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ABSTRACT

We investigate the problem of optimizing the routing per-
formance of a virtual network by adding extra random links.
Our asynchronous and distributed algorithm ensures, by
adding a single extra link per node, that the resulting net-
work is a navigable small world, i.e., in which greedy rout-
ing, using the distance in the original network, computes
paths of polylogarithmic length between any pair of nodes
with probability 1 — O(1/n). Previously known small world
augmentation processes require the global knowledge of the
network and centralized computations, which is unrealistic
for large decentralized networks. Our algorithm, based on
a careful multi-layer sampling of the nodes and the con-
struction of a light overlay network, bypasses these limita-
tions. For bounded growth graphs, i.e., graphs where, for
any node u and any radius r the number of nodes within
distance 2r from wu is at most a constant times the num-
ber of nodes within distance r, our augmentation process
proceeds with high probability in O(lognlog D) communi-
cation rounds, with O(lognlog D) messages of size O(logn)
bits sent per node and requiring only O(log n log D) bit space
in each node, where n is the number of nodes, and D the
diameter. In particular, with the only knowledge of orig-
inal distances, greedy routing computes, between any pair
of nodes in the augmented network, a path of length at
most O(log® nlog? D) with probability 1 — O(1/n), and of
expected length O(lognlog2 D). Hence, we provide a dis-
tributed scheme to augment any bounded growth graph into
a small world with high probability in polylogarithmic time
while requiring polylogarithmic memory. We consider that
the existence of such a lightweight process might be a first
step towards the definition of a more general construction
process that would validate Kleinberg’s model as a plausi-
ble explanation for the small world phenomenon in large real
interaction networks.
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1. INTRODUCTION

In this paper, we investigate the problem of efficiently
preprocessing a large virtual network, in a fully distributed
manner, so that the resulting network is a navigable small
world. Namely, by adding a single entry to each address
book, we obtain a network in which greedy routing com-
putes paths of polylogarithmic expected length between any
pair of nodes. Such a scheme is called a small world aug-
mentation process. This problem arises as an application of
recent investigations on the small world phenomenon in real
interaction networks (e.g. social networks, or peer-to-peer
networks). This phenomenon consists in the combination of
a low diameter and the ability, for each node, to discover
short paths without the global knowledge of all connections,
as exhibited in the Milgram’s seminal experiment [15].

The first graph model reproducing the small world nav-
igability was proposed by Kleinberg in 2000 [I2] and con-
sists in a 2-dimensional regular grid augmented by a con-
stant number of random links per node, distributed accord-
ing to the 2-harmonic distribution. Kleinberg shows that
greedy routing, which chooses at each step the closest node
to the target among its neighbors according to the globally
known grid distance, computes paths of polylogarithmic ex-
pected length between any two nodes. Further investiga-
tions point out the general characteristics of these models,
by extending it to d-dimensional tori [3], suggesting a more
general model. Recently, several augmentation processes
have been proposed for larger graph classes [7, 19, @ B,
respectively bounded treewidth, bounded doubling dimen-
sion, and bounded growth graphs; results are summarized in
Table These classes are often considered as reasonable
approximations of real networks. The key to these results



is to create random shortcuts at all distance scales. How-
ever, these later processes are essentially centralized (in par-
ticular, they require the global knowledge of the network)
and therefore could hardly be implemented in the context of
large spontaneous networks. In addition, they do not pro-
vide a convincing explanation for the omnipresence of the
small world phenomenon observed in real interaction net-
works.

Adding shortcuts to turn a large overlay network into a
small-world is a recent general and efficient technique to han-
dle queries in peer-to-peer networks. The design of a peer-to-
peer overlay network aims at providing to each node a small
address book such that queries as information retrieval can
be done using greedy algorithms [20, B, [I'7] [[8]. However,
these overlay networks are often strongly structured (e.g.
Hypercube or DeBrujin’s like) and the topological proper-
ties may be difficult to maintain.

