutation and regular classes of permutations. For n ∈ N, [n]
denotes {1, . . . , n} and Sn the set of permutations of [n]. We use the one line
notation for permutations. For example, σ = 231 means that σ(1) = 2, σ(2) = 3,
σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is
the word u = u1 · · ·un−1 ∈ {a, d}n−1 denoted by sg(σ) such that for i ∈ [n],
σi < σi+1 iff ui = a (we speak of an “ascent”) and σi > σi+1 iff ui = d (we speak
of a “descent”), for instance sg(1342) = sg(2341) = aad. We can also define the
signature of a word of natural numbers. For example, sg(10 13 2) = ad.

The notion of signature appears in the literature under several different names
and forms such as descent word, descent set, ribbon diagram, etc. A regular class

of permutation is a set of the form Λ(L)
def
= {σ | sg(σ) ∈ L}, where L ⊆ {a, d}∗ is

a regular language. For positive integers k ≤ n, we let Λn(L)
def
= Λ(L) ∩ Sn and

Λn,k(L)
def
= {σ ∈ Λn(L) | σ1 = k}.
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Cardinalities and exponential generating function for regular classes of permutations.

For a signature u ∈ {a, d}∗, we denote by Λu the set of permutations with signature
u and by αu its cardinality. Given a language L we denote by Ln the sub-language
of L restricted to its n-length words. We denote by αn(L) the number of n-length
permutations with signature in L, that is αn(L) =

∑
w∈Ln−1

αw = |Λn(L)|. Simi-

larly we define αn,k(L) = |Λn,k(L)| for k ≤ n. The exponential generating function
of Λ(L) is

GL(z)
def
=

∑
σ∈Λ(L)

z|σ|

|σ|! =
∑
u∈L

αu
z|u|+1

(|u|+ 1)!
=
∑
n≥1

αn(L)
zn

n!
.

Example 3 For the running example, the theory developed in the paper allows us
to find the exponential generating function of Λ(L(run)):

GL(run)(z) =
2
√

2z(e
√
2z − 1)

2 +
√

2z + (2−
√

2z)e
√
2z

(4)

= 2f

(√
2

2
z

)
with f(X) =

1

1−X tanh (X)
− 1. (5)

Its Taylor expansion is

2
z2

2!
+ 8

z4

4!
+ 84

z6

6!
+ 1632

z8

8!
+ 51040

z10

10!
+ 2340480

z12

12!
+ · · ·

For instance, there are 1632 permutations of length 8 in the regular class consid-
ered.

Convergence radii of generating functions. It is often useful to consider a generating
function T (z) =

∑
n≥0 anz

n as a function of the complex variable (see [FS09]). For
a non-negative integer r, we denote by D(0, r) the following set {z ∈ C | |z| < r}.
The disc of convergence of T (z) =

∑
n≥0 anz

n is the largest disc D(0, r) containing
the complex numbers z for which

∑
n≥0 anz

n converges. The convergence radius

Rconv(T ) is the radius r of such a disc of convergence.
In this paper, we also consider generating functions on two variables V (x, z) =∑
n∈N vn(x)zn where vn is a polynomial that is non-negative on the interval [0, 1].

We define the convergence radius of V as infx∈[0,1] Rconv(z 7→ V (x, z)).
For a vector V of generating functions Vq(x, z) (indexed by states q ∈ Q of an

automaton) we define Rconv(V)
def
= minq∈Q Rconv(Vq).

Exponential of a matrix. In several places of this article, we will use the matrix ex-
ponential. The exponential of a matrix M is the matrix defined by exp(M) =∑
n∈NM

n/n!. We often use exponentials of matrices of the form exp(zM) =∑
n∈NM

nzn/n! where z is either a formal variable or a complex number and M has
real or complex entries. The matrix exp(zM) is invertible with inverse exp(−zM).

2.1 Particular regular languages of signatures considered in the literature

In this paper, we introduce for the first time regular languages of signatures.
However previous works on the subject can be encoded using our framework.
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ε d

d

a

a

ε

a

aa

ad

d

da

a

a

a

d

d

da

d

a

a

q0 q1

a

d d

a

Fig. 2 From left to right automata for X{dd}, X{aaa,add,dad} and Leven.

1 2

4 3

a

a

d

d

Fig. 3 Automaton for signatures of even length following the periodic pattern aadd.

p q

d

a

t

Fig. 4 An automaton for the language {da}∗{d, ε} and its s-t encoding of type a

2.1.1 Consecutive descent pattern avoidance

Works on consecutive descent pattern avoidance (such as [EKP11,EJ12]) consider
finite set of words Forb and the permutations whose signature avoid words of this
set as factors. In other words, the underlying language of signature XForb contains
exactly the words w such that for all 0 < i < j ≤ |w| it holds that wi . . . wj 6∈ Forb.
Such a language XForb can be recognised by an automaton with a number of
states upper bounded by

∑
w∈Forb |w| by using a prefix tree (aka. trie1). We depict

two examples of automata in the left and middle of Figure 2. They recognise
respectively X{dd} = {a, da}∗{ε, d} and X{aaa,add,dad}. We name the state after the
longest prefix of a forbidden word that is currently seen.

It is also well known that some regular languages cannot be described using
sets of forbidden patterns. Consider for instance the language Leven of signatures
that contain an even number of ascents and an arbitrary number of descents, this
language is regular as recognised by the automaton depicted in the right of Figure
2. Assume for a contradiction that it is of the form XForb for some set of words

1 We refer the reader to [Lot05] for definition of such data structure.
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Forb. For every w ∈ Forb, either wa or waa contains an even number of a and does
not avoid w, a contradiction. A similar argument holds for the regular language
L(run) which cannot be defined with a finite set of forbidden patterns.

2.1.2 Periodic pattern

In [Mar14,Luc14], the authors consider classes of permutations that match so-
called periodic patterns. Such classes are regular classes that can be described by
using automata with a single cycle in which every state is a final state. One can
make some states non-final to discard some cardinalities, for instance the class of
permutations of odd length with signature matching the periodic pattern aadd is
depicted in the left of Figure 3.

Alternating permutations of positive length have signatures that match the
periodic pattern da. The automaton depicted in the left of Figure 4 recognises the
language of such signatures {da}∗{d, ε}.

3 The first approach

In Section 3.1, we recall some known results for counting permutations with a
single prescribed signature. In Section 3.2, we extend these results to counting
permutations of fixed length with signature in a regular language. In Section 3.3,
we characterize the generating function as the solution of a linear algebra problem
involving the integral of the exponential of a matrix.

3.1 Number of permutations with a prescribed signature

Here we review known results needed in the rest of Section 3. Such a review with
historical notes can also be found in the beginning of [Luc14]. We give a somewhat
different presentation. For instance, we invoke geometry rather than probability
for the continuous case and emphasize the use of Bernstein polynomials and their
nice algebraic properties.

3.1.1 The discrete approach

The aim of this section is to describe a set of recursive equations which, given a
signature u ∈ {a, d}∗, will allow one to compute the number αu of permutations
with signature u. For this we classify the permutations according to their first
element σ1. Given a signature u ∈ {a, d}∗ and an integer k ∈ [n] with n = |u|+ 1,

we define Λu,k
def
= {σ ∈ Sn | sg(σ) = u and σ1 = k} and αu,k

def
= |Λu,k|.
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Proposition 1 The following equalities hold for every signature u ∈ {a, d}∗ (with

n = |u|+ 1)

αu =
n∑
k=1

αu,k; (6)

αε,1 = 1; (7)

αau,k =
n∑
i=k

αu,i; (8)

αdu,k =
k−1∑
i=1

αu,i. (9)

Proof (7) follows from the definition of signatures, the 0-length word ε is the
signature of the unique permutation of S1 = {1}. (6) comes from the set equation

Λu = {σ ∈ Sn | sg(σ) = u} =
n⋃
k=1

Λu,k

Note that Λau,k = {k} × {σ2 . . . σn+1 | k < σ2 and sg(σ2 . . . σn+1) = u} and,

hence, Λau,k = {k} ×
⋃n+1
j=k+1{σ2 . . . σn+1 | sg(σ2 . . . σn+1) = u and σ2 = j}.

By subtracting 1 from the values greater or equal to k+1 we establish a bijection
between the set {σ2 . . . σn+1 | sg(σ2 . . . σn+1) = u and σ2 = j} and Λu,j−1.

Thus Λau,k is in bijection with
⋃n+1
j=k+1 Λu,j−1 =

⋃n
i=k Λu,i. Passing to cardi-

nalities we obtain (8). (9) is obtained similarly. ut

One can use a system of “local“ recursive equations instead of (8) and (9):

αau,k = αau,k+1 + αu,k; (10)

αdu,k = αdu,k−1 + αu,k−1; (11)

together with boundary conditions

αau,n+1 = 0; αdu,1 = 0. (12)

obtained by setting k = n+ 1 and k = 1 in (8) and (9) respectively.

Remark 1 Equations (10), (11) and (12) are slightly different than the recursive
equations that appeared in [DB70,Vie79,Luc14]. Indeed, previous works usually
consider classification of the permutations according to their last element σn and
hence the action of a new ascent or descent is done at the end of the word (on the
right). Here we change the order and operate on the left to be consistent with the
rest of the article that rely on language equations2 (2) and (3).

2 In fact, one could also write language equations with letters added on the right; but, this
would introduce inconsistency with timed language and volume equations of our previous work
[ABD15,ABDP12] (used in Section 4) that can only be written with operations on the left.
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3.1.2 The continuous approach

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition of
a set A if A is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

The set {(ν1, . . . , νn) ∈ [0, 1]n | 0 ≤ νσ−1
1
≤ . . . ≤ νσ−1

n
≤ 1} is called the order

simplex3 of σ and denoted by O(σ). For instance ν = (0.1, 0.3, 0.4, 0.2) belongs to
O(1342) since ν1 ≤ ν4 ≤ ν2 ≤ ν3 and (1342)−1 = 1423. The set O(σ) for σ ∈ Sn

forms an almost disjoint partition of [0, 1]n. By symmetry all the order simplices
of permutations have the same volume which is 1/n!.

If ν is uniformly sampled in [0, 1]n, then it falls in any O(σ) with probability
1/n!. To retrieve σ from ν it suffices to use a sorting algorithm. We denote by
Π(ν) the permutation σ returned by the sorting algorithm on ν, that is such that
0 ≤ νσ−1

1
≤ . . . ≤ νσ−1

n
≤ 1. Moreover with probability 1, ν has pairwise distinct

coordinates and one can define its signature4 sg(ν) = u1 . . . un−1 by ui = a if
νi < νi+1 and ui = d if νi > νi+1. For instance sg(0.1, 0.3, 0.4, 0.2) = aad.

