
Uniform sampling for networks of automata∗

Nicolas Basset1, Jean Mairesse1, and Michèle Soria1

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6, 4 place Jussieu,
75252 Paris Cedex 05, France
nicolas.basset@lip6.fr,jean.mairesse@lip6.fr,michele.soria@lip6.fr

Abstract
We call network of automata a family of partially synchronised automata, i.e. a family of deter-
ministic automata which are synchronised via shared letters, and evolve independently otherwise.
We address the problem of uniform random sampling of words recognised by a network of au-
tomata. To that purpose, we define the reduced automaton of the model, which involves only
the product of the synchronised part of the component automata. We provide uniform sampling
algorithms which are polynomial with respect to the size of the reduced automaton, greatly
improving on the best known algorithms. Our sampling algorithms rely on combinatorial and
probabilistic methods and are of three different types: exact, Boltzmann and Parry sampling.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation,
G.2.1 Combinatorics, G.3 Probability and statistics

Keywords and phrases Partially synchronised automata; uniform sampling; recursive method;
Boltzmann sampling; Parry measure.

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Automata are ubiquitous in computer science in general, and in verification in particular,
since they provide a good abstraction of the behaviour of sequential systems. Networks
of automata are a meaningful model of concurrent systems where a family of component
automata are synchronised via shared letters, and otherwise evolve independently.

In the context of either performance evaluation or model-checking of concurrent systems,
it is often impossible to perform a formal or exhaustive analysis of the huge number of
possible trajectories (recognised words in the context of automata). To cope with the issue,
a possibility is to perform either simulation or Monte-Carlo model checking, that is, to
concentrate on a sample of the trajectories drawn at random (see [10, 13]). When there is no
a priori about the likelihood of the trajectories, it is natural to perform a uniform sampling,
that is choose all equal length trajectories with the same probability.

The purpose of this paper is to propose efficient uniform sampling algorithms for networks
of automata. The straightforward method of building explicitly the product automaton (the
automaton defined as the direct product of the component automata), and apply to it a
standard uniform sampling algorithm for automata (e.g. [3, 12]), is not efficient since the
product automaton has a size which is exponential wrt. the size of the components. In fact,
the whole challenge is to avoid constructing explicitly the product automaton. To be efficient,
the approach has to be compositional: use uniform samplers for component automata and

∗ This work was partially supported by the Fondation Simone et Cino Del Duca.

© N. Basset, J. Mairesse and M. Soria;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Uniform sampling for networks of automata

combine them in a clever way. Let us also mention that uniform sampling for related but
different models of concurrent systems are considered in [1, 4].

Before detailing our work, we need to distinguish between different notions of uniform
sampling. A fixed length uniform sampler is a random algorithm taking as input a positive
integer n and returning as output a word of length n with uniform probability. A Boltzmann
sampler is a random algorithm returning a word of random length with the property that
two words of the same length are equiprobable. A Parry sampler is a random method to
generate infinite words in a "uniform" way. It requires the rigorous definition of the notion of
"uniform probability measure" on infinite words.

Both Boltzmann and Parry samplings are relevant in statistical model checking. On the
one hand, if some variability on the length of the sampled word is allowed, then Botzmann
sampling is relevant and efficient, and the expected length of the sampled word can be choosen
by tuning a parameter. On the other hand, if some variability with respect to uniformity is
allowed, then Parry sampling is relevant: with Parry, we obtain an exact uniform sampling
for infinite words, but finite words can also be sampled, with approximate uniformity and an
additional important feature: the sampling procedure is dynamic, that is, we can re-use a
sampled word of length n as the prefix of a sampled word of length n+ k. Of course, if no
variability is allowed, then exact uniform sampling is the only option.

Let us review the litterature on the problem. Consider first the case with no shared letters,
that is no synchronisation between the component automata. In this case, the language of
the network of automata is simply the shuffle of the languages of the component automata.
The shuffle product has been widely studied from a formal language theory viewpoint (see
[14] and references therein). We are not aware of any paper dealing explicitly with sampling
in this precise context. The most relevant article is [6] which provides a Boltzmann sampler
for extended linear expressions with shuffle. Applying this algorithm in our context is
not straightforward since we do not know a priori if there exists a polynomial method to
transform a family of automata into an extended linear expression with shuffle. The direct
method, which consists in shuffling the regular expressions obtained by transforming each
component automaton separately, is not efficient. Indeed, the passage from automata to
regular languages is known to increase the size of the description in an exponential way in
the worst case (see e.g. [2]). Consider now a general network of automata. In [7], the authors
provide an approximate uniform sampler in the case of a single shared letter. (Stricto sensu,
this is neither a fixed length uniform sampler, since it is only approximately uniform, nor a
Parry sampler since it deals with finite words.) The algorithm has an exponential complexity
w.r.t. the number of occurrences of the shared letter in the sampled word.

Here, we improve on the above situation by introducing the notion of reduced automaton.
Each component automaton of the network is transformed into a simplified automaton
involving only the shared letters, and a remaining part. The reduced automaton is the product
of the simplified automata, hence the exponential blow-up only concerns the synchronised
part. We then use a compositional approach to derive samplers. Our main result proposes a
fixed length uniform sampler running in linear time in the length of the sampled word, and
in polynomial time in the size of the reduced automaton. This improves on the results of [7]
in several ways: the sampling is exactly uniform; there is no restriction on the number of
shared letters; the complexity is improved. In the case of no shared letters, we design a fixed
length uniform sampler running in linear time w.r.t. the length of the sampled words and in
polynomial time w.r.t. the sizes of the component automata. This is an original contribution
per se and also an important ingredient to get the main result. In addition to the above
results, we also provide the first Boltzmann and Parry samplers for networks of automata.

N. Basset, J. Mairesse and M. Soria 23:3

2 Monolithic Uniform Sampling for a DFA

In this section, we present the three types of uniform sampling for a single automaton. All
the algorithms are classical and run in polynomial time. They will be used as building blocks
in the compositional approach of the following sections.

Let us begin with some basics on automata. A finite state automaton (FSA) is a tuple
A = (Q,Σ, ι, F,∆) where Q is the set of states, Σ is the alphabet of actions, ι is the initial
state, F is the final set of states and ∆ ⊆ Q×Σ×Q is the set of transitions. A path of length
n ∈ N from s to t labelled by w = a1 · · · an ∈ Σn is a sequence of transitions (si, ai, ti)i∈[n]
such that s1 = s, tn = t, for i < n, ti = si+1 (where here and below, for k ∈ N we let
[k] = {1, . . . , k}). We write s w−→ t if there is a path from s to t labelled by w. A word w is
recognised by the automaton A if there is a final state t ∈ F such that ι w−→ t. The language
recognised by A, denoted by L, is the set of words recognised by A. We denote by Ls the
language of words starting from s, that is recognised by the FSA (Q,Σ, s, F,∆). The size
of A, denoted by |A|, is the number of states and transitions. When ∆ is functional, that
is ∀s ∈ Q, ∀a ∈ Σ, |{t | (s, a, t) ∈ ∆}| ≤ 1, the FSA is called a deterministic finite state
automaton (DFA). In automata theory, trimming is a standard operation which consists in
deleting the states which are not accessible and co-accessible. We assume without loss of
generality that all automata that we consider are trimmed.

