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Abstract

In addition to statistical graph properties (diameter, degree, clustering, ...), Klein-
berg [7] showed that a small-world can also be seen as a graph in which the routing
task can be efficiently and easily done in spite of a lack of global knowledge. More
precisely, in a lattice network augmented by extra random edges (but not chosen
uniformly), a short path of polylogarithmic expected length can be found using a
greedy algorithm with a local knowledge of the nodes. We call such a graph a navi-
gable small-world since short paths exist and can be followed with partial knowledge
of the network. In this paper, we show that a wide class of graphs can be augmented
into navigable small-worlds.
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1 Introduction

In the last decade, effective measurements of real interaction networks have
revealed specific unexpected properties. Among these, most of these networks
present a very small diameter and a high clustering. Furthermore, very short
paths can be efficiently found between any pair of nodes without global knowl-
edge of the network, which is known as the small-world phenomenon (exhib-
ited by Milgram [12]). Several models have been proposed to explain this phe-
nomenon. Among them, one approach is based upon an augmentation process:
starting from a graph H and adding a relatively small set of extra edges L,
we hope to obtain a new graph G sharing some graph properties with H, and
exhibiting additional properties due to the design of L. For instance, the circu-
lant graph H consisting in an n-node ring in which each node is also connected
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to the k−th closest nodes is locally clustered and is often used as a base graph
for small-worlds [13,7]. Watts and Strogatz, in 1998 [15], showed that adding
a controlled amount of randomness in the circulant graph gives rise to some of
the small-world characteristics: rewiring an increasing fraction α of the links
to random nodes chosen uniformly exhibits the desired characteristics (locally
clustered and small diameter) for a reasonably large range of α away from 0
and 1. In fact, this model can be easily seen as an augmentation process: al-
lowing to rewire only one link per node (defining in this way L) would not
alter a lot the model and the results (cf. [13]).

However, Kleinberg showed in 2000 [7] that this model lacks the essential nav-
igability property: in spite of a polylogarithmic diameter, none of the short
paths can be computed efficiently without global knowledge of the network;
i.e., routing requires the visit of a polynomial number of nodes (in the size
of the network). He showed that navigability can be obtained by adjusting
the amount of randomness to the underlying metric (the ring here). Precisely,
he introduced an augmented graph model consisting of a grid where each
node is given a constant number of random additional directed long range
links distributed according to the harmonic distribution, i.e., the probability
that a node v is the i-th long range contact of a node u is proportional to
1/|u − v|s, where |u − v| denotes their Manhattan distance in the grid and
s is some parameter of the model. In this model, the local knowledge at each
node is the underlying metric of the grid (which can be viewed as the geo-
graphic locations of the nodes) and the positions on the grid of its long range
neighbors. Note that a global knowledge would be the set of positions of all
the long range neighbors on the grid. Kleinberg proved that there exists a
decentralized algorithm (using only local knowledge) that computes, between
any pair of nodes, a path of polylogarithmic length in the size of the network,
after visiting a polylogarithmic number of nodes, if and only if the exponent
s is equal to the dimension of the grid. The simplest such algorithm is greedy
routing : each node obliviously forwards the message to its neighbor (local
or long range) that is the closest (in the known metric) to the destination.
Later on, Barrière et al. [1] generalized this result to a torus of any dimension.
Moreover, they showed that the expected number of steps of the greedy algo-
rithm is Θ(log2 n), and that, noticeably, the number of steps is independent of
the dimension. This reveals a strong correlation between the underlying grid
metric and the additional long range links distribution that turns the grid
into a small-world. This statement raises an essential question to capture the
small-world phenomenon: are there only specific graph metrics that can be
turned into small-worlds by the addition of shortcuts?