1.1 Small world augmentation problem

We consider the following framework. We are given a
graph G representing a virtual network such that one can
compute for any pair of nodes u,v the distance d(u,v) in
G (one way is to use a distance labeling of G, i.e., each
node is given a unique ID which enables one to compute the
hop-distance in G between any pair of nodes, see [10, I
[0, 2, [M9]). G represents the “global” knowledge, as the 2-
dimensional grid in [IZ]. The routing scheme studied here is
the greedy routing that, starting from the source, repetitively
moves to the neighbor of the current position that is the
closest to the target according to the distance in G.

Our goal is here is to improve greedy routing performance
by adding one single private random link per node in the vir-
tual network G (i.e., one entry to each routing table/address
book in the virtual network) such that the mazimum length
of the paths computed by greedy routing (using dg) between
any pair of nodes in the resulting randomly augmented net-
work H is at most polylogarithmic in the size of the network
n, with high probability, i.e., at least 1 — O(1/n). Such
a process results in an optimized network H where greedy
routing computes polylogarithmic paths between any pair of
nodes without having to modify its routing procedure inher-
ited from G, which is known to be an expensive procedure.
Such an augmented network H is called a navigable small
world. The additional random links are called long range
links, and their destination is the long range contact of their
origin. This raises two main questions: Can any graph be
augmented into a small world? Can it be done efficiently?
We address here the second question.

1.2 Our contribution

In this paper, we present the first fully distributed al-
gorithm to augment arbitrary bounded growth gmphsﬂ into
navigable small worlds in polylogarithmic time and space.
Precisely, we optimize the greedy routing performance in
any arbitrary bounded growth graph by running a polyloga-
rithmic time and space distributed procedure that will only
add one single entry to each address book, without recom-
puting the distance labeling of its nodes. The existence of
such a lightweight scheme might be considered as a first
step toward the explanation of the omnipresence of small

LA graph has c-bounded growth if for any node u and any
radius 7, |Bu(2r)| < ¢|Bu(r)|, where By(r) is the set of
nodes within distance r from u.

world phenomenon in interaction networks. Indeed, while
our process may appear unrealistic in the social networks
framework, exhibiting a fully distributed augmentation pro-
cess suggests the possible existence of a more general con-
struction process that would validate Kleinberg’s model as
a plausible explanation for the small world phenomenon in
real networks. As for the computer networks framework,
the lightweight scheme proposed here might have promising
applications in the design of peer-to-peer overlay networks
with efficient routing.

Our process uses a sampling step to construct a rele-
vant approximation of the network structure. Precisely, our
scheme first constructs a random tree-shaped overlay net-
work 7 which encodes efficiently a good approximation of
G’s metric. The tree is then used to efficiently select and
add relevant long range contacts to the address books. The
main result of this paper is stated as follows:

THEOREM 1. Any bounded growth n-node network of di-
ameter D can be augmented into a navigable small world
in a distributed manner in O(lognlog D) rounds with
O(lognlog D) messages of O(logn) bits induced by each
node and with O(log N log D) bits memory per node, with
high pmbabilitzﬂ.

More precisely, with high probability, the maximum length
of the paths computed by greedy routing between any pair of
nodes is at most O(log2 nlog? D) and the expected length is
at most O(log nlog? D).

1.3 Reélated works

Previous small world augmentation processes for bounded
growth graphs [T9, H] rely on pairing each node u to a node v
at distance r with probability proportional to 1/b, (), where
b (r) is the number of nodes within distance r from w. If the
bounded growth property ensures the success of such pro-
cesses, these are however centralized and time-consumming.
A first reasonable implementation has been proposed in [G]
which avoids complete flooding by computing an estimation
of the graph metric. In this latter scheme, nodes only ex-
plore O(polylog n) nodes on average but (log n) nodes still
explore the whole network, i.e., ©(n) nodes.

The overlay network constructed in this paper presents
some similarities with known data structures used to rep-
resent metrics of bounded doubling dimension, e.g., de-
formable spanners or navigating nets [I4]. Indeed, it
similarly uses a hierarchical sampling of the nodes. How-
ever, our goal is different, for instance, we encode ball sizes

2For a n-node graph, with high probability means with prob-
ability at least 1 — O(2).

3A cluster structure refers to a setting which includes met-
rics of polynomial ball growth and hierarchies, defined as
group structure in [I3].