For s ∈ Q, the languages Ls can be characterised by the following language equations:

Ls =
⋃

(s,a,t)∈∆

aLt (∪{ε} if s ∈ F) (1)

In the remainder of the section, we consider a DFA A of language L. We are going to
present three methods to sample a word from L, the three being built on a common recursive
scheme based on Equation (1): randomly choose the first transition (s, a, t), output the letter
a and then repeat recursively from t. These methods are sequential: letters are randomly
chosen one after the other in the order in which they appear in the output word.

2.1 Cardinalities and fixed length uniform sampling
Recall that a fixed length uniform sampler is a random algorithm that takes as input a
positive interger n and outputs a word of L of length n such that every word has the same
probability to be output.

The general recursive method for uniform sampling of [9] applies in this context. The
idea is to transfer recursive equations on cardinalities into recursive samplers. The equations
on cardinalities are obtained directly from (1). Denoting by ls,n the number of words of
length n in Ls, we have

ls,n =
∑

(s,a,t)∈∆

lt,n−1 if n > 0 and ls,0 = 1s∈F (2)

A fixed length uniform sampler is then obtained as follows: choose the first transition (s, a, t)
with probability lt,n−1/ls,n, output a and recursively repeat for the n− 1 remaining letters.

Note that a |Q| × n table with the coefficients (ls,k)s∈Q,k∈[n] can be computed in time
O(n|A|) using equations (2). Cardinalities can also be expressed in terms of the power of
the adjacency matrix ofA, that is, the matrix A = (Ast)s,t∈Q with Ast = |{a | (s, a, t) ∈ ∆}|.
Indeed, for all s ∈ Q,n ∈ N, we have: ls,n =

∑
t∈F A

n
st.

The drawback of the above method is that the transition probabilities (lt,n−1/ls,n) depend
on n so that the cardinalities should be computed and stored up to the length of the word

CVIT 2016

23:4 Uniform sampling for networks of automata

to be generated. In the next two sampling methods on the other hand, the transition
probabilities do not depend on n.

2.2 Generating functions and Boltzmann sampling
The general Boltzmann sampling of [8] applies in this context. Wheras the fixed length
sampler was based on recursive equations on cardinalities, the Botzmann sampler is based
on recursive equations on generating functions.

Let us recall some basics on generating functions associated to languages. The ordinary
generating function (OGF) of a language L is L(z) =

∑
m∈N lmz

m and the exponential
generating function (EGF) is L̂(z) =

∑
m∈N lmz

m/m!. Generating functions can be seen
either as formal power series or as functions of the complex variable z. The convergence
radius of L(z) is r(L) = sup{|z| ; L(z) is defined}.

The equations on languages (1) transfer to equations on generating functions:

Ls(z) = z
∑

(s,a,t)∈∆

Lt(z) + 1s∈F (3)

Define the column vector L(z) = (Ls(z))s∈Q where Ls(z) is the OGF of Ls. Recall that A is
the adjacency matrix. For z < r(L), we have: L(z) = (I − zA)−1eF , where eF is the column
vector defined by (eF)s = 1 if s ∈ F and (eF)s = 0 otherwise. The convergence radius r(L)
is characterised by1 r(L) = sup{|z| ; (I − zA)−1 is invertible}.

An (ordinary) Boltzmann sampler draws words with probability distribution z|w|/L(z)
(z < r(L) being a parameter to be chosen), hence the size is not fixed but the distribution
is uniform when conditioned on a given size. Based on (3), a Boltzmann sampler for Ls of
parameter z can be recursively defined: with probability 1s∈F /Ls(z), no transition is chosen
and the random generation stops; otherwise the transitions (s, a, t) is chosen with probability
zLt(z)/Ls(z), the letter a is output, and the sampler is called recursively from t to output
the remainder of the word.

Similarly, an exponential Boltzmann sampler draws words with probability distribution
z|w|/|w|!L̂(z). We give in Appendix A.2.3 the construction of such exponential Boltzmann
sampler.

2.3 Perron-Frobenius Theorem and Parry sampling
In this section, we need to assume that the DFA under consideration is strongly connected.

Parry sampling is intuitively the limit case of Boltzmann sampling where z = r(L) so that
the probability to stop the generation is null and the output word is infinite. The formal
definition is based on the Perron-Frobenius Theorem.

I Theorem 1 (Perron-Frobenius stated for automata). Consider a strongly connected DFA
and its adjacency matrix A. The following holds: i) The spectral radius ρ(A), that is, the
maximal modulus of all eigenvalues of A, is itself an eigenvalue. It satisfies ρ(A) = 1/r(L) .
ii) The eigenvalue ρ(A) is simple, its unique (up to a multiplicative constant) eigenvector v
has positive coefficients, it is called the Perron vector. There is no other eigenvector with
only non-negative coefficients.
iii) If 0 ≤ A′ ≤ A then ρ(A′) ≤ ρ(A), and ρ(A′) = ρ(A) only if A′ = A.

1 Here, we use the assumption that the DFA is trimmed, otherwise one can construct examples where
a part of the DFA is useless for the language definition, but decreases the value of sup{|z| ; (I −
zA)−1 is invertible} which is in that case strictly smaller than r(L).

N. Basset, J. Mairesse and M. Soria 23:5

A Parry sampler for Ls is an algorithm that produces an infinite random word w such
that for all finite word u such that s u−→ t, the probability that w begins by u is vt/(ρnvs),
where v is the Perron vector. A Parry sampler can be recursively defined by chosing the first
transition (s, a, t) with probability vt/(ρvs) and repeat recursively from t.

A Parry sampler does not give exact uniform sampling on words of length n. However
it gets closer and closer to being uniform as n gets larger. Hence it can be used as an
approximate uniform sampler for large words of a given length.

3 Network of automata and the reduced automaton

A network of automata is composed of a family of DFA that are synchronised on shared
letters and evolve independently otherwise. The associated reduced automaton is a product
automaton taking into account only the synchronised part of the components. In this section,
we formally define these notions and provide equations on languages associated to states and
transitions of the reduced automaton, together with a system of equations satisfied by their
generating functions.