The order polytope O(u) [Sta86] of a signature u ∈ {a, d}n−1 is the set of vectors
ν such that for all i ≤ n − 1, if ui = a then νi ≤ νi+1, and νi ≥ νi+1 otherwise.
This set is the topological closure of {ν ∈ [0, 1]n | sg(ν) = u}. It is clear that the
collection of order simplices O(σ) with all σ having the same signature u form an
almost disjoint partition of the order polytope O(u): O(u) =

⊔
σ∈sg−1(u)O(σ). For

instance O(aad) = O(1243) t O(1342) t O(2341). Passing to volume we get:

Vol(O(u)) =
∑
σ∈Λu

Vol(O(σ)) =
αu
n!
. (13)

One can classify vectors according to their first coordinate as the permutations

were in Section 3.1.1. We denote by Ou(x)
def
= {(ν2, . . . , νn) | (x, ν2, . . . , νn) ∈ O(u)}

and by vou(x)
def
= Vol(Ou(x)).

The following proposition is the continuous counterpart of Proposition 1.

Proposition 2 The following equalities hold for every signature u ∈ {a, d}∗ (with

n = |u|+ 1)

Vol(O(u)) =

∫ 1

0

vou(x)dx; (14)

voε(x) = 1; (15)

voau(x) =

∫ 1

x

vou(y)dy; (16)

vodu(x) =

∫ x

0

vou(y)dy. (17)

Proof (16) can be proved using the following identity on sets:

Oau(x) = {(y, ν2 . . . , νn) | x ≤ y and (y, ν2, . . . , νn) ∈ O(u)} =
⋃

y∈(x,1)
{y} × Ou(y).

A similar argument holds for descents.

3 Order simplices, order and chain polytopes of signatures defined here are particular cases
of Stanley’s order and chain polytopes of posets [Sta86].

4 Alternatively sg(ν)
def
= sg(Π(ν)) (defined also when some coordinates are equal).
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3.1.3 The link between the two approaches

The link between the coefficients αu,k and the functions vou is made in Proposition
3 below using Bernstein polynomials. This proposition is essentially the equation
(15) of [Luc14] written with different indices convention and with the order re-
versed as explained in Remark 1. The Bernstein polynomials bk,n for integers k ≤ n
are defined as follows:

bk,n(x) =

(
n

k

)
xk(1− x)n−k.

In particular, b0,0(x) = 1 and b0,n(x) = (1− x)n for n ∈ N.

Proposition 3 For every signature w of a given length m,

vow(x) =
1

m!

m∑
k=0

αw,k+1bk,m(x). (18)

This proposition can be proved using the following algebraic identities on the
integral operators

∫ 1

x
dy and

∫ x
0
dy applied to Bernstein polynomials:

∫ 1

x

bi,n(y)dy =
1

n+ 1

i∑
k=0

bk,n+1(x); (19)

∫ x

0

bi,n(y)dy =
1

n+ 1

n∑
k=i+1

bk,n+1(x). (20)

Proof (of Proposition 3) We prove the result by induction. The base case is voε(x) =
1 = αε,1b0,0(x). For the induction step, we suppose that (18) holds for some u of a
given length m and prove that it holds for au (the case du is omitted as the proof
is similar). We start with (16),

voaw(x) =

∫ 1

x

vow(y)dy =

∫ 1

x

1

m!

m∑
i=0

αu,i+1bi,m(x)dx =
m+1∑
i=1

αu,i
m!

∫ 1

x

bi−1,m(x)dx.

Applying (19) we get:

voaw(x) =
m+1∑
i=1

αu,i
(m+ 1)!

i−1∑
k=0

bk,m+1(x) =
1

(m+ 1)!

m∑
k=0

 m+1∑
i=k+1

αu,i

 bk,m+1(x).

Now it suffices to use (8) to conclude:

voaw(x) =
1

(m+ 1)!

m∑
k=0

αau,k+1bk,m+1(x).

ut

3.2 Counting permutations in a regular class

For the rest of Section 3 we consider an arbitrary regular language L recognised
by an automaton A = ({a, d}, Q, q0, F, δ).
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3.2.1 The discrete approach

For an arbitrary language U and n ≥ 1 we let αn,k(U) be the number of permuta-
tions of Sn with signature in U and first element k. The following proposition is
obtained from Proposition 1, by using the fact that αn,k(U) =

∑
u∈Un−1

αu.

Proposition 4 The coefficients αn([Aq]) satisfy the following recursive equations:

αn([Aq]) =
n∑
k=1

αn,k([Aq]); (21)

α1,1([Aq]) = 1q∈F ; (22)

αn+1,k([Aq]) =
n∑
i=k

αn,i([Aq.a]) +
k−1∑
i=1

αn,i([Aq.d]); (23)

One could also use the following system of local equations instead of (23):

αn+1,k([Aq]) = αn+1,k(a[Aq.a]) + αn+1,k(d[Aq.d]); (24)

αn+1,k(a[Aq]) = αn+1,k+1(a[Aq]) + αn,k([Aq]); (25)

αn+1,k(d[Aq]) = αn+1,k−1(d[Aq]) + αn,k−1([Aq]); (26)

and the boundary conditions:

αn+1,n+1(a[Aq]) = 0; αn+1,1(d[Aq]) = 0. (27)

Hence we can state a solution to Problem 1.

Corollary 1 One can compute αn(L) in arithmetic time complexity O(|Q|n2) and

arithmetic space complexity O(|Q|n) (and O(|Q|n2) if all the numbers needed for the

computation are kept in memory.).

3.2.2 The continuous approach

For n ≥ 1, the family (O(u))u∈Ln−1
forms an almost disjoint partition of a subset

of [0, 1]n called the nth order set of L and denoted by On(L):

On(L) =
⊔

u∈Ln−1

O(u) =
⊔

σ∈sg−1(Ln−1)

O(σ) = {ν ∈ [0, 1]n | sg(ν) ∈ Ln−1}. (28)

For instance

O3(L(run)) = O(aaa) t O(aad) t O(dda) t O(ddd)
= O(1234)t
O(1243) t O(1342) t O(2341)t
O(4312) t O(4213) t O(3214)t
O(4321).

Passing to the volume in (28) we get:

Vol(On(L)) =
∑

u∈Ln−1

Vol(O(u)) =
∑

σ∈Λn(L)

Vol(O(σ)) =
αn(L)

n!
. (29)
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Measuring the order sets On([Aq]) for q ∈ Q is done as in the discrete case, by
parametrising these sets according to their first component. For all q ∈ Q, n ∈ N
and x ∈ [0, 1] we let

Oq,n(x)
def
= {(ν2, . . . , νn) | (x, ν2, . . . , νn) ∈ On([Aq])} and voq,n(x)

def
= Vol[Oq,n+1(x)].

Proposition 5 The function voq,n for q ∈ Q and n ∈ N are polynomials of degree

≤ n that satisfy the following recurrence: voq,0(x) = 1q∈F and

voq,n+1(x) =

∫ 1

x

voq.a,n(y)dy +

∫ x

0

voq.d,n(y)dy. (30)

In addition, for all n ≥ 1: ∫ 1

0

voq,n−1(x)dx =
αn([Aq])

n!
. (31)

Proof The sets Oq,n(x) can be recursively defined as follows: Oq,0(x) = [0, 1] if
q ∈ F and Oq,0(x) = ∅ otherwise;

Oq,n+1(x) =
⋃

y∈(x,1)
{y} × Oq.a,n(y) ∪

⋃
y∈(0,x)

{y} × Oq.d,n(y)

Passing to the volume we get (30). We remark that Oq,n(x) =
⋃
u∈[Aq]n−1

Ou(x)

and hence voq,n−1(x) =
∑
u∈[Aq]n−1

vou(x). We can conclude using (13) that

∫ 1

0

voq,n−1(x)dx =
∑

u∈[Aq]n−1

∫ 1

0

vou(x)dx =
∑

u∈[Aq]n−1

αu
n!

=
αn([Aq])

n!
.

ut

One can define and compute the voq,n in the Bernstein basis using the following
proposition that links the volume function with the numbers αn,k, or directly
compute these functions in the standard basis 1, x, x2, . . .

Proposition 6 The coefficients of the polynomials voq,n in the Bernstein basis can

be computed in arithmetic time and space complexity O(|Q|n2) using the following

characterisation:

voq,n(x) =
1

n!

n∑
k=0

αn+1,k+1([Aq])bk,n(x) (32)

Alternatively, the polynomials voq,m for q ∈ Q and m ≤ n can be computed in the

standard basis with an arithmetic time and space complexity O(|Q|n2) using recursive

equation (30).

We remark that the space complexity can be reduced to O(|Q|n) if one is inter-
ested only in (voq,n)q∈Q (as the computation of (voq,m)q∈Q needs only to have
(voq,m−1)q∈Q in memory).
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3.3 Generating functions

3.3.1 Characterisation of the generating functions

We saw in (31) how to link the counts of permutations with the volume functions.
We now show how generating functions for these two kinds of objects can be
related. In the rest of this section, we just write Gq(z) for the generating function

G[Aq](z) =
∑
n≥1

αn([Aq])
n!

zn

and we write
VOq(x, z) =

∑
n≥1

voq,n−1(x)zn.

By taking
∑
n≥1 z

n in the equations of Proposition 5 we obtain the following
proposition.

Proposition 7 For z < Rconv(VO), the vector of generating functions VO is the

unique solution of the following system of integral equations:

VOq(x, z) = z

∫ 1

x

VOq.a(y, z)dy + z

∫ x

0

VOq.d(y, z)dy + z1q∈F . (33)

In addition for q ∈ Q, it holds that: Gq(z) =
∫ 1

0
VOq(x, z)dx.

In matrix notation, the system of equations (33) can be written as

VO(x, z) = zMa

∫ 1

x

VO(y, z)dy + zMd

∫ x

0

VO(y, z)dy + zF. (34)

A similar equation was obtained in [EJ12], to find the growth rate of classes of
permutations that avoid a set of consecutive descent patterns (as described in
Section 2.1.1).

Equation (34) is equivalent to the following differential equation (35) and
boundary condition (36):

∂

∂x
VO(x, z) = z (Md −Ma) VO(x, z); and (35)

VO(0, z) = zMa

∫ 1

0

VO(y, z)dy + zF = zMaG(z) + zF. (36)

The solution of these equations involves the following matrix:

I(z)
def
=

∫ 1

0

exp [xz (Md −Ma)] dx. (37)

Theorem 1 There exists r ≤ Rconv(G) such that for all z within the disc D(0, r) the

matrix I|Q| − zI(z)Ma is invertible and G(z) satisfies:

G(z) =
(
I|Q| − zI(z)Ma

)−1
zI(z)F. (38)

If Md −Ma is invertible (38) is equivalent to:

G(z) = (Md − exp [z(Md −Ma)]Ma)−1 (exp [z(Md −Ma)]− I|Q|
)
F. (39)
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Proof Solutions of (35) are of the form:

VO(x, z) = exp [xz (Md −Ma)] VO(0, z). (40)

Now, we integrate x over [0, 1] to make I(z) appear and use the boundary condition
(36) to obtain:

G(z) = I(z) (zMaG(z) + zF) .

which yields (
I|Q| − zI(z)Ma

)
G(z) = zI(z)F.

