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Abstract

In order to explain the ability of individuals to find short paths to route messages to an unknown destination, based only on their own
local view of a social network (the small world phenomenon), Kleinberg [The small-world phenomenon: an algorithmic perspective,
Proc. 32nd ACM Symp. on Theory of Computing, 2000, pp. 163–170] proposed a network model based on a d-dimensional lattice
of size n augmented with k long-range directed links per node. Individuals behavior is modeled by a greedy algorithm that, given
a source and destination, forwards a message to the neighbor of the current holder, which is the closest to the destination. This
algorithm computes paths of expected length !(log2 n/k) between any pair of nodes. Other topologies have been proposed later
on to improve greedy algorithm performance. But, Aspnes et al. [Fault-tolerant routing in peer-to-peer systems, in: Proc. of ACM
3st Symp. on Princ. of Distr. Comp. (PODC 2002), Vol. 31, 2002, pp. 223–232] shows that for a wide class of long-range link
distributions, the expected length of the path computed by this algorithm is always "(log2 n/(k2 log log n)).

We design and analyze a new decentralized routing algorithm, in which nodes consult their neighbors near by, before deciding to
whom forward the message. Our algorithm uses similar amount of computational resources as Kleinberg’s greedy algorithm: it is
easy to implement, visits O(log2 n/log2(1+k)) nodes on expectation and requires only !(log2 n/ log(1+k)) bits of memory—note
that [G.S. Manku, M. Naor, U. Wieder, Know thy neighbor’s neighbor: the power of lookahead in randomized P2P networks, in: Proc.
of 36th ACM STOC 2004, 2004, to appear], shows that any decentralized algorithm visits at least "(log2 n/k) on expectation. Our
algorithm computes however a path of expected length O(log n(log log n)2/log2(1 + k)) between any pair of nodes. Our algorithm
might fit better some human social behaviors (such as web browsing) and may also have successful applications to peer-to-peer
networks where the length of the path along which the files are downloaded, is a critical parameter of the network performance.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The small world phenomenon: Since the experiment of Milgram in 1967 [13], showing that people are able to route
very efficiently messages to an unknown destination through their own local acquaintances (even if only 25% of the
messages actually arrived), several models have been designed to capture this phenomenon (see [14,15] for a state of
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the art). Numerous real graphs (such as the co-author graph, the web graph, peer-to-peer networks, etc.) share similar
properties: a very small diameter (typically poly-logarithmic in the size of the network) and the existence of short paths
between random nodes, that can be found very efficiently, based only on the local view of the network.

Models for the small world phenomenon: Models for the small world phenomenon have recently received a renew
of interest for their potential application to peer-to-peer networks [19,1]. Watts and Strogatz observed in [18] that most
of the small world graphs are locally strongly interconnected and proposed a random rewiring model that yields a
small diameter and strong local interconnections (see also [16,4]). But these models fail to capture the specific nature
of a small world. Indeed, in [8], Kleinberg demonstrated that, for these models, there does not exist any decentralized
algorithm (i.e., using only local information) that can find poly-logarithmic length paths, (i.e., of poly-logarithmic
length in the size of the network), even when the diameter is poly-logarithmic. He then introduced a new model,
that in its most general form is a d-dimensional toric lattice augmented with k random directed links per node. The
d-dimensional lattice represents the underlying geographic (or local) relationships between the individuals. Each node
u is also the origin of k directed links (1!k! log n) pointing to its k long-range contacts v1, . . . , vk , chosen randomly
and independently according to the s-harmonic distribution, i.e., with probability proportional to 1/!(u, v)s , where
!(u, v) is the lattice (Manhattan) distance between u and v. In [8,2], it is proved that when s "= d, no decentralized
algorithm can find a poly-logarithmic length path in the d-dimensional network. For s = d, a simple greedy algorithm
is proposed, that forwards the message to the neighbor of the current holder that is the closest 1 to the target, until it
reaches its destination. When s = d , this algorithm computes a path of expected length !(log2 n/k), between any
random pair of nodes. This result demonstrates that there is more to the small world effect than simply the existence
of short paths, and that the algorithmic nature of the experiment has to be considered. Variants of this graph, with
undirected long-range links, based on edge percolation, have been studied in [3,5,11].

Several topologies (e.g., [17,10]) have been proposed to improve the greedy algorithm performances, in the
perspective of applications to peer-to-peer networks. [1] demonstrates that for a wide class of long-range links distri-
butions on the ring (including the one mentioned above), Kleinberg’s greedy algorithm computes path of
expected length "(log2 n/(k log log n)) (if it is not allowed to “jump over” the target, and "

(
log2 n/(k2

log log n)
)

otherwise). In [11,6,12], the greedy router is aware of the long-range contacts of the local neighbors closeby
(at Manhattan distance !1 in [11], ! log1/d n in [6,12]) before forwarding the message: the expected length of the
computed path is improved to O

(
log2 n/(k log k)

)
in [11] (the network in [11] is also slightly different), !(log1+1/d n)

in [6,12]. In all the following, we consider the !1-norm, also known as the Manhattan distance.
Our contribution: In this paper, we design and analyze a new decentralized routing algorithm on the d-dimensional

Kleinberg’s small world model, that computes a path of expected length O
(

log n · (log log n)2/ log2(1 + k)
)

between
any pair of nodes. Our algorithm visits O

(
(log n/ log(1 + k))2) nodes on expectation, to compute this path. The

network load induced by the computation of the path and the latency 2 of our protocol is then very close to Kleinberg’s
greedy algorithm. Note that [11] proves that any decentralized routing algorithm visits at least "(log2 n/k) nodes. Our
algorithm requires small resources as well: it only requires O(log2 n/ log(1+k)) bits of memory to store the addresses
of O(log n/ log(1 + k)) nodes (for instance, in the message header); and it is fairly easy to implement. Note also that
it is not based on searching for the highest degree nodes, and thus avoids overloading them. Applied to peer-to-peer
networks, where the path length is a critical factor of performance (since downloaded files are often large), our algorithm
could possibly reduce the load of the network.

2. Model and main results

The network: We consider the d-dimensional variant of the small world network model with k! log n long-range links
per node, introduced by Kleinberg in [8]. The network is an augmented d-dimensional toric lattice {−n, . . . , 0, . . . , n}d
of (2n + 1)d nodes. In addition to its 2d neighbors in the lattice (its local contacts), each node u is the origin of k
directed links, each of them pointing towards a node vj , 1!j !k, (u’s jth long-range contact), chosen independently
according to the d-harmonic distribution, i.e., with a probability proportional to 1/!(u, vj )

d , where !(u, vj ) is the
distance between u and vj on the toric lattice.

1 According to the Manhattan distance.
2 Defined as the time to compute the path.
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In all the following, log stands for the logarithm base 2; ln denotes the natural logarithm, base e, and Hn = ∑n
i=1 1/i.