This impression can be reinforced by the fact that whenever the exponent s is
different from the dimension of the grid, the greedy algorithm follows a path of
polynomial length even when the diameter is polylogarithmic. For Kleinberg’s
model, Martel and Nguyen [11] proved that the diameter is Θ(log n) for s = d
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and it is conjectured that for s < 2d, it is polylogarithmic, where d is the
dimension. For a slightly different percolation model (in which degrees are
unbounded), Coppersmith et al. [3] showed indeed a polylogarithmic upper
bound on the diameter whenever s < 2d. The reader might believe that the
navigability property is very specific to the grid topology, but we will show
that a wide family of graphs can be turned into navigable small-worlds. In
[8], Kleinberg generalized his lattice-based model and showed how to turn into
smallworlds tree-based or group-based structures by adding a polylogarithmic
number of long range links per node. [14,4] are other recent articles which
tackle these questions for other graph classes.

In section 2, we give a formal definition of navigable small-world graphs with
respect to a given underlying metric. Roughly speaking, a greedy decentralized
routing scheme computes a path of polylogarithmic length in the distance, be-
tween the source node and the target 1 . In this paper, we attempt to find a
class of graph metrics as wide as possible for which the addition of random
long range links gives rise to the small-world phenomenon. Indeed, Kleinberg’s
augmentation process which turns the grid into a navigable small-world fails,
for instance, on unbalanced n×m grids (with m � n), since the “dimension”
varies with the distance: balls of small radius grow like r2 but larger balls grow
like r1+ε(r), where ε(r) → 0 as r grows.

n

m

It appears that defining the random link distribution in terms of ball growth
in the original base graph, rather than in terms of distance between nodes,
allows to generalize Kleinberg’s process to a wide class of graphs. Roughly
speaking, as soon as the original graph H is homogeneous in terms of ball
expansion and as soon as balls centered on each node grow up to slightly more
than polynomially with their radius, H can be augmented to become a nav-
igable small-world. It follows that a wide class of graphs can be turned into
a navigable small-world, including in particular any Cayley graphs known up
to now. In a second step, we try to catch the dimensional phenomenon by
studying the cartesian product of our graphs. We show that if two indepen-
dent graphs can be augmented into two navigable small-worlds then their
cartesian product can also be augmented into a navigable small-world, even
though it may not belong to the class itself. This reveals that the small-world
phenomenon of a network may rely on multiple underlying structures. For in-
stance, as a consequence, any unbalanced torus Cn1 × Cn2 × . . .× Cnl

can be
turned into a small-world in which the greedy algorithm computes paths of
length O(log2+ε(maxi ni)), for any ε > 0.

1 in Kleinberg’s model, the path is of polylogarithmic length in the size of the
network
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2 Small-worlds and graph metrics

For a given graph G = (V, E), we write BG,u(r) for the ball centered on a node
u with radius r, and bG,u(r) for its cardinality. Let bG(r) = maxu∈V bG,u(r).
The G subscript will be omitted in case the concerned graph is obvious. We
only consider graphs with maximum degree ∆, a fixed constant.

In the following, an underlying metric δH of a graph G is the metric given
by a spanning connected subgraph H (i.e., δH(u,v) is the distance between u
and v in H). Definitions 1 and 2 are inspired by the work of Kleinberg [7].

Definition 1 A decentralized algorithm using an underlying metric δH in
a graph G is an algorithm that computes a path between any pair of nodes
by navigating through the network from the source to the target, using only
the knowledge 1) of δH 2) of the nodes it has previously visited as well as
their neighbors. But, crucially, 3) it can only visit nodes that are neighbors of
previously visited nodes.

The efficiency of a decentralized algorithm depends crucially on the number
of nodes it visits to compute a path. Note that it upper bounds the length of
the computed path.

Our definition of a navigable small-world is essentially probabilistic. We con-
sider random graph models in which a fixed “base” graph H is randomly
augmented by adding random links (called long links below), according to
some probability distribution. Routing will then be performed by a decentral-
ized algorithm, using the base metric δH (which is obviously an upper bound
on distances in the augmented graph); our goal is to identify such augmented
graph models for which this procedure results in uniformly “fast” routing.

Since the augmented graph will have a finite degree, at least some of the
bH,u(r) nodes at distance at most r of u will remain at distance Ω(log bH,u(r))
in the augmented graph. This motivates the following definition.