When z = 0, the continuous function z 7→ det
(
I|Q| − zI(z)Ma

)
is equal to det(I|Q|) =

1 and thus non null on a neighbourhood of 0. Thus, the matrix
(
I|Q| − zI(z)Ma

)
is invertible around 0 and the first result (38) follows.

Now, we prove (39). Note that z (Md −Ma) I(z) = exp [z(Md −Ma)] − I|Q|.
Indeed,

z (Md −Ma) I(z) =

∫ 1

0

∑
n≥0

[z (Md −Ma)]n+1 1

n!
xndx =

∑
n≥0

(Md −Ma)n+1 zn+1

(n+ 1)!
.

Then

(Md −Ma)
(
I|Q| − zI(z)Ma

)
= Md − exp [z(Md −Ma)]Ma.

Hence when Md −Ma is invertible we have:

G(z) =
(
I|Q| − zI(z)Ma

)−1
(Md −Ma)−1(Md −Ma)zI(z)F

= (Md − exp [z(Md −Ma)]Ma)−1 (exp [z(Md −Ma)]− I|Q|
)
F.

ut

As a corollary of the proof of Theorem 1 one can obtain VO(x, z) by plugging
(36) in (40).

Proposition 8 For every x ∈ [0, 1] it holds that Rconv(G) ≤ Rconv(z 7→ VO(x, z));

and that for every z < Rconv(G),

VO(x, z) = z exp [xz (Md −Ma)] (MaG(z) + F) . (41)

3.3.2 About generating functions for periodic patterns

It is worth mentioning that a class of examples where (39) can be used to derive
explicit formulas of GL(z) are the periodic patterns described in Section 2.1.2.
In that case it is not hard to compute the matrix exp [z(Md −Ma)] in terms of
generalised hyperbolic or generalised trigonometric functions (see Appendix B of
[Luc14] for definitions). So, the computation time of the generating function is
essentially due to the inversion of the matrix (Md−exp [z(Md −Ma)]Ma), that can
be done for instance in a cubic time using basic Gauss–Jordan elimination. We shall
not go into the details here as there is already a method provided in [Luc14] with a
complexity better than ours (where the main part of the computation is to evaluate
an m ×m determinant where m is the minimum between the number of ascents
and the number of descents in the pattern considered). Another method was also
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given recently [Mar14], but it is not as simple since it is based on evaluation of an
nm× nm determinant (where n is the length of the pattern and m is as above).

In [Bas14], we considered as a running example the language recognised by the
automaton depicted in Figure 3. However, this example does not reflect all the
power of regular classes of permutations as it can be described with a periodic
pattern5.

4 The second approach

We describe here a second approach to study the combinatorics of regular classes
of permutations. In the first approach ascents and descents play a symmetric role.
This redundancy of information is handled by Stanley’s chain polytopes described
in Section 4.1 below: they do not distinguish chains of ascents and chains of de-
scents. In the same section, we show that chain polytopes turn out to be polytopes
associated to timed languages, and hence, we establish a connection between the
combinatorics of permutations and the theory of timed automata. The timed au-
tomata associated to regular languages of signatures still suffer from a redundant
role played by ascents and descents. In Section 4.2, this redundancy is treated by
introducing an encoding of signatures in terms of “straights” and “turns” and their
corresponding timed semantics. This allows us to characterise generating functions
of permutations in Section 4.4 after having described recursive equations on vol-
ume functions in Section 4.3.

4.1 Timed languages and chain polytopes

4.1.1 Chain polytopes of signatures

The chain polytope [Sta86] of a signature u is the set C(u) of vectors t ∈ [0, 1]n such
that for all i < j ≤ n and l ∈ {a, d}, wi · · ·wj−1 = lj−i ⇒ ti + . . .+ tj ≤ 1.

Example 4 A vector (t1, t2, t3, t4, t5) ∈ [0, 1]5 belongs to C(daad) iff t1 + t2 ≤ 1, t2 +
t3 + t4 ≤ 1, t4 + t5 ≤ 1 iff 1− t1 ≥ t2 ≤ t2 + t3 ≤ 1− t4 ≥ t5 iff (1− t1, t2, t2 + t3, 1−
t4, t5) ∈ O(daad).

More generally, for w = ul with u ∈ {a, d}∗, l ∈ {a, d} and n = |w|, there is a volume
preserving transformation (t1, · · · , tn) 7→ (ν1, · · · , νn) from the chain polytope C(u)
to the order polytope O(u) defined as follows. Let j ∈ [n] and i be the index such
that wi · · ·wj−1 is a maximal ascending or descending block, that is, i is minimal

such that wi · · ·wj−1 = lj−i with l ∈ {a, d}. If wj = d we define νj = 1 −
∑j
k=i tk

and νj =
∑j
k=i tk otherwise.

Proposition 9 (A simple case of Theorem 2.1 of [HL12]) The mapping φul :
(t1, · · · , tn) 7→ (ν1, · · · , νn) is a volume preserving transformation from C(u) to O(u).

5 Indeed, this example can be obtained from an example of [Luc14] by taking only the
even-length permutations. We discovered this by looking at the OEIS sequence A005981.

http://oeis.org/A005981
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It can be computed in linear time using the recursive definition:

∣∣∣∣ ν1 = t1 if w1 = a
ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣∣∣∣∣∣∣∣
νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

As a corollary of (29) and Propostion 9, Problem 2 can be reformulated in geo-
metric terms as follows.

Corollary 2 For every L ∈ {a, d}∗ the following equalities hold:

GL(z) =
∑
n≥1

Vol(On(L))zn =
∑
u∈L

Vol(O(u))z|u|−1 =
∑
u∈L

Vol(C(u))z|u|−1.

The following three sections (Section 4.1.2, 4.1.3 and 4.1.4) are inspired by
timed automata theory and designed for non-experts. We adopt a non-standard6

and self-contained approach based on the notion of clock languages introduced by
[BP02] which was used in our previous work [ABDP12].

4.1.2 Timed languages, their volumes and generating functions

An alphabet of timed events is the product R+ × Σ where Σ is a finite alphabet.
The meaning of a timed event (ti, wi) is that ti is the time delay before the event

wi. A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
t = (t1, . . . , tn) ∈ Rn together with a word of events w = w1 · · ·wn ∈ Σn. That is
why we sometimes write such a timed word (t, w) instead of (t1, w1) · · · (tn, wn).
With this convention, given a timed language L′ ⊆ (R+ × Σ)∗, its restriction
to n-length words L′n can be seen as a union of sets

⊎
w∈Σn L

′
w × {w} where

L′w = {t ∈ Rn | (t, w) ∈ L′} is the set of delay vectors that together with w form a
timed word of L′. In the sequel we will only consider languages L′ for which every
L′w is Lebesgue measurable. To such L′n one can associate a sequence of volumes
and a volume generating function as follows:

Vol(L′n) =
∑
w∈Σn

Vol(L′w); TL′(z) =
∑
w∈Σ∗

Vol(L′w)z|w| =
∑
n∈N

Vol(L′n)zn

4.1.3 The clock semantics of a signature

A clock is a non-negative real variable. Here we only consider two clocks bounded
by 1 and denoted by xa and xd. A clock word is a tuple with three compo-
nents: a starting clock vector (xa0, x

d
0) ∈ [0, 1]2, a timed word (t1, a1) · · · (tn, an) ∈

([0, 1] × {a, d})∗ and an ending clock vector (xan, x
d
n) ∈ [0, 1]2. It is denoted by

(xa0, x
d
0)

(t1,a1)···(tn,an)−−−−−−−−−−−→ (xan, x
d
n). Two clock words x0

w−→ x1 and x2
w′−−→ x3 are

said to be compatible if x2 = x1, in this case their product is (x0
w−→ x1) · (x2

w′−−→

6 We refer the reader to [AD94] for a standard approach of timed automata theory.
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x3) = x0
ww′−−−→ x3. A clock language is a set of clock words. The product of two

clock languages L and L′ is

L · L′ def
= {c · c′ | c ∈ L, c′ ∈ L′, c and c′ compatible}. (42)

The clock language7 L(a) (resp. L(d)) of an ascent (resp. a descent) is the set of

clock words of the form (xa, xd)
(t,a)−−−→ (xa+t, 0) (resp. (xa, xd)

(t,d)−−−→ (0, xd+t)) and
such that xa + t ∈ [0, 1] and xd + t ∈ [0, 1] (and by definition of clocks and delays
xa ≥ 0, xd ≥ 0, t ≥ 0). These definitions extend inductively to all signatures:
L(u1 · · ·un) = L(u1) · · · L(un) (with product (42)).

Example 5 (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−−−−→ (0, 0.5) ∈ L(daad) since

(0, 0)
(0.7,d)−−−−→ (0, 0.7) ∈ L(d); (0, 0.7)

(0.2,a)−−−−→ (0.2, 0) ∈ L(a);

(0.2, 0)
(0.2,a)−−−−→ (0.4, 0) ∈ L(a); (0.4, 0)

(0.5,a)−−−−→ (0, 0.5) ∈ L(d).

4.1.4 The timed semantics of a language of signatures

The timed polytope associated to a signature w ∈ {a, d}∗ is

Pw
def
= {t | [(0, 0)

(t,w)−−−→ y] ∈ L(w) for some y ∈ [0, 1]2}.

For instance (0.7, 0.2, 0.2, 0.5, 0.1) ∈ Pdaada. The timed semantics of a language of
signatures L′ is

L′ = {(t, w) | t ∈ Pw and w ∈ L′} = ∪w∈L′Pw × {w}.

This language restricted to words of length n is L′n = ∪w∈L′nPw × {w}, its volume
is Vol(L′n) =

∑
w∈L′ Vol(Pw).

4.1.5 The link with order and chain polytopes of signatures

We first state the link between timed polytopes and chain polytopes.

Proposition 10 Given a word u ∈ {a, d}∗ and l ∈ {a, d}, the timed polytope of ul is

the chain polytope of u: Pul = C(u).

