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Abstract. Broadcasting has been proved to be an efficient means of dis-
seminating data in wireless communication environments (such as Satel-
lite, mobile phone networks; other typical broadcast networks are Video-
text systems). Recent works provide strong evidence that correlation-
based broadcast can significantly improve the average service time of
broadcast systems. Most of the research on data broadcasting was done
under the assumption that user requests are for a single item at a time
and are independent of each other. However in many real world applica-
tions, such as web servers, dependencies exist among the data items, for
instance: web pages on a server usually share a lot of items such as logos,
style sheets, title-bar... and all these components have to be downloaded
together when any individual page is requested. Such web server could
take advantage of the correlations between the components of the pages,
to speed up the broadcast of popular web pages. This paper presents
a theoretical analysis of data dependencies and provides a polynomial
time 4-approximation as well as theoretical proofs that our correlation-
based approach can improve by an arbitrary factor the performances of
the system. To our knowledge, our solutions are the first provably effi-
cient algorithms to deal with dependencies involving more than two data
items.

Topics: Approximation algorithms, Wireless and Push-based broadcast
scheduling, Bluetooth and Satellite networks.

1 Introduction

Motivations. Broadcasting has been proved to be an efficient means of dissem-
inating data in wireless communication environments (such as Satellite, mobile
phone networks; other typical broadcast networks are Videotext systems). Re-
cent works [15,14,10] provide strong evidence that correlation-based broadcast
can significantly improve the average service time of broadcast systems. Most
of the research on data broadcasting was done under the assumption that user
requests are for a single item at a time and are independent of each other. How-
ever in many real world applications, such as web servers, dependencies exist
among the data items, for instance: web pages on a server usually share a lot



of items such as logos, style sheets, titlebar..., and all these components have to
be downloaded together when any individual page is requested. Such web server
could take advantage of the correlations between the components of the pages,
to speed up the broadcast of popular web pages.

This paper presents a theoretical analysis of data dependencies and provides
theoretical proofs that a correlation-based approach can improve arbitrarily the
performance of the system. To our knowledge, our solutions are the first prov-
ably efficient algorithms to deal with dependencies involving more than two data
items. Our results rely essentially on the construction of a new lower bound,
based on a non-linear convex minimization program, in combination with exist-
ing heuristics.

Background. Broadcast (or push-based) server usually maintains a profile of
the typical users, i.e., the popularity of each item (see [1]), and schedules the
broadcasts of each item accordingly, obliviously of the effective requests made
by the users, so as to minimize the average service time for the users. The
users connect at random instants and monitor the broadcast channel until the
information they are interested in is broadcast. The user profiles can easily be
obtained by analyzing the log files of the server or by asking the user to list its
interests at the subscription to the service (see [1]). Such profiles provide not
only informations on the popularity of each item, but also informations on their
correlations. Several heuristics [15,14,18] have been proposed to take advantage
of these dependencies.

Very little is known theoretically on the performance of these algorithms. As
far as we know, the only papers that addressed this question theoretically are
[8,6]. In [8], the authors give optimal polynomial time algorithms for broadcasting
a set of n = 2 items given arbitrary user profiles. In [6], the authors design lower
bounds and constant factor approximation algorithms to design cyclic schedules
(i.e., schedules where each item is broadcast exactly once per cycle) for the case
where correlations are restricted to dependencies between pairs of items.

Earlier theoretical work, including NP-hardness results and approximation
algorithms, on the databroadcast problem with independent requests can be
found in [2,5,17,19,16,7]. Related work on on-demand broadcast where request
asks for a single item, can be found in [11,4]. Current results in this last setting
include intractability results as well as competitive algorithms with resource
augmentation. As far as we know, introducing explicit dependencies is still an
unexplored question in this setting.

The Customized Newspaper Broadcast Problem. We adopt the following setting.
n unit length news items are made available on a broadcast server, e.g.: Weather,
Sport, Stock exchange, International,... Each user is interested in a given subset
of the news items with some probability, e.g.: {Weather, Stock exchange, Sport},
{Weather, International}, or {International, Stock exchange},... He then connects
at a random time, monitors the broadcast channel until he is served, i.e., until
all the news items he is interested in have been broadcast, e.g.: Weather and
International. The goal for the server is to find a schedule of the news items that



minimizes the average service time of the user, given the request probability
for each available subset of items. These probabilities are naturally obtained by
asking the user to check its topics of interests in the list of available items when
subscribing to the news system (which is now a widespread practice over the
Internet). In the terms of [6] and [15,14], our model of user requests is refered as
“AND” and “unordered” requests, respectively. Note that the constraint that all
news item have unit length is not restrictive, since any longer news item can be
split into a set of unit length packets, which furthermore, fits the actual situation
of a web server on Internet where all files are cut into equal size packets before
been sent.