Definition 2 An infinite randomly augmented graph G, with base graph H,
is a navigable small-world if there exists a decentralized algorithm using the
underlying base metric δH that, for any two nodes u and v, computes a path
from u to v in G by visiting an expected number of nodes that is polylogarith-
mic in bH,v(δH(u,v)).

A family of finite randomly augmented graphs (Gi)i∈I, with base graphs
Hi for each Gi, is a navigable small-world family if there exists a (uniform)
polynomial p, and a decentralized algorithm using the underlying base metric
δHi

on Gi that, for every i ∈ I and any pair of nodes u and v in Gi, com-
putes a path from u to v, by visiting an expected number of nodes at most
p(log bHi,v(δHi

(u,v))).
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Note that some graphs are intrinsically navigable small-worlds (and do not re-
quire any augmentation). Indeed, any graph such that each bv(r) is bounded
below by a (uniform) exponential function of r is a small-world, since the
greedy algorithm, using the graph metric, computes a path of optimal length
r = δ(u,v) between two nodes at distance r, and r = polylog(b(r)) in this case.
The simplest example of this situation is an infinite k-ary tree (with k ≥ 3);
balls of radius r have size Θ((k−1)r). On the contrary, graphs with polynomial
ball growth (i.e. b(r) = Θ(rc) for some constant c) are not intrinsically nav-
igable small-worlds since the length r of the optimal path computed by the
greedy algorithm between two nodes at distance r is not a polylogarithmic
function of b(r).

3 Turning graphs into small-worlds

In this section, we describe a wide class of infinite graphs, or of infinite fam-
ilies of finite graphs, for which we are able to define random augmentation
models that result in navigable small-worlds. In all cases, our routing algo-
rithm will be the greedy algorithm, thus the set of visited nodes will coincide
with the path computed. Furthermore, even if some algorithms can compute
significantly shorter paths [5,11,9], it has been shown in [10] that no decentral-
ized algorithm can compute a polylogarithmic path between two nodes while
visiting significantly fewer nodes than the greedy algorithm.

All models we will consider add exactly one directed edge 2 leaving each node
u, and the destination Lu of this outgoing edge is randomly chosen according
to a random distribution that gives equal weight to any two nodes that are
equally distant from u (in the base graph). Thus, for each node u, there is
a function fu such that each other node v has probability proportional to
fu(δ(u,v)) of being Lu; the normalizing factor Zu is

Zu =
∑
v∈V

fu(δ(u,v)) =
∑
r>0

(bu(r)− bu(r − 1))fu(r).

Definition 3 We say that an infinite graph is smallworldizable if there ex-
ists, for each u, a distribution fu(r) such that the randomly augmented graph
obtained by the addition of one random long range link to each node u accord-
ing to fu(r) (any node u is the origin of one long range link whose destination
is v with probability proportional to fu(δ(u,v)), is a navigable small-world.
Similarly, we say that an infinite family of finite graphs (Hi)i∈I is small-

worldizable if there exists, for each u and i, a distribution fi,u(r), such that
the family of finite randomly augmented graphs (Gi)i∈I, where Gi is obtained

2 Adding a constant number k of edges instead of one would not significantly alter
the results, as will be made clear by the proofs.

5



by the addition of one random long range link to each node u of Hi according
to fi,u(r) (any node u is the origin of one long range link whose destination
is v with probability proportional to fi,u(δHi

(u,v)), is a navigable small-world
family.

The following class of graphs is defined for the sake of readability. As shown
below, it characterizes a class of smallworldizable graphs.

Definition 4 A bounded degree infinite graph H is a moderate growth graph
if there exists a constant α > 0, such that the ball size of each node u of H
can be written as bu(r) = rdu(r), where du(r) : [2,∞) → R is C1 and satisfies
∀r ≥ 2, d′u(r) ≤ α/(r ln r). Similarly, an infinite family of finite uniformly
bounded degree graphs (Hi)i∈I is a moderate growth graphs family if there
exists a uniform constant α > 0, such that the ball size of each node u of each
Hi can be written as bi,u(r) = rdi,u(r), where di,u(r) : [2,∞) → R is C1 and
satisfies ∀r ≥ 2, d′i,u(r) ≤ α/(r ln r).