Proof Let w = ul, that is, for all i ∈ [n − 1], wi = ui and wn = l. We first prove
the inclusion Pul ⊆ C(u). Let (t1, . . . , tn) ∈ Pw. There exist values of clocks xak

for a ∈ {a, d} and k ∈ {0, . . . , n} such that xa0 = xd0 = 0 and (xak−1, x
d
k−1)

(tk,wk)−−−−−→
(xak, x

d
k) ∈ L(wk). Let i < j ≤ n and a ∈ {a, d} such that wi · · ·wj−1 = aj−i,

then for k ∈ {i, . . . , j − 1}, xak = xak−1 + tk by definition of L(a). Then xaj−1 =
xai−1 + ti + . . . + tj−1. Moreover xaj−1 + tj ≤ 1 by definition of L(wj) (whatever
wj ∈ {a, d} is) and thus ti+ . . .+ tj−1 + tj = xaj−1−x

a
i−1 + tj ≤ xaj−1 + tj ≤ 1 which

is the wanted inequality.
We now prove the inclusion C(u) ⊆ Pul. Let (t1, . . . , tn) ∈ C(u). We show

inductively that for every a ∈ {a, d}, the condition xaj−1 + tj ≤ 1 is satisfied and

7 A reader acquainted with timed automata would have noticed that the clock language
L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the guards xa ≤ 1
and xd ≤ 1 are satisfied and where xd (resp. xa) is reset.
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thus that xaj can be defined (xaj = xaj−1 + tj if wj = a and xaj = 0 otherwise). For
this we suppose that the clock values lower than some index j are well defined
and show that xaj−1 + tj ≤ 1 for a ∈ {a, d}. If a 6= uj−1 then xaj−1 = 0 and hence
xaj−1 + tj ≤ 1. Otherwise a = uj−1 and xaj−1 = ti + . . . + tj−1 where i is the
index of the last reset of xa before j − 1, that is, the minimal index such that
ui+1 . . . uj−1 = aj−i−1. By definition of the chain polytope this latter chain of
ascents (or descents) yields the wanted inequality: xaj−1 + tj = ti+ . . .+ tj ≤ 1. ut

Hence, Proposition 9 links the timed polytope Pul = C(u) of a signature of
length n + 1 and the order polytope O(u) of a signature of length n. We correct
the mismatch of length using prolongation of languages. A language L′ is called a
prolongation of a language L whenever the truncation of the last letter w1 . . . wn 7→
w1 . . . wn−1 is a bijection between L′ and L.

Every language has prolongations. In particular, L′ = Ll for l ∈ {a, d} is a
prolongation of a language L that is regular whenever L is regular.

Example 6 A prolongation of L(run) is L(run)′ = ({aa, dd})∗{aa, dd}. An automaton

recognising L(run)′ ∪ {ε} is depicted in the middle of Figure 1.

Proposition 9 can be extended to language of signatures as follows.

Corollary 3 Let L ⊆ {a, d}∗ and L′ be the timed semantics of a prolongation of L

then for all n ∈ N, the following function is a volume preserving transformation between

L′n and On(L). Moreover it is computable in linear time.

φ : L′n → On(L)
(t, w) 7→ φw(t)

(43)

As a consequence, the Problems 2 and 3 can be solved if we know how to compute
the VGF of a timed language L′ and how to generate timed vectors uniformly in
L′n. A characterization of the VGF of a timed language as a solution of a system
of differential equations is given in [ABDP12]. Nevertheless the equations of this
article are quite difficult to handle and do not give a closed form formula for the
VGF. To get simpler equations than the ones obtained by using the methods of
[ABDP12] we work with a novel class of timed languages involving two kinds of
transitions labelled by s and t.

4.2 The s-t (timed) language encodings

For order polytopes, chains of ascents and chains of descents give inequalities in
opposite directions (νi ≤ . . . ≤ νj and νi ≥ . . . ≥ νj). By contrast, when dealing
with chain polytopes, chains of ascents and chains of descents give exactly the
same inequalities (ti + . . . + tj). To retrieve the successive letters of a signature
while looking at its chain polytope, one has to know the first letter and keep track
of the successive changes of chains. In other words, a signature goes “straight”
during chains of ascent and chains of descent and when a peak (ad) or a valley
(da) happens the signature “turns”.

This encoding in terms of straights and turns formally defined below, is also
well suited to consider only one clock x instead of the two clocks xa and xd.
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4.2.1 The s-t-encodings

The s-t-encoding of type l ∈ {a, d} of a word w ∈ {a, d}∗ is a word w′ ∈ {s, t}∗
denoted by stl(w) and defined recursively as follows: for every i ∈ [n], w′i = s if
wi = wi−1 and w′i = t otherwise, with the convention that w0 = l. The inverse
mapping of stl exists and can also be defined recursively. Indeed w = st−1

l (w′) iff
for every i ∈ [n], wi = wi−1 if w′i = s and wi 6= wi−1 otherwise, with convention
that w0 = l. Notion of s-t-encodings can be extended naturally to languages.

Example 7 Continuing the running example, (Example 1,2,6), we give the s-t-

encoding of L(run)′ : For the running example: std

(
L(run)′

)
= ({s, t}{s})∗ An

automaton recognising this language is depicted in the right of Figure 1.

4.2.2 Timed semantics of the s-t-encodings

In the following, we define clock and timed languages similarly to what we have
done in Sections 4.1.4 and 4.1.3. Here, we need only one clock x that remains

bounded by 1. We define the clock language associated to s by L(s) = {x (t,s)−−−→
x + t | x ∈ [0, 1], t ∈ [0, 1 − x]} and the clock language associated to t by L(t) =

{x (t,t)−−−→ t | x ∈ [0, 1], t ∈ [0, 1− x]}. Let L′′ ⊆ {s, t}∗, we denote by L′′(x) the timed

language starting from x: L′′(x) = {(t, w) | ∃y ∈ [0, 1], x
(t,w)−−−→ y ∈ L(w), w ∈ L′′}.

The timed semantics of L′′ ⊆ {s, t}∗ is L′′(0).
The s-t-encodings yield natural volume preserving transformations between

timed languages:

Proposition 11 Let L′ ⊆ {a, d}∗, l ∈ {a, d}, L′ be the timed semantics of L′ and L′′
be the timed semantics of stl(L

′) then the function (t, w) 7→ (t, st−1
l (w)) is a volume

preserving transformation from L′′n to L′n.

Using notation and results of Corollary 3 and Proposition 11 we get a volume
preserving transformation from L′′n to On(L).

Theorem 2 The function (t, w) 7→ φ
st−1
l (w)

(t) is a volume preserving transformation

from L′′n to On(L) computable in linear time. In particular

Vol(L′′n) =
αn(L)

n!
for n ≥ 1 and TL′′(z) = GL(z).

Thus to solve Problem 2 it suffices to characterize the VGF of a regular language
L′′ ⊆ {s, t}∗.

Remark 2 Prolongations of languages and their s-t-encodings do not contain the
empty word ε. Adding such a word to these languages has the sole effect of adding
1 to their volume generating functions. In terms of permutations this models the
addition of the 0-length permutation to a regular class8. This allows us to simplify
the automata considered as those depicted in Figure 1 and 4 that are respectively
involved in the running example and in the example of alternating permutations.

8 The unique permutation on the empty set has no signature and thus S0 6⊆ Λ(L) for any
language L of signature.
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4.3 Recursive formulae for volume functions and cardinalities

We assume that for the rest of Section 4 an automaton B = ({s, t}, Q, q0, F, δ) is
given and we denote by L′′ its timed semantics. We describe recursive equations on
timed languages starting from clock vectors (as defined in Section 4.2.2), that is,
timed languages of the form [Bq]n(x) for q ∈ Q, n ∈ N and x ∈ [0, 1]. The languages
[Bq]n(x) can be recursively defined as follows: [Bq]0(x) = ε if q ∈ F and [Bq]0 = ∅
otherwise;

[Bq]n+1(x) =
⋃

t≤1−x
(t, s)[Bq.s]n(x+ t) ∪

⋃
t≤1−x

(t, t)[Bq.t]n(t). (44)

For q ∈ Q and n ≥ 0, we denote by vcq,n the function x 7→ Vol[[Bq]n(x)] from
[0, 1] to R+. Hence, each vcq,n is a polynomial of a degree at most n that can be
computed recursively using the recurrence formulas: vcq,0(x) = 1q∈F and

vcq,n+1(x) =

∫ 1

x

vcq.s,n(y)dy +

∫ 1−x

0

vcq.t,n(y)dy. (45)

Note that vcq,n(1) = 0 and vcq0,n(0) = Vol(L′′n) is the nth coefficient of the VGF
TL′′ we want to evaluate.

Now we have a new integral operator
∫ 1−x
0

dy that still behaves well on Bern-
stein polynomials due to the following remarkable property: bj,n(1− t) = bn−j,n(t)
for every j ≤ n ∈ N and t ∈ [0, 1]. More explicitly it holds that:

∫ 1−x

0

bj,n(y)dy =

∫ 1

x

bj,n(1− t)dt =

∫ 1

x

bn−j,n(t)dt =
1

n+ 1

n−j∑
i=0

bi,n+1(x) (46)

Proposition 12 For every q ∈ Q, n ∈ N, it holds that

vcq,n(x) =
1

n!

n∑
k=0

βn+1,k+1([Bq])bk,n(x) (47)

where the coefficients βn,k([Bq]) are defined recursively as follows: β1,1([Bq]) = 1q∈F
and for n ≥ 1, and for k ∈ [n+ 1]

βn+1,k([Bq]) =
n∑
i=k

βn,i([Bq.s]) +
n+1−k∑
i=1

βn,i([Bq.t]), (48)

where by convention empty sums are null and hence βn+1,n+1([Bq]) = 0.
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Proof We prove this by induction. The base case is satisfied vcq,1(x) = 1q∈F =
β1,1([Bq])b1,1(x). To prove the induction step we use (45). The first integral yields:∫ 1

x

vcq.s,n(y)dy =
1

n!

n∑
j=0

βn+1,j+1([Bq.s])
∫ 1

x

bj,n(y)dy;

=
1

(n+ 1)!

n∑
j=0

βn+1,j+1([Bq.s])
j∑

k=0

bk,n+1(x) (by (19));

=
1

(n+ 1)!

n∑
k=0

 n∑
j=k

βn+1,j+1([Bq.s])

 bk,n+1(x);

while the second integral yields:∫ 1−x

0

vcq.t,n(y)dy =
1

n!

n∑
j=0

βn+1,j+1([Bq.t])
∫ 1−x

0

bj,n(y)dy;

=
1

(n+ 1)!

n∑
j=0

βn+1,j+1([Bq.t])
n−j∑
k=0

bk,n+1(x) (by (46));

=
1

(n+ 1)!

n∑
k=0

n−k∑
j=0

βn+1,j+1([Bq.t])

 bk,n+1(x).

Then if we write vcq,n+1(x) in the basis of Bernstein polynomials, the coefficient
associated to bk,n+1(x)/(n+ 1)! is as expected:

βn+2,k+1([Bq]) =
n+1∑
i=k+1

βn+1,i([Bq.s]) +
n+1−k∑
i=1

βn+1,i([Bq.t]).

ut

In Section 3.2.1, the coefficients αn,k were directly defined as cardinalities of sets
of permutations that are the discrete version of order polytopes. We think that
a discrete version of the chain polytopes can be defined as well to give a direct
interpretation of the coefficient βn,k in terms of cardinality of sets of permutations.
In any case, these coefficients can be computed using local recursive rules as follows.

