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Abstract

Broadcasting is known to be an efficient means of dis-
seminating data in wireless communication environ-
ments (such as Satellite, mobile phone networks,...). It
has been recently observed that the average service time
of broadcast systems can be considerably improved by
taking into consideration existing correlations between
requests. We study a pull-based data broadcast sys-
tem where users request possibly overlapping sets of
items; a request is served when all its requested items
are downloaded. We aim at minimizing the average user
perceived latency, i.e. the average flow time of the re-
quests. We first show that any algorithm that ignores
the dependencies can yield arbitrary bad performances
with respect to the optimum even if it is given arbi-
trary extra resources. We then design a (4 + ǫ)-speed
O(1 + 1/ǫ2)-competitive algorithm for this setting that
consists in 1) splitting evenly the bandwidth among
each requested set and in 2) broadcasting arbitrarily the
items still missing in each set into the bandwidth the set
has received. Our algorithm presents several interesting
features: it is simple to implement, non-clairvoyant, fair
to users so that no user may starve for a long period of
time, and guarantees good performances in presence of
correlations between user requests (without any change
in the broadcast protocol). We also present a (4 + ǫ)-
speed O(1 + 1/ǫ3)-competitive algorithm which broad-
casts at most one item at any given time and preempts
each item broadcast at most once on average. As a side
result of our analysis, we design a competitive algorithm
for a particular setting of non-clairvoyant job schedul-
ing with dependencies, which might be of independent
interest.1
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ing, Resource augmentation.

1 Introduction

Motivations. Broadcasting is known to be an ef-
ficient means of disseminating data in wireless commu-
nication environments (such as Satellite, mobile phone
networks,...). It has been recently observed in [13, 12, 5]
that the average service time of broadcast systems can
be considerably improved by taking into consideration
existing correlations between requests. Most of the the-
oretical research on data broadcasting was conduct until
very recently under the assumption that user requests
are for a single item at a time and are independent of
each other. However, users usually request several items
at a time which are, to a large extent, correlated. A typ-
ical example is a web server: users request web pages
that are composed of a lot of shared components such
as logos, style sheets, title bar, news headers,..., and
all these components have to be downloaded together
when any individual page is requested. Note that some
of these components, e.g. news header, may constantly
vary over time (size and/or content).

Pull-based data broadcast with dependen-

cies. We study a pull-based data broadcast system
where users request possibly overlapping sets of items.
We aim at minimizing the average user perceived la-
tency, i.e. the average flow time of the requests, where
the flow time of a request is defined as the time elapsed
between its arrival and the end of the download of the
last requested item. We assume that user cannot start
downloading an item in the middle of its broadcast.
When the broadcast of an item starts, all the outstand-
ing requests asking for this item can start downloading
it. Several items may be downloaded simultaneously.
We consider the online setting where the scheduler is
non-clairvoyant and discovers each request at the time
of its arrival; furthermore, the scheduler does not even
know the lengths of the requested items and is aware
of the completion of a broadcast only at the time of its
completion. Items are however labeled with a unique
ID to allow their retrieval. Note that this are the typi-
cal requirements of a real life systems where items may
vary over time.



Background. It is well known that preemption is
required in such systems in order to achieve reasonable
performances. Furthermore, [8] proved that even with-
out dependencies, no algorithm can guarantee a flow
time less than Ω(

√
n) times the optimal. The traditional

approach in online algorithms consists then in penaliz-
ing the optimum by increasing the bandwidth given to
the algorithm so that its performances can be compared
to the optimum. This technique is known as resource

augmentation and provides interesting insights on the
relative performances of different algorithms that could
not be compared directly to the optimum cost. In our
case, we give to our algorithm a bandwidth s > 1 and
show that it achieves a flow time less than a constant
times the optimum cost with a bandwidth 1. Formally,
an algorithm is s-speed c-competitive if when given a
bandwidth s, its flow time is at most at a factor c of the
optimum flow time with bandwidth 1.

To our knowledge the only positive results [8, 9]
in the online setting assume that the requests are
independent and ask for one single item. The authors
show that without dependencies the algorithms Equi

and LWF are competitive. Equi which splits evenly
the bandwidth among the alive requested items, is
(4 + ǫ)-speed (2 + 8/ǫ)-competitive, and LWF, which
broadcasts the item where the aggregate waiting times
of the outstanding requests for that item is maximized,
is 6-speed O(1)-competitive (where the bound proved
on the competitive ratio is O(1) = 6,000,000). In
the offline setting, where the requests and their arrival
times are known at time t = 0, the problem is already
NP-hard but better bounds can be obtained using linear
programming [14, 10, 11, 1, 2]; the latest result, [2]
to our knowledge, is a O(log2(T + n)/ log log(T + n))-
approximation where n is the number of requests and T
the arrival time of the last request. To our knowledge,
our results are the first provably efficient algorithms to
deal with dependencies in the online setting.