Note that the function du(r) is simply defined as a C1 interpolation of
(ln(bu(r))/ ln r)r∈{2,3,...}, then the C1 condition is not restrictive by itself. We
can now state our main result.

Theorem 1 Any moderate growth infinite graph is smallworldizable by the
addition of one long range link per node, distributed according to fu(r) =

1
bu(r) logq r

, for any q > 1. Any infinite moderate growth graphs family (Hi)i∈I
is smallworldizable by the addition of one long range link per node, distributed
according to fi,u(r) = 1

bHi,u(r) logq r
in each graph Hi, for any q > 1.

Proof. We consider the greedy routing algorithm that, at each step, forwards
the message to the closest (in the sense of the δH metric) neighbor (in the
augmented graph) of the current node. Assume that s and t are respectively
the source and target. The main argument in Kleinberg’s analysis, from which
our proof is inspired, is that, among a polylogarithmic number of nodes at
distance between r and r/2 (r ≥ 2) of the target, with constant probability, at
least one node has a long range link that goes to a node at distance less than
r/2 from the target, which gives the polylogarithmic path length. We use a
similar argument, modified so that the upper bound can be expressed only in
terms of the original metric (and not the total size of the graph).

Note that, in order to show that the family (Hi)i∈I is smallworldizable, we
only need to obtain uniform bounds (independent of i) on the expected path
length computed by the greedy algorithm on any finite graph Hi. Since the
proof is analogous for finite and infinite graphs, we will only focus on the
infinite graph case.

We first need to check that the normalization constants Zu =∑
v∈V fu(δH(u,v)) are uniformly bounded (with respect to u and i), so that
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the distribution is properly defined. Let α > 0 such that d′u(r) ≤ α/(r ln r).
Since the maximum degree is bounded by ∆, integrating the upper bound on
d′u yields a uniform upper bound on du(r). There exists a constant C > 0 such
that, for any u and r > 1,

du(r) ≤ C + α ln ln r.

This, in turn, implies that all normalization constants Zu are uniformly
bounded. Indeed, we have

Zu =
∑
r≥1

(bu(r)− bu(r − 1)) fu(r)

and the upper bound on d′u implies, for bu(r) = exp(du(r) ln r):

bu(r)− bu(r − 1) ≤
(

1

r − 1
max du(t) + ln(r) max d′u(t)

)
bu(r),

where both maxima are over t ∈ [r − 1, r]. Using the previous upper bounds
on du and d′u, we get

(bu(r)− bu(r − 1)) fu(r) ≤
(

C + α ln ln(r)

r − 1
+

α ln(r)

(r − 1) ln(r − 1)

)
1

lnq(r)

and the sum over r of the right-hand side converges to some constant Z < ∞.
One can bound the ratio bu(r)/bu(βr), for any 0 < β < 1, as follows:

b′u(r) =

(
d′u(r) ln r +

du(r)

r

)
bu(r) ≤ C + α + α ln ln r

r
bu(r)

Integrating the ratio b′u(r)/bu(r) between βr and r gives:

ln

(
bu(r)

bu(βr)

)
≤ −C ln β + α ln r ln ln r − α ln(βr) ln ln(βr).

But, ln ln(βr) = ln ln r+ln(1+ ln β
ln r

) ≥ ln ln r+C ′ ln β
ln r

for some constant C ′ > 0,
by concavity of ln. Thus,

ln

(
bu(r)

bu(βr)

)
≤ −α ln β ln ln r − (C + C ′α) ln β.