Proposition 13 One can use the following recursion scheme to compute the coeffi-

cients βn,k([Bq]) and hence the volume functions vcq,n in the Bernstein basis in arith-

metic time and space complexity O(|Q|n2).

βn+1,k([Bq]) = βn+1,k(s[Bq.s]) + βn+1,k(t[Bq.t]); (49)

βn+1,k(s[Bq]) = βn+1,k+1(s[Bq]) + βn,k([Bq]); (50)

βn+1,k(t[Bq]) = βn+1,k(t[Bq]) + βn,n+1−k([Bq]); (51)

βn+1,n+1(s[Bq]) = 0; βn+1,n+1(t[Bq]) = 0; (52)

β1,1([Bq]) = 1q∈F . (53)
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Proposition 14 The coefficients of the volume function vcq,n can be computed in the

standard basis in arithmetic time and space complexity O(|Q|n2), using the following

system of recursive equations on vcq,n(x) and ṽcq,n(x)
def
= vcq,n(1− x):

vcq,0(x) = ṽcq,0(x) = 1q∈F ;

vcq,n+1(x) =

∫ 1

x

vcq.s,n(y)dy +

∫ 1

x

ṽcq.t,n(y)dy;

ṽcq,n+1(x) =

∫ x

0

ṽcq.s,n(y)dy +

∫ x

0

vcq.t,n(y)dy.

These equations are obtained from (45). We introduced the functions ṽcq,n because
developing the expression

∫ 1−x

0

vcq.t,n(y)dy =
n∑
k=0

1

k + 1
ak(1− x)k+1.

knowing only vcq.t,n(y) =
∑n
k=0 aky

k needs O(n2) arithmetic operations. By con-

trast, when ṽcq.t,n(y) =
∑n
k=0 bky

k is given, the expression

∫ 1−x

0

vcq.t,n(y)dy =

∫ 1

x

ṽcq.t,n(y)dy =
n∑
k=0

1

k + 1
bk −

n∑
k=0

1

k + 1
bky

k+1.

is computed in linear time.

The following proposition states remarkable properties on the shape of the
volume functions that will be extended to generating functions in Section 4.4.

Proposition 15 For every q ∈ Q, n ≥ 0, the function vcq,n is non-increasing on

[0, 1], and satisfies for every x ∈ [0, 1]:

(1− x)nvcq,n(0) ≤ vcq,n(x) ≤ vcq,n(0) = βn+1,1([Bq]).

Proof The fact that the function is non-increasing is straightforward using (45)
and the positivity of the volume function on [0, 1].

For the first inequality we use the decomposition of vcq,n as a sum of Bernstein
polynomials (47):

vcq,n(x) =
1

n!

n∑
k=0

βn+1,k+1([Bq])bk,n(x).

All the terms of this sum are non-negative for x ∈ [0, 1] and for x = 0, bk,n(0) is
not null only for k = 0 (and in that case equal to 1). Hence vcq,n(0) = βn+1,1([Bq])
and vcq,n(0)(1− x)n = βn+1,1([Bq])b0,n(x) ≤ vcq,n(x). ut
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4.4 Generating functions

4.4.1 Characterisation of the generating functions

The timed language [Bq](x) starting from states q ∈ Q and clock x ∈ [0, 1] satisfies
the following system of language equations:

[Bq](x) =
⋃

t≤1−x
(t, s)[Bq.s](x+ t) ∪

⋃
t≤1−x

(t, t)[Bq.t](t) ∪ (ε if q ∈ F ). (54)

We denote by VCq(x, z) and Tq(z) the volume generating function of [Bq](x) and
[Bq] respectively. We are interested in TL′′(z) = Tq0(z) = VCq0(0, z).

We recall that Rconv(VCq) = infx∈[0,1] Rconv(z 7→ VCq(x, z)) and Rconv(VC) =
minq∈Q Rconv(VCq). The link between the different convergence radii is done in
Corollary 5 below.

As in [ABDP12], we translate systems of equations on timed languages (54)
into systems of equations on generating functions (55):

Theorem 3 For z < Rconv(VC), x 7→ VC(x, z) = (VCq(x, z))q∈Q is the unique

solution of the following system of integral equations:

VCq(x, z) = z

∫ 1

x

VCq.s(y, z)dy + z

∫ 1−x

0

VCq.t(y, z)dy + 1q∈F . (55)

One can equivalently state this theorem in terms of a system of differential
equations as follows.

Corollary 4 For z < Rconv(VC), x 7→ VC(x, z) = (VCq(x, z))q∈Q is the unique

solution of the following system of differential equations

∂

∂x
VCq(x, z) = −zVCq.s(x, z)− zVCq.t(1− x, z); (56)

with boundary conditions

VCq(1, z) = 1q∈F . (57)

In matrix notation (55), (56) and (57) give:

VC(x, z) = zMs

∫ 1

x

VC(y, z)dy + zMt

∫ 1−x

0

VC(y, z)dy + F; (58)

∂

∂x
VC(x, z) = −zMsVC(x, z)− zMtVC(1− x, z); (59)

VC(1, z) = F. (60)

The following theorem gives the form of the solution in terms of the exponential
E(z) of a matrix M defined as follows:

M
def
=

(
−Ms −Mt

Mt Ms

)
and E(z)

def
=

(
E1(z) E2(z)
E3(z) E4(z)

)
def
= exp(zM).

Theorem 4 In a neighbourhood of 0, the matrix E1(z) and I|Q|−E3(z) are invertible

and the following two characterizations of T(z) hold:

T(z) = [E1(z)]−1[I|Q| − E2(z)]F; (61)

T(z) = [I|Q| − E3(z)]−1E4(z)F. (62)
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Proof The equation (59) is equivalent to the following linear homogeneous system
of ordinary differential equations with constant coefficients:

∂

∂x

(
VC(x, z)

VC(1− x, z)

)
= zM

(
VC(x, z)

VC(1− x, z)

)
. (63)

Its solution is of the form(
VC(x, z)

VC(1− x, z)

)
= E(xz)

(
VC(0, z)
VC(1, z)

)
. (64)

Taking x = 1 in (64) and using the boundary condition (60) we obtain:(
F

T(z)

)
= E(z)

(
T(z)

F

)
. (65)

Hence,

F = E1(z)T(z) + E2(z)F; T(z) = E3(z)T(z) + E4(z)F. (66)

In particular when z = 0, it holds that E1(0) = I|Q| − E3(0) = I|Q| and thus
the two continuous functions z 7→ detE1(z) and z 7→ det(I|Q|−E3(z)) are positive
in a neighbourhood of 0. We deduce that the inverses of the matrices E1(z) and
I−E3(z) are well defined in a neighbourhood of 0 and thus both equations of (66)
permit to express T(z) with respect to F to get respectively (61) and (62). ut

As a corollary of the proof of Theorem 4 one can obtain the vector of generating

functions

(
VC(x, z)

VC(1− x, z)

)
as follows

(
VC(x, z)

VC(1− x, z)

)
= E(xz)

(
T(z)

F

)
. (67)

4.4.2 Closed form formula and Taylor expansion of the generating function

The characterisation of Theorem 4 allows us to derive an algorithm (Algorithm 1)
that determines a closed form formula for the generating function GL(z) = Tq0(z).
For this we need to compute symbolically the matrix E(z) = exp(zM).

Proposition 16 (Direct consequence of [Cai94]) Given a square matrix M with

rational coefficients and eigenvalues λ1, . . . , λr, the coefficients of E(z) = exp(zM) are

polynomials in λ1, . . . , λr, e
λ1z , . . . , eλrz , z that can be computed in polynomial time.

Proof This proposition is based on the two following assertions. The former (A1)
is proved in [Cai94]. The latter (A2) is folklore and can be found for instance in
[OPW15].

A1 One can compute a Jordan form, M = PJP−1 in polynomial time, the coef-
ficients of P and P−1 are polynomials in λ1, . . . , λr with rational coefficients
and a polynomial number of coefficients.

A2 It holds that exp(zM) = P exp(zJ)P−1 with exp(zJ) having coefficients of the
form eλzp(z) with λ an eigenvalue of M and p(z) a polynomial in z of degree
strictly smaller than the multiplicity of λ.
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Algorithm 1 Computation of a closed form formula for the EGF GL(z)

1: Compute an automaton B = ({s, t}, Q, q0, F, δ) that recognises an s-t-encoding of an ex-
tension of L and compute its adjacency matrices Ms and Mt;

2: Compute

(
E1(z) E2(z)
E3(z) E4(z)

)
def
= exp

[
z

(
−Ms −Mt

Mt Ms

)]
;

3: Solve the system of linear equations E1(z)T(z) = [I|Q| − E2(z)]F;
4: return GL(z) = Tq0 (z) the component of T(z) corresponding to the initial state of B.

Hence the coefficients of the matrix exp(zM) = P exp(zJ)P−1 are polynomials in
λ1, . . . , λr, e

λ1z , . . . , eλrz , z that can be computed in polynomial time. ut

As a consequence of this proposition and of Theorem 4, we have the following:

Theorem 5 (Closed form formula for the generating function) Let λ1, . . . , λr
be the eigenvalues of M . A closed form formula for the generating function GL(z) =
Tq0(z) as a rational function with rational coefficients over variables λ1, . . ., λr, eλ1z,

. . ., eλrz, z can be computed in EXPTIME(|Q|) using Algorithm 1.

Some comments about Algorithm 1. In line 1, several choices are left to the user: the
prolongation L′ of the language L, the type of the s-t-encoding and the automaton
that realizes the s-t-encoding. These choices should be made in such a way that
the output automaton has a small number of states or more generally such that
the matrices Ms and Mt are the simplest possible. Algorithm 1 can also be used
as a numerical method given an input complex number z < Rconv(T). Further
properties of E(z) are given in Section 4.4.4.

Proof (of Theorem 5) Solving the system E1(z)T(z) = (I|Q| − E2(z))F involves
doing a polynomial number of products and inversions of rational functions in
variables λ1, . . ., λr, e

λ1z, . . ., eλrz, z. This yields rational functions with at most an
exponential number of coefficients. This gives the EXPTIME(|Q|) upper-bound.

ut

For the lower-bound on the complexity, further studies are required that go beyond
the scope of the present paper. We do not know if a closed form formula for GL(z)
that needs only a polynomial number of symbols exists in general.

Taylor expansion computation. The implicit characterisation of the generating func-
tion stated in Theorem 4 can be used to derive a novel algorithm to solve Problem
1 in subquadratic time with respect to n ∈ N.