Concerning the push-based variant of the problem,
where the requests arrival times follow some Poisson
process and the requested sets are identically distributed
according to a fixed distribution, constant factor ap-
proximations exist in presence of dependencies [4, 3, 6].
The latest result, [6], obtains a 4-approximation if the
requested sets are drawn according to an arbitrary fixed
distribution over a finite number of subsets of items.

Our contribution. We first show that the perfor-
mances of any algorithm that ignores the dependencies
can be arbitrarily far from the optimal cost even if it is
given arbitrary extra resources. We then design a (4+ǫ)-
speed O(1 + 1/ǫ2)-competitive algorithm B-EquiSet

for the non-clairvoyant data broadcast problem with de-
pendencies. B-EquiSet consists in 1) splitting evenly

the bandwidth among each requested set and in 2)
broadcasting arbitrarily the items still missing in each
set into the bandwidth the set has received. The spirit of
the algorithm is that one should favor the users over the

items in the sense that it splits the bandwidth evenly
among the outstanding requested sets and arbitrarily
among the outstanding items within each requested set.
Our algorithm presents several interesting features: it
is simple to implement, non-clairvoyant, fair to users
so that no user may starve for a long period of time,
and improves performances in presence of correlations
between user requests (without any change in the broad-
cast protocol). Precisely, we prove that:

Theorem 1.1. (Main result) For all δ > 0 and

ǫ > 0, B-EquiSet is a (1 + δ)(4 + ǫ)-speed
(2 + 8/ǫ)(1 + 1/δ)-competitive algorithm for the online

data broadcast problem with dependencies.

One could object that B-EquiSet is unrealistic
since it can split the bandwidth arbitrarily. But using
the same technique as in [8], it is easy to modify B-

EquiSet to obtain an other competitive algorithm
B-EquiSet-Edf (described at the end of section 5)
which, with a slight increase of bandwidth, ensures that
at most one item is broadcast at any given time and that
each broadcast is preempted at most once on average.

Theorem 1.2. (Bounded preemption) For all δ >
0 and ǫ > 0, B-EquiSet-Edf is a (1 + δ)2(4 + ǫ)-
speed (2 + 8/ǫ)(1 + 1/δ)2-competitive algorithm for the

online data broadcast problem with dependencies, where

each broadcast is preempted at most once on average.

Our analysis takes its inspiration in the methods
developed in [8]. In order to extend their analysis to
our algorithm, we have also designed a new competitive
algorithm Equi◦A for a particular setting of non-
clairvoyant job scheduling with dependencies which
might be of independent interest (Theorem 4.1).

The next section gives a formal description of the
problem and shows that it is required to take depen-
dencies into account to obtain a competitive algorithm.
Section 3 exposes the algorithm B-EquiSet and intro-
duces useful notations. Section 4 designs a competitive
algorithm Equi◦A for a variant of job scheduling with
dependencies that is used in Section 5 to analyze the
competitiveness of our algorithm B-EquiSet.

2 Definitions and notations

The problem. The input consists of:

• A set I of n items I1, . . . , In of length ℓ1, . . . , ℓn,
respectively



• A set S of q requests for q non-empty sets of
items S1, . . . , Sq ⊆ I, with arrival times a1, . . . , aq,
respectively.

Schedule. A s-speed schedule is an allocation of
a bandwidth of size s to the items of I over the time.
Formally, it is described by a function r : I × [0,∞) →
[0, s] such that for all times t,

∑

I∈I
r(I, t) 6 s; r(I, t)

represents the rate of the broadcast of I at time t,
i.e., the amount of bandwidth allotted to item I at
time t. An item Ii is broadcast between t and t′ if
its broadcast starts at time t and if the total bandwidth
allotted to Ii between t and t′ sums up to ℓi, i.e., if
∫ t′

t
r(Ii, t) dt = ℓi. We denote by c(Ii, k) the date of the

completion of the kth broadcast of item Ii. Formally,

it is the first date such that
∫ c(Ii,k)