Our contribution. Our main contribution consists in providing a new lower
bound for the cost of an optimum schedule (Propositions 3 and 4), which is
shown to be tight up to a constant factor. This lower bound is expressed as a
non-linear convex minimization problem and is solved to obtain polynomial time
4-approximation algorithms (Theorems 2 and 3). These are, as far as we know,
the first algorithms with bounded guarantee when dependencies involve more
than two items. We also use this lower bound to show that correlation-based
schedulers can indeed improve the quality of the previously known solutions by
an arbitrary factor with respect to the optimum cost (Example 1). Our algo-
rithms use previously known heuristics as subroutines. In particular, perfectly
periodic schedules introduced in [7,9] find here a new interesting application since
their regularity can solve efficiently dependencies between items by forcing an
order on them. Our algorithms yield significant improvements to system perfor-
mances by managing correlations and are also not too complicated to implement
(and would be in particular well adapted to time multiplexing environments such
as Bluetooth networks). Interestingly enough, the classic randomized algorithm
is shown to be inefficient in this setting (Theorem 1 and Example 2).

The next section gives a formal description of the problem and states its NP-
hardness. Then, Section 3 presents our new lower bound, and shows that previous
approaches ignoring correlations can lead to arbitrarily bad performances. Sec-
tion 4 analyzes a classic randomized algorithm and shows that it achieves an
approximation ratio of 2Hn exactly. Our deterministic 4-approximation algo-
rithm is given in Section 5. Finally in Section 6, we extend our results to the
setting where the broadcast of each item has a cost (e.g., see [5]).

2 Notations and Preliminaries

The problem. The input consists of:

– n unit length news items M1, . . . ,Mn,
– ζ = {S1, . . . , Sk} a set of k non-empty distinct sets of news items,

Sj ⊆ {1, . . . , n}, and
– positive request probabilities (pS)S∈ζ for each set S in ζ, such that∑

S∈ζ pS = 1.



A schedule S is an infinite sequence S = S(0)S(1)S(2)S(3) . . ., where S(t) ∈
{⊥, 1, . . . , n} for all t. If S(t) = i, we say that news item Mi is broadcast at time
t in schedule S, i.e., between time t and t + 1; if S(t) = ⊥, no item is broadcast
at time t. A schedule S is periodic with period T if S(t + T ) = S(t), for all time
t. Such a periodic schedule is completely determined by its cycle, i.e., the finite
sequence S(0)S(1) . . . S(T − 1).

The cost, COST(S), of a schedule S is defined as the average service time to
a random request, where the average is taken over the moments when requests
occur and over the type Sj of news items subset requested. In our model, each
client asks for news item set S ∈ ζ with probability pS , connects at a random
(integer) instant t according to some Poisson process, and is served when all the
news items Mi, i ∈ S, have been broadcast. We denote by ST(S, S, t) the service
time of schedule S to a request for news items set S arriving at time t.

t
 M1  M2  M1  M3  M5  M2  M4  M3  M1  M4  M1  M5  M2 

{ M1,M2,M3,M4 } Service time for { M1,M2,M3,M4 }

If ti > t is the first instant when news item Mi is broadcast on or after time t
in S, then ST(S, S, t) = maxi∈S(ti+1) (we consider that a request is served when
the broadcast of the last requested item ends). Abusing the notation, ST(S,Mi, t)
will refer to 1+ti. The average service time to a random request arriving at time
t is then

AST(S, t) =
∑
S∈ζ

pS · ST(S, S, t).

Since the requests arrive according to some Poisson process, requests are uni-
formly distributed over any given time interval I (see [12]). Thus, the average
service time AST(S, I) of the schedule S during time interval I = [t1, t2] is

AST(S, I) =
1

t2 − t1

t2−1∑
t=t1

AST(S, t).

The cost of schedule S is then defined as the asymptotic value of this quantity
as t goes to infinity:

COST(S) = lim sup
t→∞

AST(S, [0, t]).

Note that if S is periodic with period T , its cost is simply defined as:

COST(S) =
1
T

T−1∑
t=0

AST(S, t).