Note that ln (n + 1) < Hn < ln n + 1.
Decentralized routing algorithms: We study algorithms that compute a path to transmit a message or a file from a

source to a target, along the local and directed long-range links of the network. Following Kleinberg’s definition, such
an algorithm is decentralized if it navigates through the network using only local information to compute the path.
Precisely, the algorithm:

1. has the knowledge of the underlying lattice structure, of the coordinates of the target in the lattice, and of the
nodes it has previously visited as well as their long-range contacts;

2. can only visit nodes that are local or long-range contacts of previously visited nodes and does not know the
long-range contacts of any node that has not yet been visited;

3. is authorized to travel backwards along any directed links it has already followed (but the path computed cannot).
As Kleinberg pointed out in [9], this is a crucial component of human ability to find short paths: one can interpret
point 3 as a web user pushing the back button, or an individual returning the letter to its previous holder who wrote his
address on the envelope.

The following theorem is the main result of this paper.

Theorem 1. For any dimension d and 1!k! log n, there is a decentralized routing algorithm A using !(log2 n/

log(1 + k)) bits of memory such that, for any pair of nodes (s, t), A computes a path from s to t of expected length
O

(
log n · (log log n/ log(1 + k))2), and on expectation it visits O

(
(log n/ log(1 + k))2) nodes to compute this path.

Our algorithm computes an almost optimal path in the following sense: the expected path length is O
(

log n(log
log n/ log(1 + k))2), while the diameter of Kleinberg’s network is lower bounded by "

(
log n/ log(2d + k)

)
(every

node has constant out-degree 2d + k). Later on, [12] has shown that the diameter is indeed !(log n) w.h.p. when
k = !(1). The expected path length is thus optimal up to a (log log n)2/ log(1 + k) factor. Our result shows in
particular that Kleinberg’s greedy algorithm does not compute an optimal path, nor a constant factor approximation.

We present below the depth-first search implementation of our algorithm which is the most time-efficient. We
will however analyze in the following sections an equivalent breadth-first search implementation that improves the
readability of the proofs, while being less time-efficient. In order to describe the algorithm, we introduce the following
definitions.

Definition 1. We say that a link (local or long-range) from a node u to a node v is it good if v is strictly closer to the
target than u, according to the Manhattan distance. We say then that v is a good contact (local or long-range) of u.

A node v is said to be h good links away from u, if there is a path of length !h from u to v only composed of good
links; v is h local good links away from u if this path is only composed of good local links.

Every node u but the target is the origin of at least one good local link (and in fact, up to d local good links depending
on the relative position of u to the target) and, with some probability, of up to k other good long-range links.

Principle of the algorithm: In order to improve readability, assume here that d = 1. Starting from the source, our
algorithm explores the local and long-range links that point towards the target, and constructs a (1 + k)-ary tree, where
one child of a given node is its good local neighbor and the (up to) k others are its (up to) k good long-range contacts.
Basically, we will show that when !(log n/ log(1 + k)) are reached in this structure, we are guaranteed that with
constant probability, one visited node has a contact at least !(2k/ log(1 + k)) closer to the target. Unfortunately, due
to overlapping, this structure collapses prematurely, before reaching the !(log n/ log(1 + k)) required nodes. We get
around this problem by interrupting the growth of the tree towards the target, at a given height, hd

max(x) (a function
of the current distance x to the target) and by extending the resulting leaves by suitably long chains of local contacts
pointing towards the target. We are then able to visit the required number of nodes, that will allow us to get much closer
to the target, while avoiding overlapping. The path from the source to the target, is then extended by the shortest path
in the tree from the root to the closest contact to the target of a visited node. The process restarts then from there, until
we get so close to the target that long-range links are not useful anymore. We then apply Kleinberg’s greedy algorithm
to finally reach the target. The tight balance between the (1 + k)-ary part of the tree (at the top) and the linear part of
tree (the chains at the bottom), allows us to reduce the expected total length path to O(log n(log log n/ log(1 + k))2).
We now describe more precisely the parameters of the algorithm.
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Fig. 1. Extension of the path " (in bold) at the end of an exploration step rooted in x at distance x to the target.

Description of the algorithm (depth-first search implementation): Let s and t be, respectively, the source and the
target. Assume we are given three functions hd

max(x), bmax(x) and g(x), and a parameter stopd , whose values will be
given in Sections 3 and 4, for d = 1 and d "2, respectively (only hd

max(x) and stopd depend on the dimension d). Let
x denote the current holder of the message, x the Manhattan distance from x to t, and " the current path from s to x.
The description of the algorithm is done in dimension 1 for simplicity, but it remains identical in dimension d up to the
adaptation of the parameters.
(1) While !(x, t) > stop1: explore in depth-first order the nodes h1

max(x) good links away from x, record in a set F all
the good long-range contacts visited, but skip in the search all the long-range contacts that are at Manhattan distance
< h1

max(x) + g(x) from any node of the current set F. The depth-first search also stops as soon as |F | = bmax(x).
Each time a node, z, exactly h1

max(x) good links away from x is reached, read the addresses of the long-range
contacts of the nodes g(x) good local links away from z and record in a variable y the closest node to the target
(according to the Manhattan distance) among the visited nodes and their contacts. At the end of the depth-first
exploration, route the message from x to y along the links followed from x to y during the exploration, and extend
the path " to y accordingly.

(2) Once !(x, t)!stop1, apply Kleinberg’s greedy algorithm, i.e., forward the message to the closest contact of x to
the target t, and extend the path " accordingly, until the target is reached.

Fig. 1 illustrates the structure visited during each exploration step: straight lines represent good local links and arrows
represent good long-range links; the nodes in F are represented by white circles, each of them starts a new chain of
!h1

max(x)+g(x) local links towards the target. The structure is composed of a partial (1+k)-ary tree of height h1
max(x)

extended by chains of local links of length g(x) attached to its leaves. The chains of local links, rooted on the nodes in
F, are guaranteed not to overlap, since only good long-range contacts far enough from any already present node in F
are considered. The tree is drawn on the plan to highlight the tree structure but is in fact mapped on the torus. At the
end of the exploration step, the path is extended from x to the closest 3 node y to the target, among the explored nodes
and their contacts. A new exploration step then begins from y.

The following sections analyze this algorithm in detail and demonstrate the theorem: we start with the
one-dimensional network (Section 3) and show in Section 4 how the results on the one-dimensional network extend to
arbitrary d-dimensional networks.

3. One-dimensional network

In dimension 1, the network is an augmented ring of 2n + 1 nodes, numbered from −n to n. In addition to its two
neighbors in the ring (its local contacts), each node u is the origin of k extra directed links (1!k! log n), each of them
pointing towards a node vj (u’s jth long-range contact), chosen independently according to the 1-harmonic distribution,
i.e., with probability 1/(2Hn!(u, vj )), where Hn = ∑n

i=1 1/i.