4The doubling dimension of a metric is « if each ball of ra-
dius 2r can be covered by 2% balls of radius r. A is the aspect
ratio of the metric, i.e., the ratio of the largest distance over
the smallest one.

5A graph has b-moderate growth if the ratio of a ball of ra-

dius 2r is at most O(log® ) times the size of the ball of radius
r and of same center, and the size of a sphere of radius r
is at most 1/r times the size of the ball of same center and
same radius. This class is included in the class of bounded
growth graph, itself included in the class of bounded dou-
bling dimension graphs.



Ref. Underlying structure Out-degree Expected path length Scheme
] Treewidth k O(klog klogZ n)
T3 Cluster structure® O(logZ n) O(logZ n) Centralized
19) a doubling dimension? | O(29(®) lognlog A) O(logn) description
2] b-moderate growth® O((log n)°/2720)
this paper bounded growth O(log® n) Decentralized

Table 1: Small world augmentation processes.

of exponentially growing radii, and we do not require a min-
imum distance between nodes of the same level (the nested
property), as in the r-net data structure (see [I1]). In addi-
tion, as opposed to these data structures, our construction is
fully decentralized (e.g., no node has a significantly higher
load than another during the construction process). Note
also that our goal is also different from the one in [I8] which
aims at maintaining dynamically an overlay network over
dynamically changing distances between nodes measured in
terms of RTT (Round Trip Time). Our overlay network is
only used during the O(log nlog D) rounds of the optimiza-
tion process (to compute the random long range links) and
does not need to be maintained afterwards.

1.4 Outline of the paper

Section B describes the notations and provides the tech-
nical probabilistic lemmas that ensure the proper covering
properties of our overlay network for c-bounded graphs. In
Section Bl we present a distributed construction of an over-
lay network O(G) that does not require any global explo-
ration. For any node u and radius 2°, the overlay network
provides an good estimation of b,(2), noted b, (2%), from
which we sample the long range contacts in Section H that
will augment the graph in a navigable small world, with high
probability.

2. PRELIMINARIES

2.1 Principle of our algorithm

In order to avoid expensive exploration of the graph,
we build a tree-shaped overlay network which parsimo-
niously encodes good approximations of the sizes of the balls
centered on each node with exponentially increasing radii
(which is enough for our purpose). Indeed, thanks to the
bounded growth, in order to pick its long range contact,
each node can use the ball of radius 2°7" of its ancestor at
level i in the tree as a good approximation to its own ball
of radius 2°. Each node of level i approximates its ball by
the union of the subtrees of its sons of level i — 1 at distance
< 5.2°. Each node starts at level 0 and increases its level
with some probability or stops if level [log D] is reached.
The subtrees are disjoint and the probability to join the
upper level is suitably adjusted so that the tree covers the
graph with high probability, and thus the approximated ball
sizes are correct up to a constant factor (which is enough for
our purpose). Interestingly enough, our construction allows
to maintain a constant factor approximation of balls sizes at
every level; indeed, a careful selection of the subtrees to be
merged, based on the relative distances of their roots in G,
as well as the covering properties ensure that the errors on
the estimations do not propagate to the higher levels.

2.2 Notations and model

We consider G = (V, E), a n-node c-bounded growth graph
of diameter D, where c is the expansion rate, i.e., the min-
imal constant ¢ > 0 such that b,(2r) < c- by(r) for any
node u and any radius r > 0. For any node u and radius r,
let By (r) denote the set of nodes within distance at most r
from v in G. Our small world augmentation process assigns
to each node u in GG, a new neighbor L, its long-range con-
tact. In all the following, d(u,v) stands for the distance in G
between nodes u and v (i.e., ignoring the long range links)
which is assumed to be computable from the IDs of u and v.
We assume that a constant approximation of logn as well as
an upper bound on ¢ are known. Note that satisfying esti-
mations of ¢ and log n could be obtained by starting with an
arbitrary value (1) which is increased (multiplied by 2) if the
construction fails, until the construction succeeds (see [6]),
combined to an appropriate failure detection scheme.