3.1 Network of automata

Consider a family of K DFA’s A(i) = (Q(i),Σ(i), ι(i), F (i),∆(i)) for i ∈ [K]. The alphabets
Σ(i) are not assumed to be disjoint. The associated product automaton is the DFA defined
by A(1) × · · · × A(K) = (Q,Σ, ι, F, δ) with Q = Q(1) × · · · × Q(K); Σ = Σ(1) ∪ · · · ∪ Σ(K);
ι = (ι(1), . . . , ι(K)); F = F (1) × · · · × F (K) and (s, a, t) ∈ ∆ if and only if: ∀i ∈ [K] s.t.
a ∈ Σ(i), (s(i), a, t(i)) ∈ ∆(i); and ∀i ∈ [K] s.t. a 6∈ Σ(i), s(i) = t(i). An example is given in
Figure 1. We call network of automata a family of DFA’s evolving together according to the
above rules of the product automaton.

Denote by Synch the set of letters shared by several automata of the network (we use
Greek letters for the elements of Synch).

I Remark 2. Given (A(i))i∈[K], we define for every i ∈ [K], the FSA B(i) obtained from A(i)

by adding in every state a self-loop labelled by every α ∈ Synch \Σ(i). Observe that we have:
A(1) × · · · × A(K) = B(1) × · · · × B(K). See an example in Figure 1.

Accordingly, in the following, we assume without loss of generality that every letter in
Synch belongs to every alphabet.

Two special cases of synchronization have to be mentioned:

I Remark 3. If Synch = Σ then the language associated to the network of automata is the
intersection of the component languages: L(A(1) × · · · × A(K)) = L(A(1)) ∩ · · · ∩ L(A(K)).

The second cases involves the shuffle product of languages whose definition is given now.
The shuffle product of two words w(1) and w(2) on disjoint alphabets is the finite language,
denoted by w(1)

� w(2), containing all the possible interleavings of w(1) and w(2), e.g.
ab� cd = {abcd, acbd, acdb, cabd, cadb, cdab}. The shuffle product of two languages L(1) and
L(2) on disjoint alphabets is L(1)

� L(2) = ∪(w(1),w(2))∈L(1)×L(2)w(1)
� w(2). The shuffle

product is associative and we denote by L(1)
� · · ·�L(K) the shuffle product of K languages

L(1), . . . ,L(K).

I Remark 4. If Synch = ∅ then the language associated to the network of automata is the
shuffle of the component languages: L(A(1) × · · · × A(K)) = L(A(1))� · · ·� L(A(K)).

CVIT 2016

23:6 Uniform sampling for networks of automata

1 2

3

a

α

β, γ
α

1

2

b

α, β

γ

α, c

γ

1 2

3

α

β α

β, γ
d

111

121

112

122321

212211

221 222

313

323

311

bc

α

bb c

a

a

α

a

γ

β

β, γ

d

b cb c

α

α

c

α, cα

d

a

Figure 1 Top: three DFAs with shared alphabet Synch = {α, β, γ}. The dotted transitions
labelled with γ (top) have been added without changing the product, see Remark 2. Bottom: the
product. Unreachable states 113, 123, 213, 223, 312, 322 are not represented. The states occurring
just after a synchronisation are 112, 311, 313, 323.

3.2 Reduced automaton
We now introduce the reduced automaton of a network of automata, a product automaton
which only involves the synchronised letters. All the algorithms presented in this paper will
require to compute Ared, whereas the product automaton A is never explicitly computed.

We define the reduced automaton of a DFA A = (Q,Σ, ι, F,∆) as the FSA Ared =
(Qred,Σred, ιred, Qred,∆red) such that Σred = Synch and Qred ⊆ Q is the set of states reached
from the initial state ιred = ι through the transition relation ∆red ⊆ Qred × Σred × Qred

defined by δ = (s, α, t) ∈ ∆red if and only if there exists a word u ∈ (Σ \ Synch)∗ such that
s
uα−−→ t. The set of final states Fred = Qred is not relevant since we are only interested in the

states and transitions of Ared, and not in its language. See Figure 2 for an example.

I Lemma 5. Given a DFA A, the FSA Ared can be computed by replacing every label not in
Synch by ε and doing an ε-transitions removal.

The removal of ε-transitions can be achieved in time O(|Q|2 + |Q|.|∆|), as shown for
instance in [11]. The next lemma enables us to construct compositionally the reduced
automaton associated to a network of automata, based on the reduced automata of each of
the component automata computed monolithically as in Lemma 5.

I Lemma 6. Consider a network of automata A = A(1) × · · · × A(K). It holds that
Ared = A(1)

red × · · · × A
(K)
red .

N. Basset, J. Mairesse and M. Soria 23:7

1

3

α

β, γα

1

2

γ

α, β, γ

α

γ

1 2

3

α

β α

β, γ
β

111 112

311 313

323α

α
β

α

β, γα

γ

α

Figure 2 The reduced automata of the automata of Figure 1.

I Remark 7. If every transition labelled by the same action goes to a dedicated state, then
the size of the reduced automaton is polynomially bounded with respect to the number of
shared letters as follows: |Qred| ≤ |Synch|+ 1 and |∆red| ≤ |Qred| · |Synch|. The particular
case assumed in [7] where for each synchronised action α there is only one occurrence of α
per component automaton yields |∆red| = |Synch|.

3.3 Equations on languages and generating functions
Let A be a DFA and Ared its reduced automaton. For s ∈ Qred, let L̃s be the language
recognised by the DFA Ãs obtained from A by removing transitions labelled by actions in
Synch and by changing the initial state to s. For δ = (s, α, t) ∈ ∆red, let L̃δ be the language
recognised by the DFA Aδ obtained from A by removing transitions labelled by actions in
Synch and by changing the initial state to s and the final states to {q | (q, α, t) ∈ ∆}.

We can characterise the language recognised by a network of automata in terms of union
and concatenation of shuffles of languages corresponding to the component automata.

I Theorem 8. Let A be a network of automata composed of the DFA’s (A(i))i∈[K]. Using
the above notations, for every s ∈ Qred, it holds that:

Ls = L̃s ∪
⋃

δ=(s,α,t)∈∆red

L̃δαLt, with L̃s = �K
i=1L̃

(i)
s(i) and L̃δ = �K

i=1L̃
(i)
δ(i)

We shall now translate Theorem 8 into its companion for generating functions. Let us
denote by Ls(z), L̃s(z), L̃δ(z) the OGF of languages Ls, L̃s, L̃δ.

I Theorem 9. Let A be a network of automata composed of the DFA’s (A(i))i∈[K]. For every
s ∈ Qred, the following equation holds on OGF: Ls(z) = L̃s(z)+z

∑
δ=(s,α,t)∈∆red

L̃δ(z)Lt(z).
And the EGF of L̃s (resp. L̃δ) is the product of the EGF of L̃(i)

s(i) (resp. L̃(i)
δ(i)).