Definition 2. We call chain, a set of locally neighboring nodes, i.e., a path of local links.

3 According to the Manhattan distance.
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In order to simplify the analysis of the algorithm, we use a breadth-first search implementation of the exploration
step in our algorithm (Algorithm 1). The analysis consists in the study of the explored tree structure: basically, by
showing that this tree is large enough to guarantee the existence of a contact whose Manhattan distance to the target
t is less than log(1+k)

2k times x’s distance to t. Since this analysis is independent of the way the tree is searched, it will
apply to the depth-first search implementation as well.

Algorithm 1. Routing algorithm (breadth-first search implementation)

Let h1
max(x) = log log x − log log log n

log
(
1 + k

log x
6 log n

) , (Note that h1
max(x) = O(log n log log x/(log(1 + k) log x)))

bmax(x) = log x

log log n
, g(x) = log n log log n

log(1 + k) log x
, and stop1 = k log2 n.

Input: the source s and the target t.
Initialization: x ← s.
while !(x, t) > stop1 do
Exploration step:

x ← !(x, t), A0 ← {x}, B0 ← {x}, F ← {x}, h ← 0.
while h < h1

max(x) and |Bh| < bmax(x) do
Bh+1 ← !.
for each u ∈ Bh do

Bh+1 ← the good local neighbors of u.
for each good long range contact v of u do

if ∀w ∈ F, !(v, w)"h1
max(x) + g(x) then

F ← F ∪ {v}, Bh+1 ← Bh+1 ∪ {v}.
end if

end for
end for

end while
Ah+1 ← Ah ∪ Bh+1.
h++.
if |Bh| > bmax(x) then

remove the (|Bh| − bmax(x)) last inserted nodes from Bh and F.
end if
hstop ← h, A ← Ahstop−1 ∪ Bhstop . (Note that |Bhstop |!bmax(x))

C ← ⋃
b∈Bhstop

Cb, where Cb is the set of the nodes that are !g(x) local good links away from b. otherwise.

Message forward step:
x ← the closest node to the target t, according to the Manhattan distance, among the local or long-range contacts
of a node in A ∪ C.
Route the message to x, along the shortest path in A ∪ C to x.

end while
Final step (Kleinberg’s greedy algorithm): Forward the message to the closest node towards the target among
the (local or long-range) contacts of its current holder, until it reaches the target t.

Fig. 2 illustrates the notations used in Algorithm 1. A is the set of the nodes explored. The links followed during any
exploration step map a non-overlapping (1 + k)-ary tree structure of height hstop !h1

max(x) on A, whose set of leaves
is Bhstop , and extended by |Bhstop |!bmax(x) chains of length g(x), rooted on the nodes in Bhstop , pointing towards the
target. The set Bh is the set of nodes at level h in the tree structure mapped on A. A may as well be seen as a set of
|F | = |Bhstop | non-overlapping chains of length !h1

max(x)+g(x) rooted on the nodes in F, pointing towards the target,
connected one to the other by a long-range link.

Proof outline: In order to prove Theorem 1, we will show that at the end of any exploration step, with constant
probability, the message is routed to a node at Manhattan distance ! log(1+k)

2k x to the target, where x is the Manhattan
distance of the message at the beginning of the exploration step (Proposition 10). In order to prove Proposition 10,
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Fig. 2. The sets A, Bh, C and F (the nodes in white) during an exploration step.

we show that with constant probability, there are at least "
(

log n
log(1+k)

)
nodes in C, whose long-range contacts have not

yet been explored (Lemma 8). Combined with Lemma 5, this yields Proposition 10. The proof of Lemma 8 consists
in showing that the number of branches in the tree structure of A is large enough. This is ensured by lower bounding
the probability that a new non-overlapping branch is created (Corollary 7), and then carefully tuning h1

max(x) and g(x)

to realize a trade-off between limiting overlapping and maximizing the tree growth to minimize its height. The size of
the tree is then lower bounded by the growth of a branching process, which concludes the result.

Section 3.1 presents pure probalistic lemmas that will be used in Section 3.2 to analyze the length of the path
computed by our routing algorithm.

3.1. Probabilistic lemmas

In this section, we analyze the growth of a branching process that will be used in the next subsection to lower bound
the number of nodes that are visited during the exploration step in our algorithm.

Let 0 < #!1 and $l =
(

k
l

)
#l (1−#)k−l , for 0! l!k. Consider the following branching process: start with one node;

during the hth step, every node at level h−1, is given independently, with probability $l , 1+ l children (0! l!k). Note
that, $l is exactly the probability to get exactly l children among k potential children that each exists independently with
probability #. The two following lemmas show that the number of branches at level h in the resulting partial (1+k)-ary
tree, is above half of its expectation with constant probability. These probabilistic lemmas are the key to Lemma 8.

Let bh be the random variable for the number of branches at level h (that is to say for the number of nodes at level h
in the tree). Lemma 2 is a standard Galton–Watson process analysis.

Lemma 2. E[bh] = (1 + k#)h and E[(bh)
2]!

(
1 + 1−#

1+k#

)
(1 + k#)2h.

Proof. We proceed by induction. For h = 0, E[b0] = 1 and E[b0] = 1!1 + 1−#
1+k# . Suppose now h > 0. The

expected number of children of every node at level h − 1, is (1 + k#). The expected number of nodes at level h, is thus
(1 + k#)E[bh−1]. Therefore, E[bh] = (1 + k#)h.

We now evaluate the expectation of (bh)
2. With probability $l , the root of branching process has exactly 1 + l

children; if we denote by %0, %1, . . . , %l the random variables for the number of branches at level h − 1 in each of the
1+ l subtrees of the root, we have: (bh)

2 = (
∑l

i=0 %i )
2 = ∑l

i=0(%i )
2 +2

∑l
i=0

∑l
j=i+1 %i%j . The %is are independent

variables, distributed identically as bh−1. Thus

E[b2
h| the root has exactly l children] = (l + 1)E[(bh−1)

2] + l(l + 1)E[bh−1]2.

Summing over l yields

E[(bh)
2] =

k∑
l=0

(
k

l

)
#l (1 − #)k−l

(
(l + 1)E[(bh−1)

2] + l(l + 1)E[bh−1]2
)

= (1 + k#)E[(bh−1)
2] + k#(2 + #(k − 1))E[bh−1]2.
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Since, by induction, E[(bh−1)
2]!

(
1 + 1−#

1+k#

)
(1 + k#)2h−2, and E[bh−1] = (1 + k#)h−1, we conclude that

E[(bh)
2]!(1 + k#)2h−2(1 + 2k# + k2#2 + 1 − #) =

(
1 + 1−#

1+k#

)
(1 + k#)2h. #

Let X be a real valued random variable. Let X+ = max(X, 0) and X− = max(−X, 0), so that X = X+ − X−.
Interestingly enough, the second moment method introduced in [7, Remark 3.1], still holds if X takes negative values,
under some conditions.