Theorem 6 Given a regular language L and an automaton B = ({s, t}, Q, q0, F, δ) that

recognises an s-t-encoding of an extension of L. For every n ∈ N, the Taylor expansion∑n
i=1 αi(L)zi/i! at order n of GL(z) = Tq0(z) can be computed in arithmetic time

complexity O(n log(n)|Q|3) using Algorithm 2.

Proof First we recall that product of nth degree (truncated) polynomials can be
done in O(n log n) using Fast Fourier Transform (see for instance [CLRS09]). In-
verting truncated polynomials requires also O(n log n) operations [Kal93]. Line 3
needs n multiplications of 2m × 2m matrices and hence is achieved in O(n|Q|3).
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Algorithm 2 Computation of a Taylor expansion at order n for the EGF GL(z)

1: Compute an automaton B = ({s, t}, Q, q0, F, δ) that recognises an s-t-encoding of an ex-
tension of L and compute its adjacency matrices Ms and Mt;

2: Define M =

(
−Ms −Mt

Mt Ms

)
;

3: Compute M i for i ≤ n;

4: Compute

(
E

(n)
1 (z) E

(n)
2 (z)

E
(n)
3 (z) E

(n)
4 (z)

)
def
=
∑n

i=1(zi/i!)M i;

5: Solve the linear system of equations E
(n)
1 (z)T(n)(z) = [I|Q| − E

(n)
2 (z)]F with operations

done on polynomials truncated to the nth order.

6: return the polynomial T
(n)
q0 (z) corresponding to the initial state of B.

Line 4 consists in a summation of matrices computed just above, it has complex-
ity O(n|Q|2). In Line 5 the inversion of the matrix can be done using Gaussian
elimination, requiring O(|Q|3) operations on truncated polynomials each one be-
ing achieved in O(n log n) arithmetic operations. At the end, the arithmetic time
complexity is O(n log(n)|Q|3).

4.4.3 Properties of the generating functions and convergence radii

The following proposition gives some properties on the shape of the generating
functions:

Proposition 17 For every z < Rconv(VCq), the function x 7→ VCq(x, z) is non-

increasing in [0, 1] and decreasing in (0, 1) if non constant and satisfy for every x ∈
[0, 1]:

VCq(0, (1− x)z) ≤ VCq(x, z) ≤ VCq(0, z); (68)

moreover for every l ∈ {s, t} it also holds that

VCq(0, z) ≥ zVCq.l(0, z). (69)

Proof The fact that the function x 7→ VCq(x, z) is non-increasing comes from
Proposition 15. The sequence of inequalities (68) is obtained by taking

∑
.zn in

the inequalities of Proposition 15. The last inequality (69) relies on the fixed point
equation (55) and non-negativity of the generating functions:

VCq(0, z) ≥ z
∫ 1

0

VCq.l(y, z)dy ≥ zVCq.l(0, z).

ut

As a corollary we can compare convergence radii as follows.

Corollary 5 For every q ∈ Q, l ∈ Σ it holds that Rconv(VCq) = Rconv(z 7→
VCq(0, z)) and Rconv(VCq) ≤ Rconv(VCq.l). In particular, since the automaton is

accessible it also holds that:

Rconv(T) = Rconv(z 7→ VCq0(0, z)) = Rconv(TL′′).
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4.4.4 Further properties of the matrix exponentiation

To evaluate the generating function in a given point (x, z) ∈ [0, 1]× [0, Rconv(T)),
one can compute numerically E(z) = exp(zM) and E(xz) = exp(xzM), and solve
systems (65) and (67). There are numerous ways of computing the matrix expo-
nential (see [MVL03] for nineteen of them). To choose the right algorithm one has
to take into account properties of M such as its sparsity. Each row of the matrix
M has at most two non-null entries that are either 1 or −1.

The purpose of this section is to highlight some remarkable properties of M
that could be helpful for its exponentiation (either numerical or symbolical). In
particular we describe some properties of the spectrum of M (the set of eigenvalues
of M) denoted by Sp(M).

We define the matrix S =

(
0 I|Q|
I|Q| 0

)
. This matrix permutes the |Q| first lines

with the |Q| last lines of any matrix it multiplies from the left, and permutes the
|Q| first columns with the |Q| last columns of any matrix it multiplies from the
right. The matrix S is an involutory matrix (that is, equal to its own inverse).
Note that M enjoys a central antisymmetry in the following sense: SMS = −M .

The following results hold for every matrix M such that SMS = −M , that is,

of the form M =

(
−A −B
B A

)
for some matrices A and B.

One can first remark that M admits the following block anti-diagonalisation:

P

(
−A −B
B A

)
P> =

(
0 A−B

A+B 0

)
(70)

with P the orthonormal matrix defined by block as follows P = 1√
2

(
I I

−I I

)
.

We let C = A−B and D = A+B and remark that(
0 C

D 0

)2n

=

(
(CD)n

0 (DC)n

)
and

(
0 C

D 0

)2n+1

=

(
0 (CD)nC

D(CD)n 0

)
.

We denote

F1(z) =
+∞∑
n=0

(CD)n
z2n

2n!
; F2(z) =

+∞∑
n=0

(DC)n
z2n

2n!
; F3(z) =

+∞∑
n=0

(CD)n
z2n+1

(2n+ 1)!
,

and then it holds that:

E(z) = P>
(

F1(z) F3(z)C
DF3(z) F2(z)

)
P (71)

In the next proposition, for a complex number λ, we denote by Eλ(M) the
vector space {v ∈ C2|Q| | Mv = λv}. If Eλ(M) 6= {0}, this set is known as the
eigenspace of M for the eigenvalue λ.

Proposition 18 For every non-null complex number µ, and for both λ ∈ C such that

λ2 = µ the following holds: µ ∈ Sp [(A−B)(A+B)] iff λ ∈ Sp(M). More precisely,

if µ 6= 0 and λ is such that λ2 = µ then v 7→
(
λI|Q| −A−B
λI|Q| +A+B

)
v is an isomorphism

between Eµ((A−B)(A+B)) and Eλ(M).
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Proof Note that

(
λI|Q| −A−B
λI|Q| +A+B

)
v = λ

√
2PT

(
v

1
λDv

)
and hence, it suffices to

show that v 7→
(

v
1
λDv

)
is an isomorphism between Eλ2(CD) and Eλ(PMP>) =

Eλ

[(
0 C

D 0

)]
. This function is clearly linear. Take v ∈ Eλ2(CD), then

(
0 C

D 0

)(
v

1
λDv

)
=

(
C 1
λDv

Dv

)
= λ

(
v

1
λDv

)
.

Take any

(
v

y

)
∈ Eλ

[(
0 C

D 0

)]
. It exactly means that Cv = λv and Dv = λy.

Thus

(
v

y

)
= λ

(
v

1
λDv

)
is of the required form and CDv = λCy = λ2v. ut

The proposition above implies that if λ is an eigenvalue of M , then so is −λ. We
have not yet compared the multiplicities of such mutually opposite eigenvalues.
The multiplicities are the same as a corollary of the following remarkable identity.

Proposition 19 The following identity holds E(−z) = SE(z)S.

Proof Indeed E(−z) = exp(−zM) = exp(zSMS) = S exp(zM)S = SE(z)S. ut

We can deduce from this proposition that SE(z) and E(z)S are involutory matrices
(SE(z))2 = (E(z)S)2 = I2|Q|. We have also that E(z) is of the following form:

E(z) =

(
E1(z) E2(z)
E2(−z) E1(−z)

)
. The identity E(z)E(−z) = I2|Q| yields

E1(z)E2(−z) = I|Q| − E2(z)2 ; E1(z)E1(−z) = −E2(z)E1(z);

E1(−z)E2(−z) = −E2(−z)E2(z) ; E2(−z)E1(z) = I|Q| − E1(−z)2;

that can be used for instance to show that equations (61) and (62) are equivalent.

Corollary 6 The spectrum of M is symmetric with respect to the origin, that is, if λ

is an eigenvalue of M with a multiplicity mλ then so is −λ.

Proof The characteristic polynomial of M is χM (X) =
∏
λ∈Sp(M)(λ−X)mλ , that

of E(z) = exp(zM) is χE(z)(X) =
∏
λ∈Sp(M)(e

zλ − X)mλ and that of E(−z) =

exp(zM) is χE(−z)(X) =
∏
λ∈Sp(M)(e

−zλ − X)mλ . By virtue of Proposition 19,

E(−z) and E(z) are conjugate and hence have the same characteristic polynomial.
Necessarily for every λ ∈ Sp(M), it holds that −λ ∈ Sp(M) and mλ = m−λ.

4.4.5 Examples

Alternating permutations. The class of alternating permutations is Alt = S0 ∪
Λ[{da}∗{ε, d}]. It is well known since the 19th century and the work of Désiré
André that the exponential generating function of this class of permutations is

tan(z) + sec(z) (where sec(z) = 1/ cos(z)).
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Several different proofs of this results can be found in [Sta10]. Here we give a novel
proof illustrating our method.

A prolongation of {da}∗{ε, d} is {da}∗{d, da}. We add ε to the language (to add
1 to its VGF that counts the 0-length permutation as described in remark 2) and
obtain {da}∗{ε, d}.

The s-t encoding of type a of {da}∗{ε, d} is just {t}∗ which is recognized by the
one loop automaton depicted in the right of Figure 4. Thus Ms = (0), Mt = (1)

and we must compute exp(zM) =
∑
n∈N z

nMn/n! with M =

(
0 −1
1 0

)
.

This is an easy particular case of exponentiation done in Section 4.4.4 with

C = (−1) and D = (1). It gives exp(zM) =

(
cos(z) − sin(z)
sin(z) cos(z)

)
.

By definition E1(z) = cos(z), E2(z) = − sin(z). We can conclude that the
desired generating function is:

E1(z)−1(1− E2(z)) =
1

cos(z)
+ tan(z).

One could alternatively use (62) to get the same result:

[I|Q| − E3(z)]−1E4(z) =
cos(z)

1− sin(z)
=

cos(z) [1 + sin(z)]

1− sin2(z)
=

1 + sin(z)

cos(z)
. (72)

Moreover the generating function VC(x, z) can be obtained using (67):(
VC(x, z)

VC(1− x, z)

)
=

(
cos(xz) − sin(xz)
sin(xz) cos(xz)

)( 1
cos(z) + tan(z)

1

)
Hence VC(x, z) = [cos(xz) + sin(z) cos(xz)− sin(xz) cos(z)] / cos(z) which after sim-
plification gives:

VC(x, z) =
cos(xz) + sin((1− x)z)

cos(z)
(73)

Running example. Now we apply our method to the running example L(run) =
({aa, dd})∗{a, d}. We have already described one of its prolongations and an s-t-
encoding of this prolongation. Automata for these languages with the empty word
added are depicted in Figure 1.