Let M(z) be the Qred ×Qred matrix such that [M(z)]s,t =
∑
δ=(s,α,t)∈∆red

L̃δ(z). Then
Theorem 9 can be written in terms of vectors and matrices of OGF as follows: L(z) =
L̃(z) + zM(z)L(z). Based on this, we obtain the characterization of r(L) and L(z) in the
next theorem. The important point is that it depends only on the matrix M of size |Qred|
and not on the exponentially big adjacency matrix of the product automaton.

Let r(L̃) = mins∈Qred r(L̃s) and r∗(M) = sup{|z| ; I − zM(z) is invertible}.

I Theorem 10. The convergence radius r(L) and the vector of generating function L(z) for
z < r(L) are characterised as follows:

r(L) = min
(
r(L̃), r∗(M)

)
and L(z) = (I − zM(z))−1L̃(z).

CVIT 2016

23:8 Uniform sampling for networks of automata

4 Uniform sampling for a network of automata

Consider a network of automata. Relying on the reduced automaton, we adapt the sampling
methods developped for a unique automaton, and recalled in Section 2, in order to design
sampling algorithms for the network of automata. The generic recipe is as follows:

choose whether a synchronisation will occur. In the case of no synchronisation, generate
a word in the shuffle L̃s = �K

i=1L̃
(i)
s(i) . In the case of synchronisation:

choose a transition δ = (s, α, t) ∈ ∆red, (this gives the next synchronisation α),
choose a word without synchronisation w ∈ L̃δ = �K

i=1L̃
(i)
δ(i) ,

write wα on the output tape, and repeat from t to generate the rest of the word.

This recipe is derived from the equations on languages in Theorem 8. It will be consistently
applied in all three methods of sampling. It first requires to be able to generate words in
the shuffle of languages, and second to compute the right probabilities in order to make the
choices. In all cases, we assume that we have algorithms dealing with a single automaton,
see Section 2 (we call them monolithic), and we adapt and combine them.

4.1 Pure Shuffle
We first study the case of no synchronisation between the component DFA’s, that is Synch = ∅.
The language of the network of automata is the shuffle of the languages of the component
automata (see remark 4). We present the three sampling methods. They share the common
idea of generating words for the component automata and then choosing a word in their
shuffle.

4.1.1 Fixed length uniform sampler
For two languages, the cardinalities of the shuffle are easy to compute: if L = L1 � L2, then
ln =

∑n
m=0

(
n
m

)
l1,ml2,n−m. The generalization to K languages is more complicated:

ln =
∑ n!

n(1)!× · · · × n(K)!
l
(1)
n(1) · · · l

(K)
n(K) with n(1) + · · ·+ n(K) = n .

This is not satisfactory since it involves exponentially many terms. The difficulty was already
noted in [7] where a solution was proposed under restricted assumptions (in particular the
strong connectivity of the DFA). Here we propose another way to bypass the difficulty which
is always valid.

The idea is to decompose the shuffle in a recursive manner. We define L(≤0) = {ε} and for
1 ≤ i ≤ K, L(≤i) = L(≤i−1)

�L(i). Then L(1)
� · · ·�L(K) = L(≤K), and the corresponding

cardinalities are recursively computed efficiently in Algorithm 1.

Algorithm 1 Shuffle-Card((A(i))i∈[K], n) (precomputation for Shuffle-Unif).

Require: K DFAs A(i) and a natural integer n ∈ N.
Ensure: compute and store (l(j)m)0≤m≤n,1≤j≤K and (l(≤j)m)0≤m≤n,1≤j≤K .
1: for i = 1 to K do
2: (l(i)m)0≤m≤n ← Mono-Cardinalities(A(i), n);
3: compute

∑n
m=0 l

(≤i)
m zm/m! =

(∑n
m=0 l

(≤i−1)
m zm/m!

)(∑n
m=0 l

(i)
m zm/m!

)
mod zn+1

Algorithm 1 uses a monolithic routine that computes the cardinalities in a component
automaton: for each automaton, algorithm Mono-Cardinalities(A, n) outputs all the

N. Basset, J. Mairesse and M. Soria 23:9

cardinalities (lm)0≤m≤n, with arithmetic complexity O(n|A|) using the recursive equations:
ls,m =

∑
(s,a,t)∈∆ lt,m−1 for 1 ≤ m ≤ n and s ∈ Q with ls,0 = 1 if s ∈ F and 0 otherwise. To

have the cardinalities associated to L(A) it suffices to take s = ι, that is, lm = lι,m.

I Lemma 11. The cardinalities (l(≤i)m)0≤m≤n,0≤i≤K associated to the languages (L(≤i))0≤i≤K
can be computed with Algorithm 1 in time O(Kn logn+ n

∑K
i=1 |A(i)|).

Algorithm 2 Uniform sampler Shuffle-Unif((A(i))i∈[K], n).

Require: K DFAs A(i), n ∈ N, and cardinalities (l(j)m)0≤m≤n,1≤j≤K , (l(≤j)m)0≤m≤n,1≤j≤K .
Ensure: return a word in L(1)

� · · ·� L(K) of length n uniformly at random.
1: N ← n;
2: for i = K down to 1 do
3: choose n(i) with probability m 7→

(
N
m

)
l
(≤i−1)
N−m l

(i)
m /l

(≤i)
N ;

4: w(i) ← Mono-Unif(A(i), n(i)); //(use e.g. algorithm of [3] or [12])
5: N ← N − n(i);
6: return Shuffle-Words((w(i))i∈[K]). //(use e.g. algorithm of [7])

Algorithm 2 repeatedly chooses, according to the precomputed cardinalities, the length of the
words to be generated in each language L(i). It generates such words wi using a monolithic
sampling algorithm on DFA Mono-Unif (see [3] or [12]), and then returns a random word in
the shuffle language of the wi by using a function Shuffle-Words that chooses uniformly at
random a word in w(1)

� · · ·� w(K) in linear time (see [7]).
Sampling with Algorithm 2 is no more difficult than doing independently uniform sampling

for the component automata. In the Proposition below, |Mono-Unif(A(i), n)| denotes the
complexity of a monolithic algorithm for the uniform sampling of words of length n in the
ith component automaton.
I Proposition 12. Algorithm 2 returns a word in L(1)

� · · ·� L(K) of length n uniformly
at random in time complexity O(

∑K
i=1 |Mono-Unif(A(i), n)|) after the precomputations

explained in Lemma 11.