Lemma 3 (Second moment method). If E[X−]!2E[X+], then Pr{X > 0}"E[X]2/E[X2].

Proof. This is an immediate generalization of [7, Remark 3.1]. Let Y = 11X>0 the random variable whose value is 1
when X > 0, and 0 otherwise. We have

E[X]2 = (E[X+] − E[X−])2 = E[X+]2 − E[X−](2E[X+] − E[X−])!E[X+]2 = E[XY ]2,

since X+ = XY . Then, applying Cauchy–Schwarz inequality yields

E[X]2 !E[XY ]2 !E[X2]E[Y 2]=E[X2] Pr{X > 0},
since Y 2 = Y and E[Y ] = Pr{X > 0}. This concludes the proof. #

We now show that with constant positive probability, the number of branches in the tree is at least a fraction of its
expectation.

Lemma 4. For any h and any 0 < #!1, with probability at least 1
5 , bh "E[bh]/2.

Proof. We define a random variable X = bh − E[bh]/2, and study Pr{X > 0}. Since E[X] = E[bh]/2 > 0, the second
moment method (Lemma 3) applies and Pr{X > 0}" E[X]2

E[X2] . Now, E[X]2 = E[bh]2/4, and E[X2] = E[(bh)
2]− 3

4 E[bh]2.

By Lemma 2, E[(bh)
2] <

(
1 + 1#

1+k#

)
E[bh]2 < 2E[bh]2. Then, E[X2] < 5

4 E[bh]2. And finally, Pr{X > 0}" E[X]2

E[X2] >

1
4

1
(5/4) = 1

5 . #

3.2. Analysis of the algorithm

We first lower bound the probability of creating a new branch in A during the exploration step. Then, we show that,
with constant probability, enough new nodes are visited to guarantee that one of them has a contact at least 2k/ log(1+k)

times closer to the target. We then conclude the theorem.
The following lemma is directly inspired from [8]. It shows that visiting !

(
log n/ log(1 + k)

)
new nodes is enough

to find a long-range link that gets at least 2k/ log(1 + k) times closer to the target, with constant probability.

Lemma 5. Given & > 0, there is a constant p′
1 > 0 (independent of n, x, and k), such that, for any subset ' of

& · log n
log(1+k) vertices at Manhattan distance in

(
log(1+k)

2k x, x
]

to the target, one vertex in ' (at least) has a long-range

contact at Manhattan distance ! log(1+k)
2k x to the target, with probability at least p′

1.

Proof. Let y = log(1+k)
2k x and u be a node at Manhattan distance u ∈ (y, x] to the target. The probability that the jth

long-range contact of u is at distance !y to the target, is larger or equal to 4

1
2Hn

u+y∑
i=u−y

1
i
" 1

2Hn

∫ u+y

u−y

dt

t
= 1

2Hn
ln

(
1 + 2x log(1 + k)

2ku − x log(1 + k)

)

" 1
2Hn

ln
(

1 + log(1 + k)

k

)
" ln 2

2
· log(1 + k)

kHn
,

4 Equality holds for |u|!n/2.
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Fig. 3. Minimizing non-overlapping probability (Lemma 6).

since u!x and ln(1 + z)"z ln 2, for z ∈ [0, 1]. The probability that all the k|'| long-range contacts of
the nodes in ' are at distance >

log(1+k)
2k x to the target, is then less than

(
1 − ln 2

2 · log(1+k)
kHn

)&(k log n/log(1+k)) !
e−&/2 =def 1 − p′

1 < 1. #

The next lemma will be used to lower bound the probability of creating a new non-overlapping branch in A.

Lemma 6. Let u be a node at Manhattan distance u to the target t, v its jth long-range contact, Q a set of q forbidden
nodes, and r an integer. The probability that v is good and at Manhattan distance "r from any node of Q, is "(H2u−1 −
H2rq−1)/(2Hn).

Proof. Let E be the event that v is good and is at distance "r from any node of Q. E is the event that v is good and
does not belong to the any of the q chains of nodes of length 2r centered on the nodes of Q. We bound the probability
of E by noticing that the probability that v is at distance ! from u is decreasing with !. Therefore, the probability of E
is minimized when the nodes in the q chains are all distinct, in the interval of nodes of radius u − 1 around the target,
and as close as possible to u, according to the Manhattan distance (see Fig. 3). A simple case analysis (depending on
whether u!n/2, or n/2!u!n− rq, or u"n− rq) shows that the probability of E is then greater than the probability
that v is at distance "2rq from u, and is at distance < u to the target. We conclude that Pr E " 1

2Hn

∑2u−1
i=2rq

1
i

= H2u−1−H2rq−1
2Hn

. #

Corollary 7. There exists a constant n0 independent of x, n, and k, such that if n"n0, during any exploration step,
for any unvisited node u at Manhattan distance u >

log(1+k)
2k x to the target, the probability #u that the jth long-

range contact v of u, is good and is at Manhattan distance "h1
max(x) + g(x) from any node in F, is greater than

log x/(6 log n) =def #−.

Proof. F contains less than bmax(x) nodes. Applying Lemma 6 with Q = F and r = h1
max(x) + g(x), we have

#u "(H2u−1 − H2bmax(x)(h1
max(x)+g(x))−1)/2Hn. Since h1

max(x) = log log x−log log log n
log(1+k log x/(6 log n)) and log(1 + kz)"z log(1 + k)

for all 0!z!1, we have

h1
max(x)! 6 log n

log x

log log x

log(1 + k)
!6g(x).

Since bmax(x)g(x) = log n, we have 2bmax(x)(h1
max(x) + g(x)) − 1!14 log n, and

#u " H2u−1 − H14 log n

2Hn
" log

(
log(1 + k) · x/k − 1

14 log n

) /
(2 log n),

since u"x log(1 + k)/(2k). Now, rewrite x/k = (x2/3/k) · x1/3. Since x > k log2 n, then: x2/3 > k2/3 log4/3 n, so:
x/k > ((log4/3 n)/k1/3) · x1/3. As k! log n, then x/k > log n · x1/3. We conclude that, for n"n0, for some absolute
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constant n0 (independent of x, n and k):

#u >
log(x1/3)

2 log n
= log x

6 log n
. #

The following lemma shows that at the end of any exploration step, with constant probability, either we have already
reached a node in A ∪ C at distance ! log(1+k)

2k x from the target, or the tree is wide enough to contain the required
number of nodes needed to apply Lemma 5.

Lemma 8. At the end of any exploration step, with probability at least 1
5 , either there exists a node in A at Manhattan

distance ! log(1+k)
2k x to the target, or |Bhstop |" log x/(2 log log n).