We measure the performances of our small world augmen-
tation process in terms of time complexity (the number of
rounds), of the maximum amount of memory required per
node, and of the maximum number of messages induced per
node. Since the algorithm is asynchronous, a round is de-
fined as the time period between two consecutive messages
sent by the slower node. The worst scenario is thus when
all nodes work at the same speed. We assume then that
sending a message takes one round in our analysis (1-port
model).

2.3 Parsimonious covering sampling scheme
for bounded growth graphs

The following probabilistic lemmas will be used later to
design the sampling of our tree-shaped overlay network on
c-bounded growth graphs. They show that using constant
factor estimations (Bu)uev of the ball sizes allows one to
sample sparse sub-networks with proper covering properties
with high probability, even if the estimations are correlated
by the construction process. The section gives technical lem-
mas and can be skipped during the first reading.

LEMMA 1. Let G = (V, E) be a n-node c-bounded growth
graph, a radius v > 0, and S a random subset of vertices
in which each vertex uw € V is included independently with
probability p. satisfying:

. C'logn aClogn
— | SPu < —/—F7—,
min (1, T ) < < 2278

for some constants C' > 6¢ and o > 1. With probability 1 —
0 (%), for any u € G, Byu(r) contains at least one element
of S, and By (5r) contains at most 2¢* o C'logn elements of
S.

PROOF. Let w € G, r > 0 and B = B,(r). For any
v € B, By(r) C Bu(2r) and By (r) C By(2r), thus by (r)/c <



by(r) < ¢ bu(r). Then we have:

Clogn caClogn
X /Mv X T 7 /N - 1
cha(ry P bu(r) )

The probability that B, (r) contains no vertex of S is then
at most

by (r
_ CIOgn ) < e*(C/C)logn _ 1
Cbu(”l') = T nC/(cin2)’

which is at most 1/n® since C > 6¢. According to the union
bound, the probability that it happens for at least one node
w is less than 1/n?.

We now prove the upper bound on |B,(57) N S|. For any
u € G and r > 0, the number of vertices of S in B, (5r)
is the sum of independent Bernoulli trials with total ex-
pectation at least C'logn/c and at most ¢t aClogn, since
bu(r) < bu(5r) < *by(r). Using the Chernoff bound (see,
e.g., Theorem 4.1 in [I6] for the version we are using here),
the probability that this number is greater than 2¢* a C'logn
(i.e., at least twice its expectation) is at most

e\ Clogn/c 1 1
(Z) < nClog(e/4)/c < $7

From the union bound again, the probability that this
happens for at least one node u is at most 1/n%. [

since C > 6ec.

During the construction process of our tree-shaped over-
lay network, nodes at the ith level of the tree are sampled
from nodes w at the (i — 1)th level based on the estima-
tions (by) of their ball sizes (see Algorithm [). Since the
construction process of our tree-shaped overlay network in-
duces dependencies between the estimations (b,) of the ball
sizes, we need to extend our lemma to a more general frame-
work where the probabilities for the nodes to join the set S
(the next level) are not independent from the construction
process. The next lemma solves this issue.

LEMMA 2. Let G = (V, E) be a n-node c-bounded growth
graph, a radius v > 0, and a > 1 and C = 6¢ two constants.
Let (Xu)uev be a collection of independent uniform [0, 1]
random variables, and a collection of integer valued func-
tions (Bu)uev of the Xus, such that, with high probability,
for allu € G,

bu(r) < Bu < aby(r).

Then, for any u € G, Byu(r) contains at least one element
of S, and By (5r) contains at most 2¢* o C'logn elements of
S with probability 1 — O (n_12)

Proor. Consider the two sets S and S1, which both sat-
isfy conditions of Lemma [l :

B Clogn

So = {UGV X, < bu(”l')}
sy = Jvev.x, @Cloen
bu(r)

The conditions on (8u)uev imply that So C S C S1 holds
with high probability. The lower bound of Lemmal[ll (on So)
implies the lower bound for S, and the upper bound (on Si)
implies the upper bound for S. [

3. THE OVERLAY NETWORK

Figure 1: An example of a hierarchy of sampling for
level 0 (white nodes), level 1 (grey nodes) and level 2
(black nodes). The dashed arrows show one possible
overlay forest 7.