4.1.2 Boltzmann sampler
The shuffle product of languages fits well with exponential generating functions: the EGF of
the shuffle product is the product of the EGF of the components. As a consequence, the
exponential Boltzmann sampler for the shuffle of languages is easy to construct from the expo-
nential Boltzmann samplers of the component languages. Below, denote by Mono-Boltz-Expo
a monolithic routine that realises an exponential Boltzmann sampler for a single automaton,
see Appendix A.2.3

Algorithm 3 Exponential Boltzmann sampler Shuffle-Boltz-Expo((A(i))i∈[K], u).

Require: K DFA’s A(i) with languages L(i).
Ensure: realise an exponential Boltzmann sampler for L(1)

� · · ·� L(K) of parameter u.
1: for i = 1 to K do
2: w(i) ← Mono-Boltz-Expo(A(i), u)
3: return Shuffle-Words((w(i))i∈[K]).

The situation is not as simple for ordinary generating functions. The trick, to obtain
an ordinary Boltzmann sampler, is to start from an exponential Boltzmann sampler and to

CVIT 2016

23:10 Uniform sampling for networks of automata

transform it via the Borel-Laplace transform, see [6]. Indeed, we can obtain an ordinary
Boltzmann sampler by biasing appropriately an exponential Boltzmann sampler. This is the
methodology followed in Algorithm 4 below. The weight functions u 7→ e−u

∏K
i=1 L̂

(i)(zu)
should be computed numerically rather than symbolically.

Algorithm 4 Ordinary Boltzmann sampler Shuffle-Boltz((A(i))i∈[K], z)

Require: K DFAs A(i) with languages L(i).
Ensure: realise an ordinary Boltzmann sampler for L(1)

� · · ·� L(K) of parameter z.
1: Choose u according to the weight function: u 7→ e−u

∏K
i=1 L̂

(i)(zu);
2: return Shuffle-Boltz-Expo((A(i))i∈[K], zu).

I Theorem 13. Shuffle-Boltz-Expo((A(i))i∈[K], u) is an exponential Boltzmann sampler
of parameter u for L = L(1)

� · · ·� L(K) and Shuffle-Boltz((A(i))i∈[K], z) is an ordinary
Boltzmann sampler of parameter z for L.

4.1.3 Parry sampler
The following Theorem ensures that a Parry sampler for the shuffle language is very easy to
construct given Parry samplers for the component automata.

The Parry sampler associated with a DFA is defined via the spectral attributes of its
adjacency matrix (Section 2.3). For the product automaton, spectral attributes admit
compact representations, thus avoiding the explicit construction of the exponentially big
adjacency matrix.

I Lemma 14. Let A = A(1) × · · · × A(K) be the product of K strongly connected DFAs
without synchronisation. Let ρ, v, (ρ(i))i∈[K], (v(i))i∈[K] be the spectral attributes defined as
in Theorem 1. Then ρ =

∑n
i=1 ρ

(i) and vs =
∏K
i=1 v

(i)
s(i) for every s ∈ Q.

This lemma enables us to design a Parry sampler compositionally.

I Theorem 15. Given K strongly connected automata (A(i))i∈[K] without synchronised
action, Algorithm 5 is a Parry sampler for the shuffle of their languages.

Algorithm 5 Parrry sampler Shuffle-Parry((A(i))i∈[K])

Require: K strongly connected DFA’s A(i) with languages L(i), spectral radii ρ(i), and, for
each A(i), a Parry samplerM(i).

Ensure: realise a Parry sampler for L(1)
� · · ·� L(K).

1: runsM(i) for i ∈ [K] in parallel to get K infinite random words (w(i))i∈[K];
2: while true do
3: choose i with weight ρ(i)/(ρ(1) + · · ·+ ρ(K));
4: remove from w(i) its first letter and write it on the output tape;

4.2 General case with synchronisation
In the general case with synchronisation, we rely on the decomposition of Theorem 8, as
stated in the beginning of Section 4.

N. Basset, J. Mairesse and M. Soria 23:11

4.2.1 Fixed length uniform sampler
The idea of our recursive method, described in Algorithm 7 is as follows: either choose to
generate a word without synchronisation that leads to a final state, or choose to generate a
word without synchronisation that leads to a synchronised transition, take this transition
and repeat recursively from the current state. The weight we attribute to each choice
is proportional to the cardinality of the language corresponding to this choice. These
cardinalities are computed in Algorithm 6.

Algorithm 6 Compo-Card((A(i))i∈[K], n) (precomputation of cardinalities for Compo-Unif).

Require: K DFAs A(i) and a natural integer n.
Ensure: compute and store every cardinalities used in Compo-Unif((A(i))i∈[K], s, n).
1: for s ∈ Qred do
2: Shuffle-Card((Ã(i)

s(i))i∈[K], n); (this implicitly defines L̃(z) mod zn+1)
3: for δ ∈ ∆red do
4: Shuffle-Card((A(i)

δ(i))i∈[K], n); (this implicitly defines M(z) mod zn+1)
5: Compute L(z) mod zn+1 by solving L(z) = L̃(z) + zM(z)L(z) with all generating

functions and operations modulo zn+1.

Let us denote by CompInvMat(m) the complexity of inverting a square matrix of size
m×m.

I Lemma 16. Algorithm 6 runs in time O(n logn(CompInvMat(|Qred|) +K|∆red|)).

Algorithm 7 Uniform sampler Compo-Unif((A(i))i∈[K], s, n).

Require: K DFAs A(i), a natural integer n and a state s ∈ Qred and cardinalities computed
by Compo-Card((A(i))i∈[K], n).

Ensure: return a word in Ls of length n uniformly at random.
1: with probability l̃n/ln return Shuffle-Unif((Ã(i)

s(i))i∈[K], n);
2: choose m with weight

∑
δ=(s,α,t)∈∆red

lδ,m−1;
3: choose δ = (s, α, t) ∈ ∆red with weight lδ,m−1;
4: w ← Shuffle-Unif((A(i)

δ(i))i∈[K],m);
5: return w :: α :: Compo-Unif((A(i))i∈[K], t, n−m).

I Theorem 17. Algorithm 7 is a uniform sampler that runs in linear time after precompu-
tations made in Algorithm 6.

4.2.2 Boltzmann sampler
Boltzmann sampling is obtained from the system of equations in Theorem 9 whose size is
that of the reduced automaton.

I Theorem 18. Algorithm 8 is an ordinary Boltzmann sampler.

4.2.3 Parry sampler
In this section, we consider a network of automata with synchronisations such that the
product automaton is strongly connected (the case without synchronisations was treated in
Section 4.1.3).

CVIT 2016

23:12 Uniform sampling for networks of automata

Algorithm 8 Ordinary Boltzmann sampler Compo-Boltz((A(i))i∈[K], s, z).

