#Here are the results obtain for the 71 experiments used in the paper (parameter 1.696).
r1696=[[13.870000000000005,
280], [102.01599999999999, 2088], [307.131, 6286], [264.08500000000004,
5428], [28.57899999999995, 594],
[87.71199999999999, 1796], [8.395000000000095, 170], [31.55899999999997, 652], [37.563999999999965, 778],
[248.6049999999999, 5144], [187.66600000000005, 3892], [214.745, 4474],
[184.3610000000001, 3870],[2.475999999999999, 52], [87.67900000000009, 1830],
[147.31399999999985, 3076], [564.615, 11756], [345.44900000000007,
7180], [145.8130000000001, 3054], [58.18399999999974, 1220],
[128.37199999999984, 2674], [213.11400000000003, 4450],
[97.20699999999988, 2038], [177.9720000000002, 3724],
[71.79599999999982, 1398], [101.99000000000024, 2026],
[75.43399999999974, 1550], [119.82999999999993, 2494],
[71.48500000000013, 1500], [4.264999999999873, 92], [24.618000000000393,
520], [163.83199999999988, 3416], [110.19399999999996, 2298],
[47.43000000000029, 992], [202.76399999999967, 4226],
[165.28299999999945, 3440], [151.95800000000054, 3130],
[191.1180000000004, 3976], [267.9399999999996, 5576],
[5.3419999999996435, 112],
[223.54, 4638],[37.10499999999999, 784],[167.62300000000005, 3486],[14.645999999999958, 302],
[82.14800000000002, 1708],[305.578, 6350],[39.043000000000006, 820],[3.865000000000009, 82],[91.02299999999991, 1902],
[120.58600000000001, 2524],
[241.0110000000002, 5034],
[462.59199999999987, 9618],
[172.1199999999999, 3614],
[70.68900000000008, 1484],
[42.5300000000002, 890],
[6.618999999999687, 138],
[343.2350000000001, 7166],
[99.51100000000042, 2064],
[77.80099999999948, 1628],
[135.46800000000076, 2804],
[180.20099999999957, 3740],
[351.2060000000006, 7298],
[58.735999999999876, 1226],
[156.1210000000001, 3238],
[280.0079999999998, 5824],
[155.91400000000021, 3268],
[62.05399999999963, 1298],
[32.56100000000015, 678],
[291.9149999999995, 6066],
[142.45899999999983, 2976],
[123.19599999999991, 2574]];
|
[ 0 -1 0 -1]
[-1 0 0 0]
[ 0 1 0 1]
[ 0 0 1 0]
[ 0 -1 0 -1]
[-1 0 0 0]
[ 0 1 0 1]
[ 0 0 1 0]
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜14(e(22√z)+2e(2√z)+1)e(−2√z)−18(4ze(2√z)+2√e(22√z)−2√)e(−2√z)−14(e(22√z)−2e(2√z)+1)e(−2√z)18(4ze(2√z)−2√e(22√z)+2√)e(−2√z)−14(2√e(22√z)−2√)e(−2√z)14(e(22√z)+2e(2√z)+1)e(−2√z)14(2√e(22√z)−2√)e(−2√z)14(e(22√z)−2e(2√z)+1)e(−2√z)−14(e(22√z)−2e(2√z)+1)e(−2√z)−18(4ze(2√z)−2√e(22√z)+2√)e(−2√z)14(e(22√z)+2e(2√z)+1)e(−2√z)18(4ze(2√z)+2√e(22√z)−2√)e(−2√z)−14(2√e(22√z)−2√)e(−2√z)14(e(22√z)−2e(2√z)+1)e(−2√z)14(2√e(22√z)−2√)e(−2√z)14(e(22√z)+2e(2√z)+1)e(−2√z)⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜14e(2√z)+14e(−2√z)+12−182√e(2√z)+182√e(−2√z)−12z−14e(2√z)−14e(−2√z)+12−182√e(2√z)+182√e(−2√z)+12z−142√e(2√z)+142√e(−2√z)14e(2√z)+14e(−2√z)+12142√e(2√z)−142√e(−2√z)14e(2√z)+14e(−2√z)−12−14e(2√z)−14e(−2√z)+12182√e(2√z)−182√e(−2√z)−12z14e(2√z)+14e(−2√z)+12182√e(2√z)−182√e(−2√z)+12z−142√e(2√z)+142√e(−2√z)14e(2√z)+14e(−2√z)−12142√e(2√z)−142√e(−2√z)14e(2√z)+14e(−2√z)+12⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|