3.1 Overlay network construction

Algorithm [0 gives a detailed description of the design of
the overlay network O(G).

Overlay network tree-like structure. The overlay
network O(G) is composed of a tree 7 of height [log D]
and a sequence Go,...,Gi,...,Greg p1 of graphs connect-
ing nodes of the same level. For any ¢, two nodes of level 4
are connected in G; iff their distance in G is < 5.2°. For
each node wu, ¢, denotes the highest level reached by w.
u has one self-copy in the overlay network for each level
0,1,...,¢,, and each copy is thus connected to further and
further neighbors in the graph G;.

Figure Bl illustrates nodes of increasing levels.

Overlay network at a node u. For each level i < /,,
u stores:

e its parent: one node P! of level i + 1 such that
d(u,v) < 27 (PL = wif i < £,);

e its meighbors in G,;: the list of nodes Nqi = {w :
Ly > iandd(u,w) < 5.2°} along with the sizes
of the subtrees T, rooted on each w € N.. Note
that u belongs to Nf; whenever 7 < /4. For
convenience, we distinguish the close neighbors
N = {w € N} : d(u,w) < 3.2'}.

e its children: the list of nodes C%) = {v: Pi™' = u}.

For each i < £, we recursively define the tree 7! rooted
on the copy at level ¢ of u whose subtrees are the T, for
veCl

The function INFORM(u, ) consists in flooding a message
from node u to all the nodes at distance at most 3 from « in
G, using a BFS. u waits for an acknowledgment at the end
of this flooding, required for u to decide whether it stays at
level i.

3.2 Overlay network properties

The correctness of Algorithm 1 is guaranteed by induc-
tion, based upon the three following properties:

e Pc(i), covering property: For each node u € G, there
exists a node of level i in B,(2") (in particular, if u
is of level i — 1, u’s parent, P.~!, is properly defined
and d(u, Pi™1) < 2)

e Pn(i), neighborhood property: For each node u of
level i, all nodes of level i at distance at most 5 - 2°



Algorithm 1 Contruction of the overlay network
INPUT: a c-bounded growth graph
for all node u do
Choose X, € [0,1] uniformly at random
70 = {u}, N0 — the set of nodes at distance 5
from u (BFS exploration)
bu(1/2) =1, bu(1) = bu(1), i =
while X, < 6; ;;’lg)" and l;u(2l)
i — 1+ 1.
INFORM(u, ) that u is now at level 4
Wait until all the nodes at distance at most
3 hops in G;—1 tell if they join (or not) the
next level 7 in order to build N! and Nﬁ
bu(2) = e [Tl

Ly — 1.

b.(2071) do

Upon reception of message Inform(v,: + 1)
from a neighbor v € Ni:
if u stopped at level ¢, = i and d(v,u) <
then
Choose v as its parent and send “P{ = v” to
v. (Ties are broken arbitrarily)

2i+1

Upon reception of message “Pi =y’ from a
neighbor v € N;: add v to the list of children
cirt,

from v in G are at most 3 hops away in G;—1 (i.e., all
the neighbors of u in G; are correctly computed).

o Pa(i), approzimation property: For any node u of level
i, Bu(2') C U, eNi T: C B,(5.2%).

Figure Bl illustrates the covering property.

LEMMA 3. For any i € {0,...,[log D1}, if Pc(j) and
Prr () hold for all j < i, then PA( ) holds.

ProOF. Consider a node u of level 4. Let w € By(2").
If £, > i — 1, according to Pc(i), w’s parent, v = P5!
exists and d(v,w) < 2°. Otherwise, an immediate induction
shows that w has an ancestor v of level ¢ such that d(w,v) <
2042t 4] g 20 (by triangle inequalities). Thus,
in both cases, d(u v) < 3-2°, which implies by Par(i) that

v belongs to N and w € UUeNZ Ti.