Require: K DFAs A(i), a state s ∈ Qred and a parameter z.
Ensure: realises a ordinary Boltzmann sampler of parameter z for the language Ls.
1: With probability L̃s(z)/Ls(z) return Shuffle-Boltz((Ã(i)

s(i))i∈[K], z);
2: Choose δ = (s, α, t) ∈ ∆red with weight zL̃δ(z)Lt(z);
3: return Shuffle-Boltz((A(i)

δ(i))i∈[K], z) :: α :: Compo-Boltz((A(i))i∈[K], t, z).

As before, we work with the matrix M(z) associated with the reduced automaton to
avoid constructing the adjacency matrix A of the product automaton. Theorem 19 is a way
of stating the Perron-Frobenius theorem with M(z) rather than A, enabling us to describe
the Parry measure wrt. the reduced automaton in Theorem 20.

I Theorem 19. Let r and v be the convergence radii and Perron vector associated to the
product automaton. Then r and the restriction vred of v to Qred can be characterised
wrt. M(z) as follows: r = min{z > 0 | det(I − zM(z)) = 0}; vred is the unique vector such
that vred ≥ 0 and rM(r)vred = vred.

Algorithm 9 Parry sampler Parry((A(i))i∈[K], s)

Require: K DFAs A(i) and a state s ∈ Qred.
Ensure: realises a Parry sampler of infinite words from s.
1: choose δ = (s, α, t) ∈ ∆red with weight rL̃δ (r) vt/vs;
2: return Shuffle-Boltz(L̃δ, r) :: α :: Parry((A(i))i∈[K], t).

I Theorem 20. Algorithm 9 is a Parry sampler of infinite words starting from the input
state s ∈ Qred.

5 Conclusion and further work

In this paper, we propose several uniform samplers of words recognised by networks of
automata. For the purely interleaved case, the sampling algorithms are polynomial in the
size of the component automata, while previous known algorithms were exponential (since
they were polynomial on the exponentially big product automaton). For the general case
where synchronisations occur on shared actions, our methods are efficient with respect to the
reduced automaton (the product automaton where interleaved actions are removed).

We plan to implement the different algorithms presented here and apply them on bench-
marks. For instance, we could use the benchmarks of [7] and [12]. We would also like to
investigate applications to (uniform) Monte-Carlo model checking (see [13, 10]).

The recursive methods for words of a fixed length n that we presented here have a bit
complexity which is essentially n times bigger than their arithmetic complexity since the
cardinalities we compute grow exponentially with n and each one needs a linear amount of
bits to be stored. We think that this extra factor n can be avoided using a divide-and-conquer
paradigm akin to that of [3]. Further work to deal with interleaving and synchronisations
has to be done though.

N. Basset, J. Mairesse and M. Soria 23:13

References
1 Samy Abbes and Jean Mairesse. Uniform generation in trace monoids. In G. Italiano,

G. Pighizzini, and D. Sannella, editors, Math. Found. Comput. Sc. 2015 (MFCS 2015),
part 1, volume 9234 of Lecture Notes in Comput. Sci., pages 63–75. Springer, 2015.

2 Alfred Aho, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages, and Computation: 2nd edition. Addison Wesley, 2001.

3 Olivier Bernardi and Omer Giménez. A linear algorithm for the random sampling from
regular languages. Algorithmica, 62(1-2):130–145, 2012.

4 Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski. The combinatorics of non-
determinism. In Anil Seth and Nisheeth K. Vishnoi, editors, IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, De-
cember 12-14, 2013, Guwahati, India, volume 24 of LIPIcs, pages 425–436. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2013.

5 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

6 Alexis Darrasse, Konstantinos Panagiotou, Olivier Roussel, and Michele Soria. Biased
Boltzmann samplers and generation of extended linear languages with shuffle. DMTCS
Proceedings, 01:125–140, 2012.

7 Alain Denise, Marie-Claude Gaudel, Sandrine-Dominique Gouraud, Richard Lassaigne, Jo-
han Oudinet, and Sylvain Peyronnet. Coverage-biased random exploration of large models
and application to testing. STTT, 14(1):73–93, 2012.

8 Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. Combinatorics, Probability
and Computing, 13(4-5):577–625, 2004.

9 Philippe Flajolet, Paul Zimmerman, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theoretical Computer Science, 132(1):1–35,
1994.

10 Radu Grosu and Scott A. Smolka. Monte carlo model checking. In TACAS’05, 2005.
11 Mehryar Mohri. Generic ε-removal algorithm for weighted automata. In International

Conference on Implementation and Application of Automata, pages 230–242. Springer, 2000.
12 Johan Oudinet, Alain Denise, and Marie-Claude Gaudel. A new dichotomic algorithm

for the uniform random generation of words in regular languages. Theor. Comput. Sci.,
502:165–176, 2013.

13 Johan Oudinet, Alain Denise, Marie-Claude Gaudel, Richard Lassaigne, and Sylvain Pey-
ronnet. Uniform monte-carlo model checking. In FASE 2011, pages 127–140, 2011.

14 Antonio Restivo. The shuffle product: New research directions. In International Conference
on Language and Automata Theory and Applications, pages 70–81. Springer, 2015.

CVIT 2016

23:14 Uniform sampling for networks of automata

A Appendix

In this appendix we give further details and the main proofs. Each section of the appendix
corresponds to a section of the paper.

A.1 Proof for Section 3
A.1.1 Proof of Theorem 10
I Lemma 21. Given an DFA A, if t is reachable from s then r(Ls) ≤ r(Lt)

Proof. Take a word w such that s w−→ t then wLt ⊆ Ls. The OGF of the language wLt is
z|w|Lt. Hence r(Ls) ≤ r(z|w|Lt) = r(wLt) J

We can now complete the proof of Theorem 10

Proof. The statement r(L) = r(Lι) = mins∈Qred r(Ls) comes from Lemma 21 and the fact
that all states are reachable from ι.

We first show that min
(
r(L̃), r∗(M)

)
≤ r(L). If z < min

(
r(L̃), r∗(M)

)
then L(z) =

(I − zM(z))−1L̃(z). It means in particular that min
(
r(L̃), r∗(M)

)
≤ r(L).

Conversely we now show the inequality r(L) ≤ min
(
r(L̃), r∗(M)

)
. By language inclusion

for every s ∈ Qred, L̃s ⊆ Ls, so L̃s(z) ≤ Ls(z) and hence r(L) ≤ r(Ls) ≤ r(L̃s). Thus
r(L) ≤ r(L̃). Given δ = (s, α, t) ∈ ∆red, as t is useful there exists a word w that label a path
from t to a final state. Thus L̃δw ⊆ Ls and r(L) ≤ r(Ls) ≤ r(L̃δ). Hence r(L) ≤ r(Mst) for
every s, t ∈ Qred Let z < r(L) so that all the coefficients of M(z) are well-defined.