|
⎡⎣⎢⎢⎛⎝⎜⎜14e(2√z)+14e(−2√z)+12−182√e(2√z)+182√e(−2√z)−12z−142√e(2√z)+142√e(−2√z)14e(2√z)+14e(−2√z)+12⎞⎠⎟⎟,⎛⎝⎜⎜−14e(2√z)−14e(−2√z)+12182√e(2√z)−182√e(−2√z)−12z−142√e(2√z)+142√e(−2√z)14e(2√z)+14e(−2√z)−12⎞⎠⎟⎟⎤⎦⎥⎥
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜−8(2√e(2√z)−2√e(−2√z))z⎛⎝⎜(2√e(2√z)−2√e(−2√z)+4z)(2√e(2√z)−2√e(−2√z))e(2√z)+e(−2√z)+2−2e(2√z)−2e(−2√z)−4⎞⎠⎟(e(2√z)+e(−2√z)+2)+1−8z(2√e(2√z)−2√e(−2√z)+4z)(2√e(2√z)−2√e(−2√z))e(2√z)+e(−2√z)+2−2e(2√z)−2e(−2√z)−4⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|
|
⎛⎝⎜⎜⎜⎜⎜⎜−2√ze(2√z)−2√z+2e(2√z)+22√ze(2√z)−2√z−2e(2√z)−2−2z(e(2√z)+1)2√ze(2√z)−2√z−2e(2√z)−2⎞⎠⎟⎟⎟⎟⎟⎟
|
|
−2√ze(2√z)−2√z+2e(2√z)+22√ze(2√z)−2√z−2e(2√z)−2
|
|
−2(4ze(2√z)+2√e(22√z)−2√)zz2e(22√z)−2z2e(2√z)+z2−2e(22√z)−4e(2√z)−2
|
|
[0,0,2,0,8,0,84,0,1632,0,51040,0,2340480,0,147985824,0,12338740736,0,1311694023168,0]
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜(2√e(2√xz)−2√e(−2√xz))z(e(2√z)+1)2(2√ze(2√z)−2√z−2e(2√z)−2)−(2√ze(2√z)−2√z+2e(2√z)+2)(e(2√xz)+e(−2√xz)+2)4(2√ze(2√z)−2√z−2e(2√z)−2)−14e(2√xz)−14e(−2√xz)+12−12xz−z(e(2√xz)+e(−2√xz)+2)(e(2√z)+1)2(2√ze(2√z)−2√z−2e(2√z)−2)+182√e(2√xz)−182√e(−2√xz)+(2√ze(2√z)−2√z+2e(2√z)+2)(4xz+2√e(2√xz)−2√e(−2√xz))8(2√ze(2√z)−2√z−2e(2√z)−2)−(2√e(2√xz)−2√e(−2√xz))z(e(2√z)+1)2(2√ze(2√z)−2√z−2e(2√z)−2)+(2√ze(2√z)−2√z+2e(2√z)+2)(e(2√xz)+e(−2√xz)−2)4(2√ze(2√z)−2√z−2e(2√z)−2)+14e(2√xz)+14e(−2√xz)+1212xz−z(e(2√xz)+e(−2√xz)−2)(e(2√z)+1)2(2√ze(2√z)−2√z−2e(2√z)−2)+182√e(2√xz)−182√e(−2√xz)−(2√ze(2√z)−2√z+2e(2√z)+2)(4xz−2√e(2√xz)+2√e(−2√xz))8(2√ze(2√z)−2√z−2e(2√z)−2)⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜(2√ze(22√xz)−2√ze(2√z)−2e(2√(x+1)z)−2e(2√xz))e(−2√xz)2√ze(2√z)−2√z−2e(2√z)−2(2xe(2√(x+1)z)+2xe(2√xz)−e(2√(x+1)z)−e(22√xz)−e(2√xz)−e(2√z))ze(−2√xz)2√ze(2√z)−2√z−2e(2√z)−2−(2√ze(22√xz)−2√ze(2√z)+2e(2√(x+1)z)+2e(2√xz))e(−2√xz)2√ze(2√z)−2√z−2e(2√z)−2−(2xe(2√(x+1)z)+2xe(2√xz)−e(2√(x+1)z)+e(22√xz)−e(2√xz)+e(2√z))ze(−2√xz)2√ze(2√z)−2√z−2e(2√z)−2⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|
|
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜−2xe(2√z)+2x−e(−2√(x−1)z)−e(2√xz)+e(2√z)+12√ze(2√z)−2√z−2e(2√z)−22(xe(2√z)+x−e(2√z)−1)xz+2√e(−2√(x−1)z)−2√e(2√xz)−2√e(2√z)+2√2(2√ze(2√z)−2√z−2e(2√z)−2)−2xe(2√z)+2x+e(−2√(x−1)z)+e(2√xz)−e(2√z)−12√ze(2√z)−2√z−2e(2√z)−2−2(xe(2√z)+x−e(2√z)−1)xz−2√e(−2√(x−1)z)+2√e(2√xz)+2√e(2√z)−2√2(2√ze(2√z)−2√z−2e(2√z)−2)⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
|