The matrix Ms, Mt and M are

Ms =

(
0 1
1 0

)
;Mt =

(
0 1
0 0

)
and M =


0 −1 0 −1
−1 0 0 0
0 1 0 1
0 0 1 0


We use the method described in Section 4.4.4, and define matrices

C = Ms −Mt =

(
0 0
1 0

)
and D = Ms +Mt =

(
0 2
1 0

)
.

We compute

CD =

(
0 0
0 2

)
and DC =

(
2 0
0 0

)
.
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There are now two options. Either we reduce the matrix M into a triangular or
diagonal form using Proposition 18, or we compute the exponential of the matrix
by using (71). We choose the second option and compute

F1(z) =

(
1 0
0 cosh(

√
2z)

)
; F2(z) =

(
cosh(

√
2z) 0

0 1

)
;

F3(z)C =

(
0 0√

2
2 sinh(

√
2z) 0

)
and DF4(z) =

(
0 sinh(

√
2z)

1 0

)
.

We deduce that,

E(z) = P>


1 0 0 0

0 cosh(
√

2z)
√
2
2 sinh(

√
2z) 0

0 sinh(
√

2z) cosh(
√

2z) 0
1 0 0 1

P

which yields after straightforward computations: E(z) =

(
E1(z) E2(z)
E2(−z) E1(−z)

)
with

E1(z) =

(
1
2 cosh

(√
2z
)

+ 1
2 −1

2 sinh
(√

2z
)

−1
4

√
2 sinh

(√
2z
)
− 1

2
1
2 cosh

(√
2z
)

+ 1
2

)
and

E2(z) =

(
−1

2 cosh
(√

2z
)

+ 1
2 −1

2 sinh
(√

2z
)

1
4

√
2 sinh

(√
2z
)
− 1

2
1
2 cosh

(√
2z
)
− 1

2

)
.

The vector of VGF is given by T(z) = [E1(z)]−1[I − E2(z)]F. After some
elementary computations9, we obtain:

T(z) =

 2−
√
2z+(2+

√
2z)e

√
2z

2+
√
2z−(2−

√
2z)e

√
2z

2 z
(
e
√

2z+1
)

2+
√
2z−(2−

√
2z)e

√
2z

 .

To get TL(run) , we subtract 1 from the first coordinate of T(z) and get the
answer announced in (4):

TL(run) =
2
√

2z(e
√
2z − 1)

2 +
√

2z + (2−
√

2z)e
√
2z
.

By factorising the numerator and denominator by 4e
√

2
2
z we get the other result

announced in (5):

TL(run)(z) =

√
2z sinh(

√
2
2 z)

cosh(
√
2
2 z)−

√
2
2 z sinh(

√
2
2 z)

= 2

√
2
2 z tanh(

√
2
2 z)

1−
√
2
2 z tanh(

√
2
2 z)

= 2f

(√
2

2
z

)
with f(X) = 1

1−X tanh(X) − 1.

We can find numerically the convergence radius of f . We set X = z/
√

2,
find the smallest root of 1 − X tanh (X) and multiply it by

√
2. We obtain that

Rconv(TL(run)) ≈ 1.6966.

9 We used the computer algebra software Sage [S+15] and the simplification method of
Sympy [Sym14].
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5 Uniform random sampling

In this Section we propose three methods for the problem of random sampling of
permutations in a regular class. The first algorithm is based on a discrete recursive
method for sampling (Section 5.1). We state in Theorem 8, that sampling permu-
tations in a regular class reduces to sampling timed words in the corresponding
language of signatures. We then present two methods for generating timed words
uniformly at random: a continuous recursive method in Section 5.2, and an exten-
sion of the Boltzmann sampling method to timed languages in Section 5.3.

5.1 A discrete recursive method

In this section as in Section 3.2 and 3.3 we consider an arbitrary regular language
L recognised by an automaton A = ({a, d}, Q, q0, F, δ).

Building a sampling algorithm based on the recursive method is done in three
main steps: (i) find a recursive characterisation of the class of objects to sample;
(ii) write corresponding recursive equations on cardinalities; and (iii) turn them
into discrete probability distribution. For instance, the set equation

Λn([Aq]) =
n⋃
k=1

Λn,k([Aq])

gives the cardinality equation (21) recalled here:

αn([Aq]) =
n∑
k=1

αn,k([Aq]).

Dividing both sides by αn([Aq]) gives the equation of a discrete probability distri-
bution:

1 =
n∑
k=1

αn,k([Aq])
αn([Aq])

.

Hence the initial distribution for choosing the first element k of a random permu-
tation of Λn([Aq]) is given by:

[weight-init]k = αn,k([Aq0 ])/αn([Aq0 ])

The other distributions needed in the algorithm are:

[weightq,m,k]i =

{
αm,i([Aq.a])/αm+1,k([Aq]) if k ≤ i ≤ m
αm,i([Aq.d])/αm+1,k([Aq]) if 1 ≤ i ≤ k − 1

In the following algorithm, the function Pop(E, k) returns the kth element of the
set E with side effect of removing it from E. Using a standard data structure (like
a self balancing binary search tree10) this operation can be done in time O(log n)
with a creation of the structure in time O(n) where n is the initial number of
elements in E.

10 In fact, simple binary search tree suffices starting with a tree of height O(logn). Indeed
deletion can be achieved at a cost of the height of the tree and without increasing it so that it
remains bounded by O(logn).
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Algorithm 3 A discrete recursive method for uniform random generation of a
permutation of fixed length n within a regular class of permutation Λ(L).

Require: The weight vectors weightq,m.k for q ∈ Q and k ≤ m ≤ n are precomputed.

1: q ← q0; E ← [n];
2: Pick randomly k according to weight vector weight-initial;
3: σ(1)← Pop(E, k);
4: for j from 2 to n do
5: Pick randomly i according to weight vector weightq,n+1−j,k;

6: σ(j)← Pop(E, i);
7: if i ≥ k then
8: q ← q.a;
9: else

10: q ← q.d;
11: end if
12: k ← i;
13: end for

Theorem 7 Permutations generated by Algorithm 3 are uniformly distributed among

the permutations of size n with a signature in L. Time and space complexity are dis-

cussed below.

There can be a trade-off between the complexity of the algorithm and that of its
pre-computation. All the complexity results given below are in terms of arithmetic
operations.

– Computing and storing in a table all the [weightq,m,k]i have a complexity

O(n3|Q|). After that pre-computation, each generation is in time O(n log n).
– Alternatively one can compute and store only the coefficients αm,k([Aq]) with

a complexity O(n2|Q|). Then during the generation there are n distributions
weightq,m,k to compute each one at a cost of O(n) operations; the complexity

of generating a permutation becomes O(n2).
– A third option is to change the sampling algorithm to mimic the locality of

(24), (25), (26). Now the generation is made with a lot of small steps whose
number varies randomly. For instance the sequence of choices

α5,4([Aq])→ α5,4(d[Aq])→ α5,3(d[Aq])→ α5,2(d[Aq])→ α4,1([Aq])

done with probability

α5,4(d[Aq])
α5,4([Aq])

α5,3(d[Aq])
α5,4(d[Aq])

α5,2(d[Aq])
α5,3(d[Aq])

α5,1([Aq])
α5,2(d[Aq])

=
α4,1([Aq])
α5,4([Aq])

would correspond to only one descent from 4 to 1. The complexity of the
generation of a permutation can still be upper-bounded in the worst case by
O(n2).

– If we want to save memory, we can compute the coefficients needed when
required during the generation. The overall space complexity is O(n|Q|) and
the time complexity of each generation becomes O(n3|Q|).
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Algorithm 4 Recursive uniform sampler of timed words
Require: The volume functions vcq,m for q ∈ Q and m ≤ n are precomputed.
1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do
3: Define ps =

∫ 1
xk−1

vcqk−1.s,n−k(y)dy/vcqk−1,n−(k−1)(xk−1);

4: Pick randomly between s and t with probability ps, 1− ps;
5: if s has been chosen then
6: wk ← s; qk ← qk−1.s;
7: xk ← a random number in [xk−1, 1] picked according to the probability density

function

vcqk,n−k(y)/

∫ 1

xk−1

vcqk,n−k(y)dy;

8: tk ← xk − xk−1

9: else
10: wk ← t; qk ← qk−1.t;
11: xk ← a random number in [0, 1− xk−1] picked according to the probability density

function

vcqk,n−k(y)/

∫ 1−xk−1

0
vcqk,n−k(y)dy;

12: tk ← xk
13: end if
14: end for
15: return (t1, w1)(t2, w2) . . . (tn, wn)

5.2 A continuous recursive method

In the previous section we have seen how to turn recursive equations on discrete
sets of permutations and their corresponding equations on cardinalities into a
random sampler.

One can alternatively turn a system of equations on timed languages and its
corresponding system of equations on volume functions into a random sampler of
timed words (Algorithm 4). Then using the volume preserving transformation of
Theorem 2 and a sorting algorithm one can generate permutations as wanted.

Theorem 8 Let L ⊆ {a, d}∗ and L′′ be the timed semantics of an s-t-encoding of

type l (for some l ∈ {a, d}) of a prolongation of L. The following algorithm achieves a

uniform sampling of permutations in Λn(L).

1. Choose uniformly an n-length timed word (t, w) ∈ L′′n using Algorithm 4;

2. Return Π(φ
st−1
l (w)

(t)).

Theorem 9 Algorithm 4 is a uniform sampler of timed words of L′′n, that is for every

volume measurable subset A ⊆ L′′n, the probability that the returned timed word belongs

to A is Vol(A)/Vol(L′′n).

Some comments about Algorithm 4. Picking a random real number according to
a probability density function (PDF) p can be done using the so-called inverse
transform sampling. To sample a random variable according to a PDF p : [0, 1]→
R+ it suffices to uniformly sample a random number in [0, 1] and define t such

that
∫ t
0
p(y)dy = r. This equation can be solved numerically and efficiently with
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a controlled error using a numerical scheme such as the Newton’s method. The
latter integral is known as the cumulative density function (CDF) associated to
p. The CDF used in this algorithm are polynomials that can be pre-computed
in the same time as the volume functions. An implementation of Algorithm 4
as well as that described in Theorem 8 is available on-line http://www.liafa.

univ-paris-diderot.fr/~nbasset/sage/sage.htm.

Proof (of Theorem 9) One can first check that for all k ∈ [n], [(qk−1, xk−1)
(tk,wk)−−−−−→

(qk, xk)] ∈ L(wk) and hence that w1 · · ·wn ∈ L′′.
We now show that during the kth loop (tk, wk) is chosen with density of prob-

ability
vqk,n−k(xk)

vqk−1,n−(k−1)(xk−1)
. Indeed, this implies that the density of probability to

choose (t1, w1) · · · (tn, wn) ∈ L′′ is
∏n
k=1

vcqk,n−k(xk)

vcqk−1,n−(k−1)(xk−1)
=

vcqn,0(xn)
vcq0,n(0)

= 1
Vol(L′′n)

which means that the sampling is uniform.