We now show that the matrix I−zM(z) is invertible. This is equivalent to the convergence
of the series of matrices

∑
k∈N z

kM(z)k. This series is the matrix of OGF for which each
entry [

∑
k∈N z

kM(z)k]st corresponds to the language going from s to t and such that it
ends by a synchronised transition. We take as above, a word w that labels a path of the
product automaton from t to a final state and deduce that r(L) ≤ r([I − zM(z)]−1

st). Then
we conclude that r(L) ≤ r∗(M). J

A.2 Proofs and further materials for Section 4
A.2.1 Proof of Lemma 11
Proof. We use the fact that if L = L(1)

� L(2), then L̂(z) = L̂(1)(z) × L̂(2)(z), where the
EGFs are truncated. The product of polynomials is known to be achievable in O(n logn) by
fast Fourier transform (see e.g. [5]). J

A.2.2 Proof of Theorem 12
Proof. Given the K words w(i), the probability to choose the output word w is n!

n(1)!...n(K)! .
Denote by N (i) the value of the variable N before the loop of index i (the first loop has

index K); for i = 0, we also define N (0) = 0 and hence l(≤0)
N(0) = 1 (it is the cardinality of the

singleton L(≤0) = {ε}). It is easy to see that N (i−1) = N (i)−n(i) and hence N (i) =
∑i
j=1 n

(j).
During loop i, n(i) is chosen with probability

(
N(i)

n(i)

)
l
(≤i−1)
N(i−1) l

(i)
n(i)/l

(≤i)
N(i) . and w(i) is chosen

with probability 1/l(i)
n(i) .

The tuple of words (w(i))i∈[K] is chosen with probability

K∏
i=1

(
N(i)

n(i)

)
l
(≤i−1)
N(i−1)

l
(≤i)
N(i)

=
l
(≤0)
N(0)

l
(≤K)
N(K)

K∏
i=1

(
N (i)

n(i)

)

N. Basset, J. Mairesse and M. Soria 23:15

Now note that l(≤0)
N(0) = 1, l(≤K)

N(K) = ln and(
N (i)

n(i)

)
= N (i)!
n(i)!(N (i) − n(i))!

= N (i)!
n(i)!N (i−1)!

Hence the tuple of words (w(i))i∈[K] is chosen with probability:

1
ln

n!∏K
i=1 n

(i)!
.

To get the expected result (the probability of the output word is 1/ln) it suffices to multiply
this latter result by (1/n!)

∏K
i=1 n

(i)! which is the probability that w is chosen from the tuple
(w(i))i∈[K] in the last line. J

A.2.3 Monolithic exponential Boltzmann sampling
Here we sketch how to construct a monolithic exponential Boltzmann sampler for a DFA,
from the theory developed in [6]. We start with the system of equations on starting languages:

Ls =
⋃

(s,a,t)∈∆

aLt ∪ {ε if s ∈ F}

This transfer to equations on EGF as follows:

L̂s(z) =
∑

(s,a,t)∈∆

∫ z

0
L̂t(u)du+ 1s∈F

where we have used that the EGF of the product of the language {a} and of the language
Lt is

∫ z
0 L̂t(u)du (see e.g. [6]). In the following algorithm Mono-Boltz-Expo(A, s, z), Line 1

corresponds to the choice of stopping the sampling. Line 2 corresponds to the choice of the
next transition δ = (s, a, t) where dealing with a union is done with a discrete distribution
with weight proportional to the EGF Lt. Line 3 and 4 correspond to a Boltzmann sampling
for the language aLt it corresponds to Algorithm 4 of [6] applied to2 {a} and Lt.

Algorithm 10 Exponential Boltzmann-sampler Mono-Boltz-Expo(A, s, z)

Require: A DFA A, a starting state s and a parameter z. EGFs L̂s(z) and weight functions
are precomputed.

1: Choose to return ε with probability 1/L̂s(z) ;
2: Choose δ = (s, a, t) according to weight function: δ 7→

∫ z
0 L̂t(u)du ;

3: Choose u according to weight function: u 7→ L̂t(u)1u≤z;
4: return a :: Mono-Boltz-Expo(A, t, u)

A.2.4 Proof of Theorem 13
Proof. Each word w(i) is chosen with probability (n(i)!zn(i))/L̂(i)(u). Hence the tuple of
words (w(i))i∈[K] is chosen with probability:

∏K
i=1(n(i)!zn(i)

/L̂(i)(u)). To get the expected

2 This requires to see {a} and Lt as labelled classes. This is done using the notion of canonical labelled
classes presented in Section 5 of the same paper [6].

CVIT 2016

23:16 Uniform sampling for networks of automata

result (the probability of the output word is (n!zn)/L̂(u)) it suffices to multiply this latter
result by (1/n!)

∏K
i=1 n

(i)! which is the probability that w is chosen from the tuple (w(i))i∈[K]
in the last line. The ordinary Boltzmann sampler is obtained by appropriately biaising the
exponential Boltzmann sampler.

J

A.2.5 Proof of Lemma 14 and Theorem 15
The proof of Lemma 14 and Theorem 15 rely on the Perron Frobenius theorem applied to
the adjacency matrix of the product automaton, expressed as the Kroenecker sum of the
adjacency matrices of the component automata.

We need first several definitions and properties.
For i ∈ {1, 2}, let M (i) be a matrix with n(i) rows and m(i) columns. The Kroenecker

product of M (1) and M (2) is a matrix M with n(1)n(2) rows and m(1)m(2) columns defined
by Mpp′,qq′ = M

(1)
pq M

(2)
p′q′ .

Denote the identity matrix of size n by In, or simply I when the size is implicit. Let
M (1) and M (2) be square matrices of respective sizes n(1) and n(2). The Kroenecker sum of
M (1) and M (2) , denoted by M (1) ⊕M (2), is defined by:

M (1) ⊕M (2) = M (1) × In(1) + In(1) ×M (2) .

The Kronecker product and the Kronecker sum are associative. It enables to define the
Kronecker product or sum of K matrices.

The following property is well-known in algebraic graph theory and follows directly from
the definition of the product automaton. If A and A(i), i ∈ [K], are the respective adjacency
matrices of A and A(i), i ∈ [K], then

A =
K⊕
i=1

A(i) . (4)

The following lemma is a straightforward consequence of the so-called mixed product
property which states that, whenever the dimensions are compatible, the following holds:
(A⊗B)(C ⊗D) = AC ⊗BD.