Our goal is to compute a schedule with minimum cost. We denote by OPT =
infS COST(S) the optimum cost of a schedule for a given instance.

The customized newspaper problem is a generalization of the preemptive
databroadcast setting which is shown to be strongly NP-hard in [19]. Thus,

Proposition 1 ([19]). The customized newspaper problem is strongly NP-hard.



Reduction to periodic schedules. General schedules are hard to handle since the
frequency of each item may vary widely over time. The following lemma shows
that we can restrict our study to periodic schedules which are much simpler to
deal with. The following proposition follows the lines of [16].

Proposition 2. OPT = inf
S periodic

COST(S).

3 Lower Bounding Optimal Cost

We present now a new lower bound on which our approximation algorithms rely.
This lower bound takes into account the correlations between the requests, i.e.,
the fact that a given item might be requested by different types of requests for
different sets of news items. As opposed to previous approaches (e.g., [2,5]), our
lower bound cannot be solved by means of Lagrangian relaxation but can be
expressed as a convex minimization program and solved by using the ellipsoid
algorithm [13].

Section 3.2 shows that taking into account these correlations is indeed needed
to estimate correctly the optimum cost, by showing that previously known meth-
ods (e.g., [2,5,16,19]), that only used the probability that a given item is re-
quested (ignoring possible correlations), can construct schedules with cost as
large as Ω(

√
n) times the optimum value.

3.1 Lower Bound

According to Proposition 2, any lower bound on the cost of periodic schedules
is a lower bound on the optimum cost. We now focus on periodic schedules.

Lemma 1. Let S be a periodic schedule with period T , such that each news item
Mi is broadcast exactly ni times per cycle. Then

COST(S) > LB(τ),

where LB(τ) =
1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi , with τi = T/ni and 1/τ1 + · · ·+ 1/τn 6 1.

Proof. Consider a request for a set S ∈ ζ arriving at time t. Since, this request
waits for the broadcast of each news item Mi with i ∈ S, its service time is at
least:

ST(S, S, t) > ST(S,Mi, t), for all i ∈ S.

Then, by taking the average over t, the average service time to a request for set
S is at least:

AST(S, S) > AST(S,Mi), for all i ∈ S,

where AST(S,Mi) denotes the average service time to a request that would ask
for news item Mi alone. It is known from previous work (e.g., [2,5]) that if Mi

is broadcast ni times in a periodic schedule with period T , then AST(S,Mi) >



1
2 + T

2ni
. Consider indeed t1, . . . , tni

the time elapsed between the ends of each of
the ni broadcasts of Mi during a cycle of S. With probability tj/T , the request
for Mi falls in an interval of length tj , waits on average

(
1
tj

∑tj

t=1(tj − t)
)

= tj−1
2

time for the broadcast of Mi to begin, and is finally served one unit of time later,
when the download of Mi is completed. Thus, AST(S,Mi) = 1 +

∑ni

j=1
tj(tj−1)

2T .

But t1 + · · ·+ tni
= T , then AST(S,Mi) = 1

2 +
∑ni

j=1

t2j
2T . Furthermore, the sum

of the square of the tjs is classically minimized when they are all equal to T/ni,
which finally yields:

AST(S,Mi) >
1
2

+
T

2ni
=

1
2

+
τi

2
,

where τi = T/ni. Since, this holds for all i ∈ S,

AST(S, S) > max
i∈S

AST(S,Mi) >
1
2

+
1
2

max
i∈S

τi.

Finally, summing over all S ∈ ζ gives

COST(S) =
∑
S∈S

pS AST(S, S) >
1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi = LB(τ).

As no more than T news items can be broadcast in a time interval of length T ,
we have

∑n
i=1 ni 6 T , i.e.,

n∑
i=1

1
τi

6 1.

We now state our lower bound, on which the algorithms presented in Sec-
tions 4 and 5 rely.

Proposition 3. The following non-linear convex minimization problem LB is a
lower bound on the optimum cost OPT.

LB =


Minimize

τ > 0
1
2

+
1
2

∑
S∈ζ

pS max
i∈S

τi

such that:
1
τ1

+ · · ·+ 1
τn

6 1

(1)

There exists a unique solution τ∗ to the minimization problem LB, and one can
compute in polynomial time a feasible solution τ ′ such that LB(τ ′) 6 LB + 1

4 .