We conclude that, for all u, r ≥ 2 and 0 < β < 1,

bu(r) ≤ (ln r)−α ln β

βC+C′α
bu(βr). (1)

We now analyze the expected path length computed by the greedy algorithm.
Consider some integer r ≥ 2 and a node u such that r/2 < δH(u, t) ≤ r, and

7



denote by Lu the destination of the long range link from u. We give a lower
bound on P[δH(Lu, t) ≤ r/2], the probability that the destination node Lu

belongs to Bt(r/2). Since fu is a decreasing function and Bt(r/2) ⊆ Bu(3r/2),
each node of Bt(r/2) has probability at least fu(3r/2)/Z of being Lu. Since,
in turn, Bu(3r/2) ⊆ Bt(5r/2), we can give a lower bound on fu(3r/2) in terms
of bt :

fu(3r/2) ≥ 1

bt(5r/2) lnq(3r/2)
.

Thus, we get a lower bound, depending only on t and r, on the wanted prob-
ability:

P[δH(Lu, t) ≤ r/2] ≥ 1

Z lnq(3r/2)

bt(r/2)

bt(5r/2)

≥
(
Z5C+C′α lnq(3r/2) lnα ln 5(5r/2)

)−1

≥
(
Z2q+α ln 55C+C′α lnq+α ln 5(r)

)−1

We now turn back to the initial question of the length of the greedy path
from s to t. We partition the whole graph into concentric shells centered on
t, where the k-th shell consists of all nodes whose δH distance to t is between
2k−1 and 2k. The previous discussion proves that each node in the k-th shell
has probability Ω(k−γ) of having its long range contact in some i-th shell
with i < k, where γ = q + α ln 5. Thus, the greedy algorithm, once it reaches
the k-th shell, examines at most O(kγ) vertices on expectation before it finds
one vertex whose long range link leads into a smaller shell. By linearity of
expectation, the expected length of the greedy path from a vertex in the k-th
shell is O(k1+γ), with (uniform) constants that can be recovered from the above
discussion. As a result, the expected length of the greedy path from s to t is
polylogarithmic in ` = δH(s, t) (O(ln1+q+α ln 5 `)), and a fortiori in bt(δH(s, t)).
Thus, the augmented graph is a randomized navigable small-world. 2

This theorem covers graphs with ball sizes b(r) growing like rα log log r, α > 0,
or slower. Note that we get a similar upper bound O(ln2+ε r), for any ε > 0, on
the expected length of the greedy path between any pair of nodes at distance
r from each other. In a vertex-transitive graph, all balls grow at the same rate,
since for any pair of nodes (u,v), bu(r) = bv(r) for any radius r. Recall that
a graph is vertex-transitive iff for all pair of nodes (u,v), there exists a one-
to-one function σ on the vertices preserving the edges, such that σ(u) = v.
Among these graphs, all known Cayley graphs 3 are smallwordizable: either
they are covered by our theorem (polynomial expansion means α = 0) or the
diameter is polylogarithmic (exponential or almost exponential expansion, i.e.
Ω(2arb

) for some a, b > 0). Indeed, groups of intermediate ball size, between

3 A Cayley graph is a graph defined by a group G generated by g1, . . . , gk, whose
vertices are the elements of G and such that there is an edge between x and y iff
there is a generator gi ∈ G such that x = giy.
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polynomial and exponential, are still unknown, and it is an open question
whether there exists a group with ball size b(r) superpolynomial but less than
e
√

r. See for instance [6] and [2] for a state of the art.

Products of small-worlds. A remarkable fact on the small-world property,
in Kleinberg’s model, is its relative independence of the metric dimension.
The expected length of paths computed by the greedy algorithm is indeed
unchanged whether the underlying metric is a ring or a very high dimension
grid. This motivates the study of products of smallworldizable graphs.

Definition 5 The cartesian product H = F ×G of two undirected graphs F
and G is the graph (VH , EH) where VH = VF ×VG and EH = {((f, g), (f, g′)) :
gg′ ∈ EG, f ∈ VF} ∪ {((f, g), (f ′, g)) : g ∈ VG, ff ′ ∈ EF}.