I Lemma 22. Given K matrices M (i), with respective eigenvalues λ(i) and associated
eigenvectors v(i) then

⊗K
i=1 v

(i) is an eigenvector of
⊕K

i=1M
(i) for the eigenvalue

∑K
i=1 λ

(i).
In particular, if all the matrices are non-negative and irreducible, then

∑K
i=1 ρ(M (i)) is equal

to ρ(
⊕K

i=1M
(i)) and is the maximal eigenvalue of

⊕K
i=1M

(i), and if v(i), i ∈ [K], are the
Perron eigenvectors of M (i), i ∈ [K], then

⊗K
i=1 v(i) is the Perron eigenvector of

⊕K
i=1M

(i).

The proofs of Lemma 14 and Theorem 15 follow directly from this Lemma.

A.2.6 Proof of Theorem 19
We can apply the Perron-Frobenius theorem on the product automaton because it is strongly
connected and define r = 1/ρ(A) and v.

First, using Theorem 10 and strong connectivity of the product automaton we note that
the convergence radius satisfies r = inf{|z| | det(I − zM(z)) = 0} (the fact that this inf is
reached by a positive real comes at the end of the proof). Indeed, the convergence radius
r(Ls) (resp. r(L̃s)) correspond to some maximal SCCs of the automata Ãs (resp. Ãδ) that are
strictly smaller than the whole product automaton which is the unique maximal SCC. Hence

N. Basset, J. Mairesse and M. Soria 23:17

the convergence radius is due to the non-invertibility of I − zM(z) rather than divergence of
OGF Ls) and L̃δ.

We will express M in terms of adjacency matrices of synchronised and non-synchronised
part of the product automaton (Lemma 23).

Given a Q×Q matrix M and subsets of states Q′, Q′′ ⊆ Qred, we denote by MQ′,Q′′ the
submatrix of M corresponding to rows in Q′ and column in Q′′. Let S =

∑
a∈Synch A(a) and

N =
∑
α∈Σ\Synch A(α). Then A = S + N . Note that ρ(N) < ρ(A) by Theorem 1, iii).The

results that follow will be proved for every z < 1/ρ(N) and hence in particular for z = r.

I Lemma 23. For z < 1/ρ(N) (= 1/
∑K
i=1 ρ(N (i))), it holds that

M(z) = [(I − zN)−1S]Qred,Qred

Proof. Nk
ss′ counts the number of paths of length k starting from s and leading to s′

avoiding synchronised transitions. The function [(I − zN)−1]ss′ =
∑
k∈NN

k
ss′z

k is hence
the OGF of the language from s to s′ that avoid synchronised transitions. The function
[z(I − zN)−1S]st =

∑
k∈NN

k
ss′Ss′tz

k+1 is the OGF of ∪δ=(s,α,t)∈∆redL̃δα and hence equal to
zM(z). J

Up to reordering states so that the first states are those of Qred, the following identity is
a rephrasing of Lemma 23 (it holds for z < 1/ρ(N))

(I − zN)−1S =
(
M(z) 0
B(z) 0

)
where B(z) = [(I − zN)−1S]Q\Qred,Qred

I Lemma 24. For every z < 1/ρ(N), u 7→ ured is an isomorphism of vector space between
ker(I − zA) and ker(I − zM(z)) whose inverse is

x 7→
(

x
zB(z)x

)
Proof. The following sequence of equivalences that holds for every z < 1/ρ(N) proves the
statement:

u ∈ ker(I − zA) (5)
⇔ zAu = u (6)
⇔ z(S +N)u = u (7)
⇔ zSu = (I − zN)u (8)
⇔ z(I − zN)−1Su = u (9)

⇔
(
zM(z) 0
zB(z) 0

)(
uQred

uQ\Qred

)
= u (10)

⇔ zM(z)uQred = uQred and zB(z)uQred = uQ\Qred (11)

⇔ uQred ∈ ker(I − zM(z)) and u =
(

uQred

zB(z)uQred

)
(12)

J

We can now conclude the proof of Theorem 19. The convergence radius r = 1/ρ(A) < 1/ρ(N)
is such that ker(I − rM(r)) 6= 0, or equivalently det(I − rM(r)) = 0. There is no other z

CVIT 2016

23:18 Uniform sampling for networks of automata

with |z| < r such that det(I − zM(z)) = 0, otherwise we would have det(I − zA) = 0, a
contradiction with |z| < r = 1/ρ(A). If a vector u is such that u ≥ 0 and u ∈ ker(I − rM(r)),

then
(

uQred

zB(z)uQred

)
belongs to ker(I − rA) and has non-negative coefficients, it is thus

proportional to v (by virtue of Theorem 1, ii). Hence uQred is proportional to u. This
completes the proof of Theorem 19. J

A.2.7 Proof of Theorem 20
Proof. We remark that almost surely, a word distributed by the Parry measure (or outcome
by the algorithm) has infinitely many synchronised action hence it suffices to show that the
measure agree with the Parry measure on cylinder sets that ends by a synchronised action.

The property sufficient to be proved by induction on the number k of synchronised letter
in a word w ∈ ((Σ \ Synch)∗Synch)k is that P(w|s) = r|w|vt/vs whenever s w−→ t. This
property clearly holds when k = 0, in that case we have w = ε, t = s and as expected
P(ε|s) = 1 = r|w|vt/vs. We assume that this property holds for every words with less than k
synchronisation and show it for a word w of the form uw′α with u ∈ ((Σ \ Synch)∗Synch)k−1

and w′α ∈ (Σ \ Synch)∗Synch. Denote by s′ the state reached after reading u from s then
the probability to output w is as expected

P(w|s) =
(
r|u|

vs′

vs

)(
rL̃δ (r) vt

vs′

)(
r|w
′|

L̃δ (r)

)
= r|w|

vt
vs
.

Indeed the three terms corresponds respectively to the probability to output u from s (by
induction hypothesis); the probability to choose δ = (s′, α, t); and the probability to choose
w during the call to the function Shuffle-Boltz(L̃δ, r). J

	Introduction
	Monolithic Uniform Sampling for a DFA
	Cardinalities and fixed length uniform sampling
	Generating functions and Boltzmann sampling
	Perron-Frobenius Theorem and Parry sampling

	Network of automata and the reduced automaton
	Network of automata
	Reduced automaton
	Equations on languages and generating functions

	Uniform sampling for a network of automata
	Pure Shuffle
	Fixed length uniform sampler
	Boltzmann sampler
	Parry sampler

	 General case with synchronisation
	Fixed length uniform sampler
	 Boltzmann sampler
	Parry sampler

	Conclusion and further work
	Appendix
	Proof for Section 3
	Proof of Theorem 10

	Proofs and further materials for Section 4
	Proof of Lemma 11
	Proof of Theorem 12
	Monolithic exponential Boltzmann sampling
	Proof of Theorem 13
	Proof of Lemma 14 and Theorem 15
	Proof of Theorem 19
	Proof of Theorem 20