Proof. Let E the event that at the end of the exploration step, there exists a node in A at Manhattan distance ! log(1+k)
2k x

to the target, or |Bhstop |" log x/(2 log log n).

Let Z = {z : !(z, t) >
log(1+k)

2k x} and Z̄ its complementary set. During any exploration step, by Corollary 7, the
probability that the jth long-range contact of any unvisited node u ∈ Z is good and at Manhattan distance "h1

max(x)+
g(x) of any node in the current F, is at least #−, for all 1!j !k. Thus, as long as nodes in Z are considered, each
of their long-range contact will be added to Bh+1 with probability "#−. As soon as a node u from Z̄ is inserted
in Ah, for some h, the probability that, for a given j, its jth long-range contact is good and at Manhattan distance
"h1

max(x) + g(x) of any node in the current F, is no longer lower bounded by #−; but the event E is verified. We use
a probabilistic coupling argument to lower bound the probability of E , by virtually running the exploration step on a
gadget network, constructed from the original network. We then use stochastic domination between the variables: if
X1 and X2 are random variables taking non-negative integer values, then X1 is said to stochastically dominate X2 if
Pr{X1 ! i}! Pr{X2 ! i} for all i"0.

The gadget network is built as follows: it has the same underlying lattice; the nodes in Z have the exact same links
as in the original network; but we consider a virtual link distribution for the nodes of Z̄ such that for every unvisited
node u, the probability that its jth long-range contact is good and at Manhattan distance "h1

max(x)+g(x) from any set
of nodes of size !bmax(x), is #− (note that this distribution does not need to really exist). We run the exploration step
on this gadget network from the same x as in the real network, except that we do not interrupt it until h = h1

max(x). It
yields three sets families (A′

h), (B ′
h) and F ′, such that: Ah ∩ Z = A′

h ∩ Z, Bh ∩ Z = B ′
h ∩ Z, and F ∩ Z = F ′ ∩ Z,

for all 1!h!hstop. The links followed during the exploration of the gadget network define a non-overlapping tree
structure of height exactly h1

max(x) on A′ = ⋃
h A′

h where B ′
h is the set of the nodes at level h. Let E ′ be the event that

|B ′
h1

max(x)
|" log x/(2 log log n). We now show that Pr{E}" Pr{E ′}:

• If, in the original network, A∩Z̄ = !, then B ′
hstop

= Bhstop . If hstop < h1
max(x), then |B ′

h1
max(x)

|" |B ′
hstop

| = |Bhstop | =
bmax(x) = log x/ log log n, and then E and E ′ are both verified. If hstop = h1

max(x), Bhstop = B ′
h1

max(x)
and then E and

E ′ are equivalent. Then, whatever the gadget network is inside Z̄, Pr{E |A ∩ Z̄ = !} = Pr{E ′|A ∩ Z̄ = !}.
• If, in the original network, A∩ Z̄ "= !, then E is verified, so, whatever the gadget network is inside Z̄, Pr{E |A∩ Z̄ "=

!} = 1" Pr{E ′|A ∩ Z̄ "= !}.
We now lower bound Pr{E ′}. The set A′ = ⋃

h A′
h is structured as a random tree of root x, in which every node u at level

h has, independently, a random number 1+l of children (one local contact and l long-range contacts), where l is given by
a binomial law of parameters (k, #u), with #u "#−. Thus the number of nodes at level h, |B ′

h|, stochastically dominates
the random variable bh for the number of nodes at level h in the following branching process: start with one node; at step
h, each node at level h− 1 is given, independently, exactly 1 + l children, with probability $l =

(
k
l

)
(#−)l(1 −#−)k−l ,

where 0! l!k. From Lemma 2, we have: E[bh] = (1 + k#−)h and, as a consequence of the second moment method
(Lemma 4), with probability at least 1

5 , bh "E[bh]/2. Then, since (1 + k#−)h
1
max(x) = log x/ log log n, we conclude

that Pr{E}" Pr{E ′} = Pr{|B ′
h1

max(x)
|" log x/(2 log log n)}" 1

5 . #

Corollary 9. For n"n0, at the end of any exploration step, with probability at least 1
5 , there is a node in A at Manhattan

distance ! log(1+k)
2k x to the target or there are more than log n

2 log(1+k) distinct unvisited nodes in C.
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Proof. From Lemma 8, with probability at least 1
5 , either there is a node in A at Manhattan distance ! log(1+k)

2k x

to the target or |Bhstop |" log n/(2 log log n). In the latter case, since A ∪ C is composed of |Bhstop | chains of length
!h1

max(x)+ g(x) rooted on the nodes in F, and since the nodes in F are at Manhattan distance "h1
max(x)+ g(x) from

each other, there are exactly |Bhstop | · g(x)" log n
2 log(1+k) unvisited distinct nodes in C. #

We can now conclude that with constant probability, one will find a long-range link that gets close enough to the
target.

Proposition 10. There exist two constants p1 > 0 and n0, independent of n and x, such that, for n"n0, at the end of
any exploration step, with probability "p1, there is a node u in A ∪ C such that u or one of its long-range contact is
at distance ! log(1+k)

2k x to the target.

Proof. From Corollary 9, with probability at least 1
5 , if none of nodes in A is at distance ! log(1+k)

2k x to the target, there

are log n
2 log(1+k) distinct nodes in C, and none of their long-range contacts has been visited yet. In that case, either a node

in C is at Manhattan distance ! log(1+k)
2k x or, from Lemma 5, with probability greater than p′

1 > 0, at least one node in

C has a long-range contact at distance ! log(1+k)
2k x to the target. Since the long-range links in C have not been visited

yet, these events are independent, and setting p1 = p′
1/5 concludes the proof. #

We now can prove Theorem 1 for the case d = 1.

Proof (of Theorem 1). W.l.o.g., the target is 0 and the source s is at Manhattan distance s from 0. Let x denote the
current message holder of the message and x its Manhattan distance to the target. First recall that at the end of each
exploration step, the algorithm selects the closest node to the target among the local and long-range contacts of A ∪ C,
and that the set A ∪ C grows towards the target; therefore, every exploration step visits unexplored nodes, and each
exploration step is independent of the previous ones.

Let T and U be the solutions to
(

2k
log(1+k)

)T
= s and

(
2k

log(1+k)

)U
= stop1. Note that T ∼ log s/ log(1 + k) and

U !3 log log n/ log(1 + k). We decompose the execution of A in T phases. The execution is in phase i, 0! i!T , as

long as
(

2k
log(1+k)

)i−1
< x!

(
2k

log(1+k)

)i
. We say that an exploration step in phase i succeeds if it leads to a phase

! i − 1. Let Yi and Zi be, respectively, the random variables for the number of visited nodes in phase i, and for the
length of the path along which the message is routed in phase i.

Suppose that we are in phase i, with T " i > U , then x > stop1. According to Proposition 10, each exploration step
succeeds with probability "p1. Each exploration step visits !