Proof. By Proposition 2 and Lemma 1, clearly LB 6 OPT. Now, the objective
function LB(τ) is a continuous convex function, and is minimized over a strictly
convex closed domain D = {τ ∈ (R∗+)n : 1/τ1 + · · ·+ 1/τn 6 1}. Note that the
Round Robin schedule that broadcasts cyclically M1 to Mn, shows that OPT 6 n
and then LB 6 n. Since, LB(τ) > n as soon as for some S ∈ ζ and some
i ∈ S, τi > n/pS , the minimum of LB(τ) is in fact obtained on the compact



set D′ = D ∩ (0, n
minS∈ζ pS

]n. Since LB(τ) is continuous, there exists τ∗ ∈ D′

such that LB(τ∗) = LB. Assume that two such optimal solutions exist, say τ1

and τ2. Since the objective function and the domain are convex, τ ′ = τ1+τ2
2 is

also an optimal solution. But τ ′ lies in the interior of the domain, and then
scaling it down by some factor λ < 1 allows to obtain a better feasible solution:
LB(λτ ′) < LB(τ ′) = LB, contradiction. The optimal solution τ∗ to LB is then
unique. Furthermore, 1/τ∗1 + · · ·+ 1/τ∗n = 1.

A feasible solution τ ′ within an additive error of 1
4 of the optimum value can

be computed in polynomial time using the ellipsoid method (e.g., see [13]). The
only ingredient needed is a separation oracle. Note that non-linear minimization
problem LB can be restated as follows:

LB =



Minimize
τ1, . . . , τn > 0

σS1 , . . . , σSk
> 0

1
2

+
∑
S∈ζ

pSσS

such that: τi 6 σS ∀S,∀i ∈ S

1
τ1

+ · · ·+ 1
τn

6 1

(2)

We just need to provide a separation oracle for each of these constraints.
Only the last one is non-linear. But, for any solution τ̃ violating this con-
straint, the tangent hyperplane to the differentiable convex surface ∂D = {τ :
1
τ1

+ · · ·+ 1
τn

= 1} at the projection of τ̃ on ∂D, provides in polynomial time a
separation oracle for τ̃ .

3.2 Requests Correlations Mislead Previous Approaches

We show in this section that previously known algorithms (e.g., [2,3,5,17,19,7])
can generate schedules with cost arbitrarily larger than the optimum value when
requests are correlated.

In previous approaches, only the requests probability πi for each individual
item Mi are used. Since item Mi is requested for each request for a set S con-
taining i, the probability πi that an individual item Mi is requested by some
user, is proportional to

∑
S:i∈S pS , i.e.,

πi =
∑

S:i∈S

pS

〈ζ〉
, where 〈ζ〉 denotes the average size of a set 〈ζ〉 =

∑
S∈ζ

|S|pS .

All previous approaches (e.g., [2,5,17,19]) then construct a schedule such that
each item Mi is broadcast every Θ(ϑi) where ϑ is given by the “square-root rule”
(e.g., [2,5]):

ϑi =

∑n
j=1

√
πj

√
πi

.

The example bellow shows that previously known solutions using these ϑis can
generate schedules with cost arbitrarily large with respect to the optimum.



Example 1. Consider 2n news items A1, . . . , An, B1, . . . , Bn and n sets:

ζ = {{A1, . . . , An, B1}, . . . , {A1, . . . , An, Bn}},

where each set is requested with probability 1
n . The request probability for each

individual item is then πA = 1
n+1 for the Ais and πB = 1

n(n+1) for the Bjs. Thus,

for all Ais, ϑA = n
√

πA+n
√

πB√
πA

= Θ(n) and, for all Bjs, ϑB = n
√

πA+n
√

πB√
πB

=
Θ(n

√
n). Consider now a schedule that broadcasts each Ai every Θ(ϑA) and

each item Bj every Θ(ϑB), as in previous approaches.

Assuming that the requests were independent, each item Ai and each item Bj

are respectively requested with probabilities πA and πB , and the average service
time of this schedule would be:

n · πA ·Θ(ϑA) + n · πB ·Θ(ϑB) = Θ(n · 1
n
· n + n · 1

n2
· n
√

n) = Θ(n).

But, since the requests are not independent, the cost of any schedule that broad-
casts each item every Θ(ϑ), is at least, according to Lemma 1:

LB(Θ(ϑ)) =
1
2

+
1
2
· n · 1

n
·max(Θ(ϑA), Θ(ϑB)) = Ω(n

√
n).