Consider now v € N{. By definition, d(u,v) < 3-2%,
and again according to triangle inequalities, all the nodes
in T! are at distance at most 2° + 2071 + ... 4+ 1 g 2¢F?
from v. Thus, from the triangle inequality, T} is included in
Bu.(5-2Y). O

LEMMA 4. For any i€ {1,.
Prr (i — 1) hold, then P () holds

PRrROOF. Let u,v be two nodes of level ¢ in GG such that
d(u,v) = k < 52" Consider u = wo,w1,...,w = v a
shortest path from u to v in G and set © = w|4/5) i and
Y = Wrg/9)42i, such that d(u,z), d(z,y) and d(y,v) are all
at most 4.2°. According to Pc (i — 1), there exists two nodes
s1 and sz of level at least 4 — 1 in B,(2"") and B,(2"7")
respectively. Then, d(u, s1), d(s1,s2) and d(s2,v) are all at
most 5.2°71 and, according to Par(i — 1), (u, s1,s2,v) is a
path of length at most 3 connecting u to v in G;—1, which
proves Pa(i). The algorithm computes then correctly the
neighbors N¢ for all nodes u of level 5. [

,[log D1}, if Pe(i—1) and

PROPOSITION 1. With high probability, for all i €
{0,...,[log D1}, Pc(i), Par(i) and Pa(i) hold.

Proor. We prove the proposition by induction on i.
Pec(0), Par(0) and P.4(0) hold with probability 1. Consider
now ¢ > 0, and assume that Pc(j), Pa(j) and Pa(j) hold
for all j < 4. According to Lemmal Par(¢) clearly holds.

According to Pa(i — 1) and the ¢-bounded growth, for all
nodes u of level i — 1, we have

bu(2) < by (271) < by (2771
Let us define 3, as:

<ebu(5-271) < Pbu(29).

Bu = cl;u(Qifl) if w has level at least 7 — 1

),0u(2))

From above, for all u, we have
bu(2) < Bu < by (29).

Consider the random set of nodes S = {u € V : X, <
6c* logn/B.}. Since, for all u of level at most i — 2, we have

= max(chy (2 otherwise.

3 logn 4logn
bu(20e) T Bu

the set S corresponds exactly to the set of nodes of level at
least i, selected during the ith iteration of the while loop.
Applying Lemmas M and A to S with o = ¢ and C = 6¢,
ensures that with probability 1 — O(1/n?), for all nodes u,
B (2") contains at least one node of level i, which proves
Pe (i) w.h.p.

Finally, since Pc(j) and Pa(j) hold for all j < ¢ with
probability 1 —O(1/n?), Pa(i) holds according to Lemma J]
w.h.p.. In order to complete the proof, note that there are at
most [log D] iterations; the total failure probability is then
at most O(log D/n?), and Pc(i), Par(i) and PA( ) hold for
any i with probability at least 1 — O(log D/n?). O

X, = 6¢

Remark. Note that property Pa ensures that for
c-bounded growth graphs, b, encodes efficiently a c*-
approximation for all ball sizes. Indeed, w.h.p., for each
node u with £, > [logr] + 1, and each radius r,

bu(2Llog7‘j) < bu('l') < bu(2UOg”+1) < Cbu(2LlOgTJ),
and
bu(2\_logrj) < gu(2\_logrj+1) < CSbu(QLlogr'j)7

which implies that w.h.p. for all v and r:

b (ollogr]+1
max bu(2 )7 = bu(r) < .
bu(r) by (2legr]+1)

Hence, our overlay network construction provides an approx-
imation of ball sizes. Note that allowing O(log D) extra
rounds of communications, one can also compute the exact
ball size for any center node and radius (details are omitted
here).

3.3 Timeand space analysis

The following proposition shows that the construction of
the overlay network is completed in polylogarithmic time
and requires only polylogarithmic size memory at each node.

ProrosiTION 2. With high probability, the computa-
tion of O(G) is completed after O(c®log Dlogn) rounds
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Figure 2:
neighbors of level i.

of communications during which O(c8 lognlog D) mes-
sages of O(logn) bits are sent per node, and requires
O(c®lognlog D) bits of memory at each node.