(
h1

max(x) + g(x)
)
bmax(x)!7g(x)bmax(x) nodes, and

routes the message, along a path of length !h1
max(x) + g(x)!7g(x) towards the target. Then, E[Yi]!7g(x)bmax(x)/

p1 ! 7
p1

log n
log(1+k) and E[Zi]!7g(x)/p1 ! 7

p1

log n log log n

i log2(1+k)
, since log x" i log(1 + k).

Once we reach a phase i!U , we have x!stop1 = k log2 n and the algorithm runs Kleinberg’s greedy algorithm.
From [8], we know that this greedy computes a path of expected length !A(log n log(stop1)/k!3A(log n log log n)/k

while visiting !3A(log n log log n)/k nodes on expectation, for some constant A.

Let xi =
(

2k
log(1+k)

)i
. Note that, log xi " i log(1 + k)/2. The expected length of the path from s to 0 computed by

our algorithm is bounded by

T∑
i=0

E[Zi]!A log n log(stop1)/k + 1
p1

∑
U<i !T

(h1
max(xi) + g(xi))

!3A
log n log log n

k
+ 14

p1

log n log log n

log2(1 + k)

∑
U<i !T

1
i

= O

(

log n

(
log log n

log(1 + k)

)2
)

.
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And the expected number of nodes visited by our algorithm is bounded by
T∑

i=0
E[Yi] = 1

p1

T∑
i=0

(h1
max(xi) + g(xi)) bmax(xi)

= O

((
log n

log(1 + k)

)2
)

.

For the last of each exploration step, our algorithm just needs !
(

log n ·(bmax(x)+h1
max(x)+g(x))

)
= O(log2 n/ log

(1 + k)) bits of memory. Indeed, each node address requires log n bits, and each exploration step needs only to
store: the address of the target, the address of the nodes in F (whose size is !bmax(x) = O(log n/ log log n) =
O(log n/ log(1 + k))), the state of the stack during the depth-first search of A ∪ C (whose height is bounded by
h1

max(x) + g(x) = O(log n/ log(1 + k))), and both the address and the state of the stack for the current best node y
among A ∪ C and A ∪ C’s contacts. This concludes the proof for d = 1. #

4. d-Dimensional network

In a d-dimensional network, d > 1, the underlying lattice is a d-dimensional torus {−n, . . . , n}d . Each node u has
k extra directed links (its long-range links) each one pointing towards a node v chosen independently according to the
d-harmonic distribution, i.e., with probability proportional to 1/!(u, v)d .

We denote by S(u, r) and B(u, r), respectively, the !1-sphere and !1-ball centered on u and of radius r. We denote by
S(r) and V (r) their respective cardinality. Clearly, for r !n, S(r) = !(rd−1) and V (r) = !(rd). More precisely, for
r !n, S(r) = 2d

(d−1)! r
d−1 + ((r), and V (r) = 2d

d! r
d + )(r), where ((r) and )(r) are positive polynomials of respective

degree d − 2 and d − 1. These expressions are also upper bounds on S(r) and V (r) when r > n.
Furthermore, let Hn,d = ∑nd

i=1 S(i)/id be the repartition function for the long-range link length probability distri-
bution, we get the following lower and upper bounds:

Hn,d "
n∑

i=1

S(i)
id

" 2d

(d−1)!Hn

and

Hn,d !
nd∑
i=1

(
2d

(d−1)!
id−1

id
+ O

(
1
i2

))
! 2d

(d−1)!Hn + O(1),

The algorithm for d-dimensional networks: We only need to adapt the parameters of the one-dimensional routing
algorithm. Everything else in the algorithm is unchanged: bmax(x) and g(x) are unchanged; h1

max(x) and stop1 are,
respectively, replaced by hd

max(x) and stopd , given in frame Algorithm 2.

Algorithm 2. Decentralized routing algorithm for d-dimensional networks

Let hd
max(x) = log log x − log log log n

log
(
1 + k

log x

2d+2 log n

) , (Note that again, hd
max(x) = O(log n log log x/(log(1 + k) log x)))

bmax(x) = log x

log log n
, g(x) = log n log log n

log(1 + k) log x
, and stopd = k2/d log22d+2

n.

Run Algorithm 1 on the d-dimensional network with these adapted parameters.

Outline the analysis of the algorithm on a d-dimensional network: The analysis of the algorithm is essentially
identical to the one-dimensional case. The key is again to prove that, with some constant probability pd , there exists a

vertex in A∪C whose long-range contact is, this time, at least
(

2k
log(1+k)

)1/d
times closer to the target (Proposition 19).

We first derive several geometrical lemmas that will be used to obtain similar lemmas to the case d = 1. The main
point is that with our choice of the parameters bmax(x), g(x), hd

max(x) and stopd , Lemma 17 yields the same kind of
lower bound on the growth of the underlying process and thus yields Theorem 1.
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Fig. 4. Two examples of corners (points in white) of balls centered on 0 in the torus two-dimensional and three-dimensional.

4.1. Preliminary geometrical lemmas

This section presents several geometrical properties of the d-dimensional Kleinberg network that will be used in the
next section to lower bound the number of nodes visited during each exploration step.

Definition 3. We say that a node u is a corner of the sphere S(0, r) if u ∈ S(0, r) and at most one coordinate of u
does not belong to {−n, 0, n} (see Fig. 4). The corners of a sphere S(v, r) centered on an arbitrary node v are defined
by translation.

Note that when r !n, S(v, r) is a “d-dimensional octahedron”, and our definition of a corner matches the usual
geometric definition.

Lemma 11. Let u a node at distance u to the target. For any r "0, the probability that u’s jth long-range contact
belongs to the ball B(t, r), is minimum when u is at a corner of the sphere S(t, u) of radius u around the target t.

Proof. W.l.o.g., 0 is the target. Take a vertex u = (u1, . . . , ud), which is not a corner of S(0, u). W.l.o.g.,
n > u1 "u2 > 0. Let v = (u1 + 1, u2 − 1, u3, . . . , ud) ∈ S(0, u). Let $u (resp., $v) be the probability that u’s
(resp., v’s) jth long-range contact belongs to B(0, r). We will show that $v !$v. Iterating this process a finite number
of times pushes v to a corner, and yields the result.

In order to prove the result, we construct a bijection * : B(0, r) → B(0, r), such that for all z ∈ B(0, r),
!(*(z), v)"!(*(z), u). In fact, for most of the nodes z ∈ B(0, r), the Manhattan distance !(*(z), v) will be equal to
!(z, u); and for the rest of the nodes z, !(*(z), v)"!(z, u). Since the probability that a node z is a long-range contact
of u decreases with the Manhattan distance !(z, u), this implies the result:

$v = ∑

z∈B(0,r)

1
!(z, v)Hn,d

= ∑

z∈B(0,r)

1
!(*(z), v)Hn,d

! ∑

z∈B(0,r)

1
!(z, u)Hn,d

= $u.