During the kth loop wk is set to s with probability ps =

∫
1
xk−1

vcqk−1.s,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)
,

after that, tk is fixed when xk = xk−1 + tk is chosen with density of probabil-

ity vcqk,n−k(xk)/
∫ 1

xk−1
vcqk,n−k(xk)dy. Hence (tk, wk) is chosen with the expected

density of probability∫ 1

xk−1
vcqk−1.s,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)

vcqk,n−k(xk)∫ 1

xk−1
vcqk,n−k(y)dy

=
vcqk,n−k(xk)

vcqk−1,n−(k−1)(xk−1)
.

The case where wk = t can be proved in a similar manner using the fact that

the probability that wk is a turn is 1− ps =

∫ 1−xk−1
0 vcqk−1.t,n−k(y)dy

vcqk−1,n−(k−1)(xk−1)
. ut

5.3 Boltzmann sampling

A drawback of the recursive method for sampling described in the two previous
sections is the pre-computations that take at least a quadratic time. When we
only require approximate size of the objects to sample and when the generating
function is available we can use the Boltzmann sampling method [DFLS04]. This
latter method usually generates objects of a far larger size than the recursive
method.

The Boltzmann sampling method has been created to generate discrete objects
in combinatorial classes, like trees or words. Here, we extend this method to timed
languages, the generated objects being timed words. Hence, we consider probability
density function rather than discrete probability distribution.

We call probability density function (PDF) on a timed language L, every non-
negative function p : L→ R such that∑

w∈Σ∗

∫
t∈Lw

p(t, w) = 1,

and such that for every w, the function t 7→ p(t, w) is Lebesgue measurable.
The Boltzmann model of parameter z for L is a PDF on L denoted by pL,z and

defined by pL,z(t, w) = z|w|

TL(z)
for all (t, w) ∈ L. We denote by PL,z the corresponding

probability measure.

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
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The length of random elements distributed according to the Boltzmann model
is a random variable that we denote by N (as in [DFLS04]). It is distributed as
follows:

PL,z(N = n) =
∑
w∈Ln

∫
t∈Lw

pL,z(t, w) = Vol(Ln)
zn

TL(z)
. (74)

This is Equation (2.3) of [DFLS04] where we replace cardinality coefficient Cn by
volume coefficient Vol(Ln). This allows us to use results from classical Boltzmann
sampling. In particular, the expected length of a timed word distributed according
to pL,z is z

TL(z)
∂TL(z)
∂z .

We call Boltzmann sampler of parameter z for a timed language L, an algorithm
that generates timed words according to the corresponding Boltzmann model pL,z.

Remark 3 As in the classical setting of Boltzmann sampling [DFLS04], a Boltz-
mann sampler of a given parameter generates timed words of various length. Nev-
ertheless all the timed words of a given length n have all the same density of
probability to be chosen zn

TL(z)
. Hence if we want to randomly generate in a uni-

form manner timed words of a target length n, we just have to draw timed words
with a Boltzmann sampler until one has the target length. To minimise the ex-
pected time complexity we have to choose the parameter z such that the expected
length z

TL(z)
∂TL(z)
∂z equals the target length n. The number of samples one has

to draw before obtaining one of a target length is already thoroughly studied in
[DFLS04]. This number is at most linear in the target length.

The next theorem and Algorithm 5 deal with Boltzmann samplers for the
timed semantics of automata B = ({s, t}, Q, q0, F, δ) that recognise languages of
words of {s, t}∗ as described at the end of Section 3. In particular, we keep the
same notations, for instance denoting by [Bq](x) the timed language starting from
a state q and a clock x. The Boltzmann sampler described here can be adapted to
fit the order sets considered in the first approach (Section 3).

Theorem 10 Algorithm 5 describes Boltzz(q, x), a Boltzmann sampler of parameter

z for [Bq](x). In particular, Boltzz(q0, 0) is a Boltzmann sampler of parameter z for

L′′ = [Bq0 ](x). It uses a linear number (in the length of the output word) of random

picks according to single dimensional probability density functions.

Proof It is easy to see that the timed words returned are in the required language.
To complete the proof, it suffices to show the following statement by induction
on the natural number n: “if a timed word of length n is returned, then it has a
density of probability zn/VCq(x, z) to be returned”. The base case is satisfied as
ε is returned with probability 1/VCq(x, z) iff ε ∈ [Bq](x).

We assume the property to hold for a length n ∈ N. We consider a timed word of
length n+1 returned by Boltzz(q, x). Then it is either returned in Line 7 or Line 10.
We consider only the former case, as the other case is treated in a similar way. The
returned timed word is of the form (y − x, s)ω, with ω a timed word returned by
Boltzz(q.s, y). By induction hypothesis, ω was chosen with density of probability

zn

VCq.s(y,z)
. Moreover the letter s was chosen with probability

z
∫

1
x VCq.s(y,z)dy
VCq(x,z)

in

Line 1 and then y was chosen with probability
VCq.s(y,z)dy∫
1
x VCq.s(y,z)dy

in Line 6. The density
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of probability to choose (y − x, s)ω is hence as expected:

zn

VCq.s(y, z)

VCq.s(y, z)∫ 1

x
VCq.s(y, z)dy

z
∫ 1

x
VCq.s(y, z)dy

VCq(x, z)
=

zn+1

VCq(x, z)
.

Algorithm 5 The Boltzmann sampler Boltzz(q, x).

1: Pick randomly ε, s or t with weights
1q∈F

VCq(x,z)
,

z
∫ 1
x VCq.s(y,z)dy

VCq(x,z)
and

z
∫ 1−x
0 VCq.t(s,z)dt

VCq(x,z)
;

2: if ε has been chosen then
3: return ε
4: end if
5: if s has been chosen then
6: pick y ∈ [x, 1] with density of probability y 7→ VCq.s(y, z)dy/

∫ 1
x VCq.s(y, z)dy;

7: return (y − x, s)Boltzz(q.s, y)
8: else
9: pick y ∈ [0, 1− x] with density of probability y 7→ VCq.t(y, z)dy/

∫ 1−x
0 VCq.t(y, z)dy;

10: return (y, t)Boltzz(q.t, y)
11: end if

Some comments about Algorithm 5. The inverse function of a CDF is known as
a quantile function. This is the function evaluated during the inverse sampling
method mentioned in the paragraph that comments Algorithm 4. When the pa-
rameter z is fixed, there are only O(|Q|) such functions to evaluate. Hence it could
be worth pre-computing numerically and tabulating the quantile functions to speed
up the running time of the Boltzmann sampler.

5.3.1 Experiments

We have implemented Algorithm 5 with Sage. The code as well as experiments
are available on-line: http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/

sage.htm.
The generating functions Vq(x, z) and Vq(z) are encoded as symbolic expres-

sions in variables z and x. We use the inverse sampling method as described above
after having precomputed the CDF, and we use the function findroot of Sage to
find the root X of equation of the form∫ X

x

VCq.s(y, z)dy/

∫ 1

x

VCq.s(y, z)dy − r = 0

and ∫ X

0

VCq.t(y, z)dy/

∫ 1−x

0

VCq.t(y, z)dy − r = 0

where r is a number uniformly drawn at random in [0, 1].
We illustrate our implementation on the running example. As stated at the end

of Section 4.4.5, the convergence radius of T(z) is approximately 1.6966. Fixing

12 Omitted details of the experiments show that despite its theoretical complexity Θ(n logn),
the execution time of the sort is negligible compared to the execution time of the sampling.

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm
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Fig. 5 Distribution of lengths (and running time), for generating permutations in the reg-
ular class Λ [({aa, dd})∗{a, d}] using Boltzmann sampling of timed words (Algorithm 5) with
parameter z1 = 1.69 (Left) and z2 = 1.696 (Right). Each point is of the form (n, t) with n
the length of the permutation generated, and t the time (in seconds) that took the generation
of the timed word as well as the computation of the corresponding permutation (described in
Theorem 8). One can see that with parameter z2 the Boltzmann sampler generates permu-
tations of an approximately 10 times larger length than with parameter z2. This agrees with
the fact that the theoretical expected length 2819 for parameter z2 is approximately 10 times
larger than the theoretical expected length 257 for parameter z1. The experimental expected
length for these sets of 71 samples are 245 for parameter z1 and 2936 for parameter z2. The
execution time is visibly linear12with respect to the length of permutation generated for both
parameters. The slopes in both figures are approximately equal to 20 meaning that when the
algorithm returns a permutation in t seconds, its length is approximately 20t.

the parameter z1
def
= 1.69, gives an expected length of timed word z1

TL(z1)
∂TL(z1)
∂z1

≈

257. Fixing the parameter z2
def
= 1.696, gives an expected length of timed word

z2
TL(z2)

∂TL(z2)
∂z2

≈ 2819. We have run 71 times Algorithm 5 for each of the parameters

above. The running time and distribution of lengths are shown in Figure 5.

6 Discussion, perspectives and further related works

We have stated and solved the problems of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantics of such a language is a particular case of regular timed languages (i.e. rec-
ognized by timed automata [AD94]). However, with the approach used, timed lan-
guages can be defined from any kind of languages of signatures. A challenging task
for us is to treat the case of context free languages. For this we should use, as in
[ABDP12], volume of languages parametrized both by starting and ending states.
This latter form of volume functions would also be needed to extend the divide
and conquer random sampling algorithm of [BG12] to our continuous setting.

Our work can also benefit timed automata research. Indeed, we have proposed
uniform samplers for a particular class of timed languages. An ongoing work is
to adapt this algorithm to all deterministic timed automata with bounded clocks
using recursive equations of [ABD15].

A well known fact is that among all the signatures u of a given length n the
one that maximises αu (the number of permutations with signature u) are the
alternating permutations ada... and dad.... This corresponds to the words tn (and
stn−1 depending on the type of the s-t-encoding). Similar questions can be asked for
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regular classes of permutations. For instance, we could study the expected number
of turns in signatures of permutations generated at random in a given regular class.
We think that we could answer this type of question by distinguishing between zs
and zt in Equation (58). The new equation would be

VC(x, zs, zt) = zsMs

∫ 1

x

VC(y, zs, zt)dy + ztMt

∫ 1−x

0

VC(y, zs, zt)dy + F. (75)

With such equations, we could adapt the Boltzmann sampling framework for multi-
dimensional generating function, proposed in [BP10]. In contrast to ours, this work
does not consider uncountable unions parametrised by an auxiliary variable (called
x here).

We used Boltzmann sampling on examples for which we have computed a closed
form formula for the vector of generating functions. We want to study the problem
of evaluating numerically the generating functions (and the quantile functions).
For this we would like to adapt methods of [PSS12].
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