Note that the cartesian product of two graphs of maximum degrees ∆F and
∆G is a graph of maximum degree ∆F + ∆G.

Theorem 2 Let F and G two moderate growth infinite graphs, ((Fi)i∈I and
(Gi)i∈I two infinite moderate growth graphs families). The cartesian product
H = F × G (the family (Hi)i∈I = (Fi × Gi)i∈I) is smallworldizable by the
addition of one long range link per node u according to the distribution hu(r) =
1/(bH,u(r) lnq′ r) (hi,u(r) = 1/(bHi,u(r) lnq′ r) for each graph Hi), for all q′ >
q0, for some constant q0 > 0.

Proof. As in proof of Theorem 1, we only prove the result for infinite graphs,
other cases follow. Note that it is unclear whether H is a moderate growth
graph (i.e., if ∃α > 0,∀u,∀r ≥ 2, d′H,u(r) ≤ α/(r ln r)).

By construction of the graph H, for all u = (u1,u2) in H,
bF,u1(r/2)bG,u2(r/2) ≤ bH,(u1,u2)(r) ≤ bF,u1(r)bG,u2(r). Let α1 and α2 such that
d′F,u1

(r) ≤ α1/(r ln r) and d′G,u2
(r) ≤ α2/(r ln r), for all u1 in F and u2 in G.

From Equation (1), there exists a constant A > 0 such that

bF,u1(r)bG,u2(r) ≤ A (ln r)(α1+α2) ln 2bF,u1(r/2)bG,u2(r/2)

≤ A (ln r)(α1+α2) ln 2bH,(u1,u2)(r)

We first need to check that the normalization constants Zu =∑
v∈VH

hu(δH(u,v)) are uniformly bounded, so that the distribution is prop-
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erly defined. For q′ > 2 + (α1 + α2) ln 2 =def q0,

Zu =
∑

v∈VH

1

bH,u(δH(u,v)) lnq′(δH(u,v))

≤
∑

v∈VH

A (ln(δH(u,v)))(α1+α2) ln 2

bF,u1(δH(u,v)) bG,u2(δH(u,v)) lnq′(δH(u,v))

≤ A
∑

v∈VH

(ln(δF (u1,v1)))
(α1+α2) ln 2−q′

2

bF,u1(δF (u1,v1))

(ln(δG(u2,v2)))
(α1+α2) ln 2−q′

2

bG,u2(δG(u2,v2))

≤ A

 ∑
v1∈VF

(ln(δF (u1,v1)))
(α1+α2) ln 2−q′

2

bF,u1(δF (u1,v1))

 ∑
v2∈VG

(ln(δG(u2,v2)))
(α1+α2) ln 2−q′

2

bG,u2(δG(u2,v2))


≤ AZF,u1ZG,u2 < AZF ZG =def ZH < ∞,

where ZF,u1 and ZG,u2 are respectively the normalizing constants for nodes u1

in F and u2 in G with q = q′−(α1+α2) ln 2
2

, and ZF and ZG are the corresponding
uniform bounds given in the proof of Theorem 1.

As in the proof of Theorem 1, we lower bound P[δH(Lu, t) ≤ r/2], the prob-
ability that the long range contact Lu of a given node u, at distance r to the
target t in H (t = (t1, t2) with t1 ∈ F and t2 ∈ G), belongs to B(t, r/2).

P[δH(Lu, t) ≤ r/2] ≥ 1

ZH lnq′(3r/2)

bH,t(r/2)

bH,t(5r/2)

≥ 1

ZH lnq′(3r/2)

bF,t1(r/4)bG,t2(r/4)

bF,t1(5r/2)bG,t2(5r/2)

≥
(
ZH102C+C′(α1+α2) lnq′(3r/2) ln(α1+α2) ln 10(5r/2)

)−1

≥
(
ZH2q′+(α1+α2) ln 10102C+C′(α1+α2) lnq′+(α1+α2) ln 10(r)

)−1
.