In fact, the cost of the Round Robin schedule that broadcasts each item in turn
cyclically, is only Θ(n) (every request is served after at most 2n time units).

We conclude that treating correlated requests individually can yield schedules
with cost as large as Ω(

√
n) times the optimum, where n is the number of items.

�

As a consequence, considering the dependencies between requests for different
items is essential to obtain good performances to data broadcast systems. The
next sections show how we use our lower bound to compute efficient broadcast
schedules.

4 Randomized Approximation

The lower bound in Proposition 3 suggests that each news item Mi should be
broadcast every τ∗i , which is approximated by τ ′i given by the ellipsoid method.
We analyze here a classic randomized scheduler that chooses the next item Mi

to be broadcast with probability 1/τ ′i . We show that it achieves a 2Hn factor
approximation, and that our analysis is tight by providing a family of tight
instances.

Lemma 2. The expected cost of the random schedule S output by Algorithm 1
is at most

E[COST(S)] 6 Hn

∑
S∈ζ

pS max
i∈S

τ ′i ,

where Hn = 1 + 1
2 + · · ·+ 1

n .



Algorithm 1 Randomized scheduler
Computes τ ′ given by Proposition 3.
for all t > 0 do

Pick i ∈ {1, . . . , n} with probability 1/τ ′
i .

Broadcast Mi at time t.
end for

Proof. The proof relies on a classic coupon collector argument (e.g., see [12]).
Consider a request for a set S of size q. At any time t, each news item in S
is broadcast with probability at least ρS = mini∈S 1/τ ′i . Let tj be the random
variable for the time elapsed since the issue of the request until j distinct items
of S have been downloaded. The expected service time to the request is clearly
E[tq]. Let Tj = tj−tj−1 for j = 1, . . . , q, with t0 = 0. Clearly, E[tq] =

∑q
j=1 E[Tj ].

Since after time tj−1, j−1 distinct items have been downloaded, the probability
to get a new item from S in each time slot between tj−1 and tj is at least
ρS,j = (q − j + 1)ρS . Thus,

E[Tj ] 6
∑
t>0

(t + 1)(1− ρS,j)tρS,j =
1

(q − j + 1)ρS
=

maxi∈S τ ′i
q − j + 1

.

The expected service time to a request for S in the random schedule S is then
at most:

E[AST(S, S)] 6
q∑

j=1

1
q − j + 1

max
i∈S

τ ′i 6 Hn max
i∈S

τ ′i .

Then summing over all the sets S ∈ ζ yields the result.

Theorem 1. Algorithm 1 is a polynomial time randomized 2Hn-approximation
for the customized newspaper problem.

The next example shows that our analysis of the randomized scheduler is
tight.

Example 2. Consider k disjoint sets S1, . . . , Sk of q news items each, Sj =
{M1,j , . . . ,Mq,j} for j = 1, . . . , k. Each set is requested with probability 1/k.
By symmetry of the instance, the unique solution to LB is obviously τ∗i,j = kq
for all 1 6 i 6 q and 1 6 j 6 k. Since each item of each set Sj is broadcast
independently in each time slot with probability 1/kq, by the classic coupon
collector argument (e.g., see [12]), the expected cost of the random schedule S

is then exactly:
E[COST(S)] = Hq · k · q.

Now consider the Round Robin schedule R that broadcasts each item of
each set cyclically as follows: M1,1 . . .Mq,1M1,2 . . .Mq,2 . . .M1,k . . .Mq,kM1,1 . . ..
Taking k = ln m and q = m, we get for m →∞:

E[COST(S)] ∼ Hm ·m lnm and COST(R) ∼ m lnm

2
,



Algorithm 2 Determistic 4-approximation algorithm
Computes τ ′ given by Proposition 3.
for all i ∈ {1, . . . , n} do

βi ← 2dlog2 τ ′ie

end for
Broadcast the news items (Mi) according to a perfectly periodic schedule built on
the periods (βi).

which implies that the optimum cost is at least at a factor 2Hn of the optimum
value where n = m lnm is the number of news items. �

5 Deterministic 4-Approximation

The main issue with the randomized algorithm above is that items of a given
set appear in a random order which is inefficient and introduces a Hn factor to
the cost (due to a “coupon collector phenomenon”). A special type of sched-
ules, known as perfectly periodic schedules, is of particular interest here. These
schedules were implicitly introduced in [3] in a very simple setting and stud-
ied in details by [7,9] in the context of bluetooth and sensor networks. In these
networks, the clients access to a communication channel by means of time mul-
tiplexing. In these protocols, the ith client is given a period βi and an offset oi,
and can emit only during time slots oi + kβi, with k = 1, 2, . . ., each of these
slots being different for each client. Such a schedule is said to be perfectly peri-
odic since each client i gets access to the channel exactly every βi time. These
perfectly periodic schedules find an interesting new application here: their reg-
ularity solves efficiently the dependencies between items by forcing an order on
them.