PROOF. Proposition 0limplies that the construction does
not fail with probability O(1 — log D/n?). At most [log D]
iterations of the while loop are executed. The ith iteration
consists for each node w of level i to contact its neighbors
of level i and its children of level i — 1 in G;_1. According
to Lemmas [ and B with o« = ¢ and C' = 6¢, with high
probability the number of neighbors and children for each
node is at most O(c® logn). The ith iteration requires then
at most O(c®logn) exchanges of messages of O(logn) bits
per node of level i. The overall number of messages sent per
node is then at most O(c®lognlog D). Finally, each node
requires to store its neighbors and children IDs at each level
it has reached, which requires at most O(c8 log nlog D) bits
memory. [

4. SMALL
PROCESS

While the overlay network described in the previous sec-
tion provides a set of hierarchical shortcuts, they are inoper-
ative as small world shortcuts. Indeed, greedy routing only
uses the original distances in G to navigate, and therefore
never follows a link towards a higher level node if this node
is not closer to the target in the original graph. However,
the overlay network and the approximation of ball sizes ob-
tained enable us to build efficiently, and in a distributed
manner, a set of random additional shortcuts such that the
augmented graph is a navigable small world.

Algorithm B assigns a single long range contact L,, to each
node u using the distributed spanning forest

- U

w:ly=[log D]

WORLD AUGMENTATION

og D

® node of level 7

“. O Arbitrary node

Balls of radius r» = 2° covered by the union of subtrees (of maximal depth 2r) rooted at close

of the overlay network as a guideline.

In a first step (Long range contacts construction), each
node u computes, for each level it has reached, a list of
random nodes £! which is sent to its descendants in T¢.
Corollary M will show that this list covers all “possible direc-
tions” with high probability. That is to say that there exists
a node in list £7, that allows to get twice closer to any node
within radius 5.2 from w.

In the second phase of Algorithm B each node u 1) picks
uniformly a random length scale ¢ € {1,..., [log D]} and 2)
selects its long range contact L, uniformly at random among
nodes of £, where s is its ancestor of level 7. Lemma B will
conclude that this correctly creates a small world network
with high probability.

LEMMA 5. For all i > 3, for all nodes s of level at least
i, and for all v € By(5.2"1),
Pr{.NB,(2" %) # 2} >1-1/n".

PROOF. For each s’ € NI, d(s, s') < 5.2¢ and for each w €
T, d(s',w) < 271 thus | T: C Bs(7.2"). According
to triangle inequality,

Bs(7.2") C B,(7.2" +5.2'") € B,(2).

s’€N

Therefore,
| U 7ol < b2 < Thu(270).
s’EN?

Consider now w € B,(2°7%) and w’s ancestor of level i,

s’. We have
d(s,s") < d(s,v) + d(v,w) + d(w, s")
<527 42173 L 9t 507

and thus s € N?. We conclude that B,(2°"®) C U, cni Tor-



Algorithm 2 Augmentation process

for all node u and all level 7 < ¢, do
Long range contacts sampling:
Select a list £ of 4¢”[logn] leaves, chosen uni-
formly and independently at random in the for-
est UueNﬁ T} of the subtrees rooted on u’s neigh-

bors in N:. (This is accomplished distributively
by sending 4c” [log n] messages that independently
recursively go down the trees with probability pro-
portional to the size of the subtrees until a leaf is
reached which sends its identity back to u)

Recursively spread the list L% down to each of its
descendants in T..

Long range contact assignment:

Pick arandom level j € {1,..., [log D]} uniformly
at random.

Pick uniformly at random wu’s long-range contact
L., in the list £, where s is u’s ancestor of level j.

Since s samples in £, 160_7 [log n] nodes uniformly at ran-
dom in the forest |J T

s’ENg s’

b (27273) 4c7 [logn]
Pr{finB,2 ") =2} < [1 - "t
| USIEN; Ts"

4c" [log n]
1 1
s <1 B —) S

O

Since the maximum level is [log D] for each node, we get
the following corollary from the union bound.

COROLLARY 1. With probability at least 1 —O(log D/n?),
Jor all i = 3, for all nodes s of level at least i, and for all
v € Bs(5.27Y), B,(2"7%) contains a point of LL.

We now show that for each node u, u’s long range L, is
twice closer than u to a given target v, with polylogarithmic
probability.