* is based on the translation of vector (1, −1, 0, . . . , 0). The action of * is illustrated Fig. 5. Let

'1 = {z ∈ S(0, r) ∪ S(0, r − 1) : z1 "0 and z2 !0}
and

'2 = {z ∈ S(0, r) ∪ S(0, r − 1) : z1 !0 and z2 "0}.
Note that '1 ∩ '2 = !. We define * : B(0, r) → B(0, r) as follows:

* : z ,→
{

(z1 + 1, z2 − 1, z3, z4, . . . , zd) if z /∈ '1,

(z2, z1, z3, z4 . . . , zd) otherwise.
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Fig. 5. '1, '2, and the action of * (shown by the black arrows).

Note that * is a bijection since: z ∈ '1 ⇔ *(z) ∈ '2, and the restriction of * to B(0, r) \ '1 is a translation onto
B(0, r) \ '2. In particular, for z ∈ B(0, r) \ '1, !(z, u) = !(*(z), v). Consider now z ∈ '1, and let

+ = !(*(z), v)) − !(z, u) = |z2 − 1 − u1| + |z1 + 1 − u2| − |z1 − u1| − |z2 − u2|.

Since z1 "0, z2 !0, and 0 < u2 !u1, + = 1 + u1 − u2 + |z1 + 1 − u2| − |z1 − u1|. Now, If z1 !u2 − 1, then + = 0; if
u2 −1!z1 !u1, + = 2(1−u2 +z1)"0; and finally, if z1 "u1, + = 2(1+u1 −u2)"2. + is thus always non-negative,
which concludes the proof. #

Lemma 12. For all 1!x! min(r, n), the number of nodes in B(0, r) at Manhattan distance x from a corner of S(0, r)

is greater than xd−1

(d−1)! .

Proof. First, assume r !n. W.l.o.g., consider the corner c = (r, 0, . . . , 0). Let c′ = (r − x/2, 0, . . . , 0) (w.l.o.g.
assume r − x/2 is an integer). For x!r , each node y in S(c′, x/2) such that y1 !r − x/2 belongs to B(0, r) and is at
distance x from c (see Fig. 6). And, there are 1

2S(x/2)" xd−1

(d−1)! such nodes.
Consider now r > n, let s = .r/n/ and x!n. W.l.o.g., consider the corner c with ci = n for i!s, cs+1 = r − sn,

and ci = 0 for i > s+1. Let c′ the image of c by the translation of a vector (−x/2, 0, . . . , 0). Each node y in S(c′, x/2)

such that y1 !n − x/2 belongs to B(0, r) and is at distance x from c. Again, there are 1
2S(x/2)" xd−1

(d−1)! such nodes.

We conclude that for x! min(n, r), there are always at least xd−1

(d−1)! nodes at distance x from any corner of S(0, r)

in B(0, r). #

4.2. Analysis of the algorithm

The proof reads along the lines of Section 3. We first show that with constant probability, among !
( log n

log(1+k)

)
nodes,

one has a long-range contact at least
(

2k
log(1+k)

)1/d
times closer to the target.

Lemma 13. For 0 < ,!1/2, the probability that a node u at distance u from the target, has its jth long-range contact
at distance !,u from the target, is greater than: ln 2

dd 22d
,d

Hn
.
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Fig. 6. Illustration of the proof of lemma 12.

Proof. Let P be the probability to evaluate. W.l.o.g., the target is 0. From Lemma 11, P is minimized when u is
at a corner of S(0, u). W.l.o.g., assume that u is the corner u = (n, . . . , n, ul, 0, . . . , 0), where 0!ul < n. Let
c = (n, . . . , n, cl′ , 0, . . . , 0) the (closest) corner of S(0, ,u), which is at Manhattan distance exactly (1 − ,)u from u.
P is lower bounded by the sum, for i from 1 to 2,u, of the probabilities that the jth long-range contact is at distance i
from c and in B(0, ,u). As long as i!n, Lemma 12 guarantees that there are at least id−1/(d − 1)! nodes in B(0, ,u)

at distance i from c, that is to say, at distance ! i + (1 − ,)u from u. Summing the corresponding probabilities, for i
from ,u/(2d) to ,u/d (!n) gives then the following lower bound on P. Since for theses values of i, i + (1−,)u! 2d

, i,
we get

P "
,u/d∑

i=,u/(2d)

id−1/(d − 1)!
Hn,d(i + (1 − ,)u)d

" ,d

(2d)d(d − 1)!Hn,d

∫ ,i/d

,u/(2d)
dt
t

" ,d ln 2
(2d)d(d − 1)!Hn,d

" ln 2
dd 22d

,d

Hn
. #

Corollary 14. Given & > 0, there is a constant p′
d > 0 (independent of n, x, and k), such that, for any subset ' of

& · log n
log(1+k) vertices at Manhattan distance in

((
log(1+k)

2k

)1/d
· x, x

]
to the target, one vertex in ' (at least) has a

long-range contact at lattice distance !
(

log(1+k)
2k

)1/d
· x to the target, with probability at least p′

d .

Proof. According to Lemma 13, with , =
(

log(1+k)
2k

)1/d
, the probability that the jth long-range contact of a given node u

is at distance !,u to the target, is " ln 2/dd 22d+1 log(1 + k)/kHn. The probability that all the k|'| long-range contacts

of the nodes in ' are at distance >
(

log(1+k)
2k

)1/d
·x to the target, is then less than

(
1− ln 2

dd 22d+1
log(1+k)

kHn

)& k log n/ log(1+k) !
e−& log 2/(dd 22d+1) =def 1 − p′

d < 1. #

We now lower bound the growth of the underlying branching process in A ∪ C, by first lower bounding as before
the probability of creating a new branch by #−

d = !(log x/ log n).

Lemma 15. There exists a constant c1 "0, depending only on d such that, for any node u at Manhattan distance u to
the target t, the probability that its jth long-range contact v is good is at least (Hu − c1)/((d − 1)!Hn,d).
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Proof. From Lemma 11 the probability P that v is good, is minimized when u is a corner of S(t, u). From Lemma 12,
the number of nodes in B(t, u − 1) at lattice distance i from a corner of S(t, u − 1) is greater than id−1/(d − 1)!, then

P "
min(u,n)∑

i=1

id−1

(d − 1)! · 1
idHn,d

" Hmin(u,n)

(d − 1)!Hn,d
" Hu − c1

(d − 1)!Hn,d
,

for c1 = ln d + 1, using u!nd . #

Lemma 16. Let 1! j ! k, u a node at Manhattan distance u to the target, v its jth long-range contact, Q a set
of q forbidden nodes, and r an integer. The probability that v is good and at distance "r from any node in Q, is

" Hu−2dH
rq1/d −c3

2dHn+c4
, for two constants c3, c4 "0, that only depend on d.