We conclude as above that the expected path length computed by the greedy
algorithm is polylogarithmic in δH(s, t) (O

(
ln1+q′+(α1+α2) ln 10(δH(s, t))

)
ex-

pected length) between s and t, and then polylogarithmic in bH,t(δH(s, t)). H
is then smallworldizable. 2

Note that this theorem yields another simple method to obtain a generalization
of Kleinberg’s graph to tori of dimension d ≥ 1 with arbitrary side sizes, seen
as cartesian products of one dimensional graphs of various sizes.

4 Conclusion and open problems

In this paper, we extend the scheme introduced by Kleinberg [7], that allows
to generate small-worlds from a wide variety of graph topologies. Our scheme

10



(0,0)−∞

+∞

+∞

−∞

Figure 1. The infinite fly swatter

treats in particular all known Cayley graphs. We are also able to “small-
worldize” less regular graphs whose ball growths depend on their center and
their radius and can grow up to rO(log log r) for a radius r, or that are obtained
as product of such graphs (e.g. unbalanced d-dimensional tori).

Theorems 1 and 2 capture wide classes of smallwordizable graphs but leave
open the question of determining whether any graph is smallworldizable. The
condition on the derivative of the exponent du(r) might be too restrictive. In
proof of Theorem 2, we did not show that the rate of the cartesian product
of moderate growth graphs is still moderate, but the resulting graph is how-
ever smallwordizable. If we take a closer look at graphs with polynomial ball
expansion, some of them do not satisfy the derivative condition but are still
smallworldizable using an augmentation with our distribution. To illustrate
this idea, we give an example of an extreme graph containing two distinct
parts of different density (or two types of polynomial expansion) connected
only by a single node: the infinite fly swatter. This graph is defined by a half
infinite chain connected to a half infinite square lattice. This graph has vertex
set (Z−

<0×{0})
⋃

(Z+
≥0×Z) and two nodes are adjacent if the Manhattan dis-

tance is equal to one. We give some hints (but do not provide a real proof) on
why the augmented infinite fly swatter is a navigable small-world. This graph
is augmented according to the distribution 1/(r logq r) on the chain part, and
1/(r2 logq r) on the lattice part, for some q > 1, which corresponds to our
distribution in Theorem 1 on each respective subgraphs. Informally, the chain
does not significantly disturb the greedy routing within the half plane. The
tough part is to find a short path from (0, 0) to (−n, 0). The lattice part
is indeed the attractive part of the graph. Let us consider the current node
u = (−m, 0) and the destination t = (−n, 0) belonging to the chain with
n > m. The size of the balls centered on u are bu(r) = 2r + 1 for r ≤ m and

else bu(r) = 2m + (r −m) + (r −m + 1)2. One can check that du(r) = ln bu(r)
ln r

is close to 1 for r = m and close to 2 for r = 2m. It follows that there exists
m ≤ r ≤ 2m such that d′u(r) = Ω(1/m) and that the infinite fly swatter does
not fall into the smallwordizable graphs dealt with Theorem 1: d′u(t) cannot
remain lower than O( α

r ln r
) for m ∈ [m, 2m].

However, following the same reasoning as in the proof of Theorem 1, we can
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first check that the partition functions Zu are uniformly bounded. Moreover,
for the destination t = (−n, 0), with probability Ω(log−q m), there exists a
long-range link leading to a node (−m′, 0) with m′ ∈ [3m/2, 2m]. It follows
that after visiting a logarithmic number of nodes, using the greedy algorithm,
the message will traverse with constant probability a long-range link and al-
most double its distance from the origin. This situation occurs roughly log n
times before the message will be very close to t. Of course, others cases occur
but they can be reduced to the above discussion.

More generally, other classes of graphs should be smallwordizable: we suspect
that smallwordizable graphs could also include subgraphs of d-dimensionnal
grids or tori. The characterization of smallworldizable graphs is also open
whenever the expansion of balls is locally exponential or almost exponential.
A reasonable and attractive case is the one of the family of vertex-transitive
graphs due to the homegeneity of balls expansion of these graphs.
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