LEMMA 6. With probability 1 — O(log D/n?), for all pair
of nodes (u,v), if i > 3 is such that 2°7% < d(u,v) < 2°7!,
then

1
4c"[logn][log D]

PROOF. Let s be u’s ancestor of level i. d(v, s) < d(v,u)+
d(u,s) < 2071 4271 < 5271 By Corollary [ it follows
that with probability 1—O(log D/n?), for all such pairs, LN
B,(2°73) # @. Conditioned on this event, the probability
that L, € B, (22'73) is then at least the probability that u
picked level ¢ (probability 1/[log D]) and that L, has been
picked ?mong nodes of £ (probability 1/|£%]), i.e., at least

Pr{L, € B,(2" %)} >

4c7[logn][log D] "

Lemma[@ provides the key element to ensure the efficiency
of greedy routing in the augmented network, as shown in the
following theorem.

THEOREM 2. The augmented network is a navigable
small world, i.e., with probability at least 1 — O(log D/n?),

for any pair of nodes (u,v), greedy routing computes a
path of length at most 16¢ [logn]?log(d(u,v))[log D] =
O(log*n), and 16¢" [logn] log(d(u,v))[log D] = O(log®n)
on expectation.

PROOF. Assume, with probability 1 — O(log D/n?), that
the conclusion of Lemma [6 holds. Consider a pair of source
and target (u,v) for greedy routing. Let ¢ > 3 such that
272 < d(u,v) < 2!, From Lemma B

Pr{L, € B,(2°7*)} > 1/(4¢" [log n][log D7).

If L, ¢ B,(27%), greedy routing gets to a node u’ still
satisfying 2°72 < d(u’,v) < 27!, Then, the probability that
no node with a long range contact in B, (2'°?) was visited
after the first 16¢” [logn]*[log D] steps of greedy routing is
at most:

< =

16¢” [log n]?[log D] 1
) n4

(1 S
4c"log n][log D]

This upper bound is independent of the current distance
to v. Hence, logd(u,v) times, the current distance to v
is divided by at least 2 in 16¢" [logn]*[log D] steps with
probability greater than

log d(u,v)
<1_i> 21_210gd(u,v)

n n4 ’

for n > no. Thus, the expected number of steps of greedy
routing from u to v is at most 16¢” [log n]*[log D] log d(u, v)
with probability greater than 1 — 2[log D]/n*. Applying
the union bound, we conclude that with probability at least
1 — O(log D/n?), the maximum length of the greedy path
between any pair of nodes (u,v) is at most

16¢" [log D] [log n]? log d(u, v).

To get the expectation result, note that, given the pair
(u,v), greedy routing visits a node with a long range contact
in B, (2'7®) after the first 16¢” [logn] log D steps with prob-
ability greater than a constant. The expected path length
is thus 16¢" [log n][log D] log d(u, v) following the same di-
chotomic argument as above. [l

Analysis of Algorithm Plperformances combined to Propo-
sition B leads to the following overall performances of our
small world augmentation process.

THEOREM 3. Any c-bounded growth n-node graph can be
augmented into a navigable small world in a distributed way
w.h.p. in O(c®lognlog D) rounds, O(c®*nlognlog D) mes-
sages, and requiring O(c®lognlog D) bits memory in each
node.

5. CONCLUSION

One point that remains unaddressed in Kleinberg’s model
is an explanation of the emergence of the 2-harmonic long
range links distribution in the grid. In a sense, our decen-
tralized algorithm is light and fast enough to be considered
as a first step towards a validation of Kleinberg’s model for
real interaction networks. Indeed our algorithm is decen-
tralized, applies to arbitrary bounded growth graphs and
requires only polylogarithmic size memory and time com-
plexity. Although our description assume that all the nodes
try simultaneously to make a small-worldization process, it



can easily be adpated in such a way that a single node de-
cides to start the process with the same performance. Note
also that the assumption of an estimation of ¢ and logn can
be bypassed thanks to successive trials, similarly as in [6].
Finally, note that an expansion rate ¢ = polylogn does not
change the performances drastically (time, space and mes-
sage complexity are still polylogarithmic in the size of the
network) and our scheme is still an efficient distributed small
world augmentation process for polylog(n)-bounded growth
graphs.
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