In [3,7], the authors show the following lemma that states that if the requested
periods βis are power of 2 and satisfies the maximum bandwidth constraint
1/β1 + · · ·+ 1/βn 6 1, then one can construct in polynomial time a perfectly
periodic schedule for this set of periods.

Lemma 3 (Perfectly periodic schedules [3,7]). Given a set of periods (βi)
such that for all i, βi = 2ji for some integer ji, and 1/β1 + · · ·+ 1/βn 6 1, one
can construct in polynomial time a perfectly periodic schedule that broadcasts
each news item Mi exactly every βi, for all i.

Algorithm 2 follows the lines of the “power-of-two” heuristic given in [3]: first
round up each period τ ′i (given by Proposition 3) to the closest power of 2, βi,
and then constructs a perfectly periodic schedules for the set of periods (βi).

The next theorem shows that with our choice of τ ′ given by our lower bound,
this algorithm achieves an approximation ratio of 4. This algorithm is, to our
knowledge, the first to obtain a constant factor approximation for the data broad-
cast problem with dependencies involving more than two items.



Theorem 2. Algorithm 2 is a polynomial time deterministic 4-approximation
for the customized newspaper problem.

Proof. Since the periods τ ′i are rounded up to the closest power of 2, βi, we have
τ ′i 6 βi 6 2τ ′i . Then 1/β1 + · · · + 1/βn 6 1 and Lemma 3 gives in polynomial
time a perfectly periodic schedule S that broadcasts each item Mi exactly every
βi. Every request for a set S ∈ ζ then waits at most βi before downloading each
Mi, with i ∈ S. The average service time to a request for S is then bounded by

AST(S, S) 6 1 + max
i∈S

βi 6 1 + 2 max
i∈S

τ ′i .

Summing over S ∈ ζ yields finally the following bound on the cost of S:

COST(S) 6 1 + 2
∑
S∈ζ

pS max
i∈S

τ ′i 6 1 + 4
(
LB(τ ′)− 1

2
)

6 1 + 4
(
LB−1

4
)

6 4 OPT .

6 Adding Broadcast Costs

A classic extension of data broadcast problem includes broadcast costs (e.g., see
[5]). An instance of the customized newspaper broadcast problem with broadcast
costs associates a cost ci to each news item Mi, which is applied every time Mi

is broadcast. The goal is now to find a schedule S that minimizes to sum of
two quantites: the average service time to a random request, COST(S), and
the average broadcast cost, BC(S). The average broadcast cost of S over a time
interval I = [t1, t2] is defined as:

BC(S, I) =
1

t2 − t1

t2−1∑
t=t1

cS(t)

The average broadcast cost of S is then defined as the asymptotic value of this
quantity:

BC(S) = lim sup
t→∞

BC(S, [0, t]).

The cost of a schedule is then defined as COSTBC(S) = COST(S) + BC(S). We
denote by OPTBC the optimum cost: OPTBC = infS COSTBC(S). As before,
the following lower bound is obtained by bounding the cost of periodic schedules
from which we derive a deterministic 4-approximation (proofs are omitted due
to space constraints).

Proposition 4. LBBC is a lower bound on the optimum cost OPTBC , where:

LBBC =


Minimize

τ > 0
1
2

+
1
2

∑
S∈ζ

(
pS max

i∈S
τi

)
+

n∑
i=1

ci

τi

such that:
1
τ1

+ · · ·+ 1
τn

6 1



There exists a unique solution τ∗BC to the convex minimization problem LBBC ,
and one can compute in polynomial time a feasible solution τ ′BC such that
LBBC(τ ′BC) 6 LBBC + 1

4 .

Theorem 3. Using periods τ ′BC instead of τ ′ in Algorithms 1 and 2 yields re-
spectively a randomized 2Hn-approximation and a deterministic 4-approximation
for the customized newspaper problem with broadcast costs.
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