Proof. Let E be the event that v is good and is at distance "r from any node of Q. E is the event that v is good and does
not belong to any of the q balls of radius r centered on the nodes of Q. We bound the probability of E by noticing that
the probability that v is at distance ! from u is decreasing with !. Therefore, the probability of E is minimized when
all the forbidden nodes are as close as possible to u, that is to say, when the forbidden nodes are contained in a ball
centered on u of minimum radius !, where !!c2qf

1/d , for some constant c2 > 0, is the solution to V (!) = q · V (r).
We conclude that: Pr{E}" Pr{v ∈ B(t, u − 1)} − Pr{v ∈ B(u, !)}" Hu−c3

(d−1)!Hn,d
− H!,d

Hn,d
, from Lemma 15, thus:

Pr{E}" Hu−2dH
rq1/d −c3

2dHn+c4
, for some constants c3 and c4 that only depend on d. #

The following lemma corresponds to Lemma 7 in dimension 1.

Lemma 17. There exists a constant nd , independent of x, n, and k, such that if n"nd , during any exploration step,

for any unvisited node u at Manhattan distance u"
(

log(1+k)
2k

)1/d
· x to the target, the probability #u,d that the jth

long-range contact v of u, is good and is at Manhattan distance "hd
max(x) + g(x) from any node in F, is greater than

log x

2d+2 log n
=def #−

d .

Proof. Let c = 1/2d+2, so that hd
max(x) = log log x−log log log n

log(1+kc log x/ log n) . At any time of the exploration, F contains less than
bmax(x) nodes. By Lemma 16,

#u,d "
Hu − 2dH(hd

max(x)+g(x))bmax(x)1/d − c3

2dHn + c4
.

By concavity, log(1 + kz)"z log(1 + k) for z ∈ [0, 1] , so hd
max(x)! log n

c log x
log log x
log(1+k) . Then, hd

max(x) + g(x)!
2 log n
c log x

log log x
log(1+k) . Thus,

(hd
max(x) + g(x))bmax(x)1/d !(hd

max(x) + g(x))bmax ! 2 log n

c log(1 + k)
.

Since u"
( log(1+k)

2k

)1/d
x, we get

#u,d " Hu − 2dH2 log n/c log(1+k) − c3

2dHn + c4
"

log
(
(log(1 + k)/2k)1/dx (c2d

log2d
(1 + k)/22d

log2d
n)

)
− c3/ ln 2

2d log n + c4/ ln 2
.

But x > stopd = k2/d log22d+2
n, then we can write x = (

√
x)2 "x1/2 · k1/d log2d+1

n. Since also log(1+ k)" log 2
= 1, this yields

#u,d " log
(
x1/2 (c log n/2

)2d

) − c3/ ln 2
2d log n + c4/ ln 2

= log x + 2d log(c log n/2) − c3/ ln 2
2d+1 log n + 2c4/ ln 2

.
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Then, there exists a constant nd "22/c, independent of n, k, and x such that for n"nd ,

#u,d " log x

2d+2 log n
= c log x

log n
. #

Since the parameters are chosen so that (1 + k#−
d )h

d
max(x) = (1 + k

log x

2d+2 log n
)h

d
max(x) = log x/ log log n = bmax(x),

we are now in the exact same framework as in dimension 1. We shall then only state the lemmas, the proofs are exactly
the same as in dimension 1, and therefore omitted.

Lemma 18. For n"nd , at the end of any exploration step, with probability at least 1
5 , there is a node in A at Manhattan

distance !
(

log(1+k)
2k

)1/d
· x to the target or there are more than log n

2 log(1+k) distinct nodes in C.

Proof. As in Corollary 9, we use Section 3.1 to prove that, with probability at least 1
5 , either there exists a node in A

at Manhattan distance !
(

log(1+k)
2k

)1/d
· x to the target, or |Bhstop |" log x/(2 log log n). #

The following proposition is the last step to Theorem 1 in dimension d > 1 (as Proposition 10 in dimension 1).

Proposition 19. There exist two constants pd > 0 and nd , independent of n and x, such that, for n"nd , at the end of
any exploration step, with probability "pd , there is a node u in A ∪ C such that u or one of its long-range contact is

at distance !
(

log(1+k)
2k

)1/d
· x to the target.

We can now conclude with the proof of Theorem 1 in dimension d > 1.

Proof (of Theorem 1). Let N and M be the solutions to
( 2k

log(1+k)

)N/d = s and
( 2k

log(1+k)

)M/d = stopd . Note that

N ∼ d log s
log(1+k) and M ∼ d 22d+2 log log n

log(1+k) . As in dimension 1, we decompose the execution of A in N phases. Let Zi

and Yi denote, respectively, the random variable for the number of steps and for the number of nodes visited in phase

0! i!N , and xi =
(

2k
log(1+k)

)i/d
. We get the formulae:

N∑
i=0

E[Zi]!B
log n log(stopd)

k
+ 1

pd

∑
N<i !M

(
hd

max(xi) + g(xi)
)

and

N∑
i=0

E[Yi]!B
log n log(stopd)

k
+ 1

pd

∑
N<i !M

(
hd

max(xi) + g(xi)
)
bmax(xi),

where B > 0 is a constant (independent of n, s and k). With our choice of parameters stopd and hd
max(x), we have

hd
max(xi) + g(xi)! 2d+3 log n log log n

log xi log(1+k) , and also log xi " i log(1+k)
2d we get

N∑
i=0

E[Zi]!B 22d+2 log n(log log n + log k)

k
+ d 2d+3

pd

log n log log n

log2(1 + k)

∑
M<i !N

1
i

= O

(

log n

(
log log n

log(1 + k)

)2
)

,

N∑
i=0

E[Yi] = O

((
log n

log(1 + k)

)2
)

.

Finally, the algorithm uses O
(

log n · (bmax + hd
max(x) + g(x))

)
= O

( log2 n
log(1+k)

)
bits for the last of each exploration

step. #



310 E. Lebhar, N. Schabanel / Theoretical Computer Science 348 (2005) 294 –310

Remark. The parameters for the d-dimensional network have been set based on worst case analysis; the parameters
may possibly be optimized. Practical implementations of our routing algorithm on d-dimensional networks may try to
reduce the 2d factors in hd

max(x) and stopd .

5. Conclusion

Our algorithm could possibly have interesting applications in peer-to-peer networks, since its latency is comparable
to Kleinberg’s greedy algorithm and since it computes almost optimal paths based only on local information. It has
been proved later on by [12] that the diameter of Kleinberg’s network is !(log n) w.h.p. when k = O(1), but their
proof does not provide a decentralized algorithm that computes a path of that expected length. An interesting question
is to prove the existence of a decentralized algorithm that could route message along optimal paths.
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