0 r(Ii, t)dt = k ℓi

(note that c(Ii, 0) = 0). We denote by b(Ii, k) the date
of the beginning of the kth broadcast of item Ii, i.e.

b(Ii, k) = inf{t > c(Ii, k − 1) : r(Ii, t) > 0}.2
Cost. For all times t, let B(Ii, t) be the time of

the beginning of the first broadcast of item Ii after
t, i.e. B(Ii, t) = min{b(Ii, k) : b(Ii, k) > t}. For all
times t, C(Ii, t) denotes the time of the end of the first
broadcast of item Ii starting after t, i.e. C(Ii, t) =
min{c(Ii, k) : b(Ii, k) > t}. The completion time cj of
request Sj is the first time such that every item in Sj has
been broadcast (or downloaded) after its arrival time aj ,
i.e., cj = maxIi∈Sj

C(Ii, aj). We aim at minimizing the
average completion time defined as 1

q

∑

Sj∈S
(cj − aj),

or equivalently the flow time defined as the sum of the
waiting times, i.e. B-FlowTime =

∑

Sj∈S
(cj − aj). We

denote by BOPTs(S) the flow time of an optimal s-speed
schedule for a given instance S.

s-Speed c-Competitive Algorithms. We con-
sider the online setting of the problem, in which the
scheduler gets informed of the existence of each request
Sj at time aj and not before. The scheduler is not even
aware of the lengths (ℓi)Ii∈Sj

of the requested items in
each set nor of the total number n of available items.
It is well known (e.g., see [8]) that in this setting, it
is impossible to approximate within a factor o(

√
n) the

optimum flow time for a given bandwidth s even if all
items have unit length (independently of any conjecture
such as P = NP ). The traditional approach in online
algorithms consists then in penalizing the optimum by

2Remark that this formalization prevents from broadcasting
the same item twice at a given time or from aborting the current
broadcast of an item. The first point is not restrictive since if two
broadcasts of the same item overlap, one reduces the service time
by using the beginning of the bandwidth allotted to the second
broadcast to complete earlier the first, and then the end of the
first to complete the second on time. The second point is at our
strict disadvantage since it does not penalize an optimal schedule
that would never start a broadcast to abort it later on.

increasing the bandwidth given to the algorithm so that
its performances can be compared to the optimum. This
technique is known as resource augmentation and pro-
vides interesting insights on the relative performances
of different algorithms that could not be compared di-
rectly to the optimum cost. In our case, we give to our
algorithm a bandwidth s > 1 and show that it achieves
a flow time less than a constant times the optimum cost
with a bandwidth 1. Formally, an algorithm is s-speed
c-competitive if when given s times as many resources
as the adversary, its cost is no more than c times the op-
timum cost. In our case the resource is the bandwidth,
and we compare the cost As of a scheduler A with a
bandwidth s, to the cost BOPT1 of an optimal schedule
on a unit bandwidth. (We denote by As the cost of an
algorithm A when given a bandwidth s.)

We show below that any algorithm ignoring existing
dependencies (i.e., an algorithm that chooses to ignore
the actual set of items asked by each request) can lead
to arbitrarily bad solutions. An natural example of
such algorithm consists in creating a request per item
requested in each set and running previously known
algorithms (such as [8, 9]). The following fact shows
that this natural algorithm which designs a schedule
only based on the number of requests waiting for each
item, cannot be competitive.

Fact 2.1. (Dependencies cannot be ignored)
No algorithm A that ignores dependencies is s-speed
c-competitive for any c < 2

3s

√
n if A is deterministic,

and for any c < 1
6s

√
n if A is randomized.

Proof. Consider first a deterministic algorithm A which
is given a bandwidth s and consider the instance where
n different items are requested at time t = 0. Since
A ignores the dependencies, we set them after the
execution of the algorithm A: one request asks for the
n − √

n items that have been served the most by A at
time t = (n − √

n)/s, and
√

n requests ask for each
of the remaining

√
n items. Then, algorithm A serves

each request only after time t = (n−√
n)/s and its flow

time is at least (
√

n + 1)(n − √
n)/s ∼ n

√
n/s. The

optimal solution with bandwidth only 1 first broadcasts
the items corresponding to the

√
n unit length requests

and then broadcasts the n − √
n remaining items; the

optimal flow time is then (n +
∑

√
n

k=1 k) ∼ 3
2n. This

shows a gap of 2
3s

√
n between the optimal cost with

bandwidth 1 and every deterministic algorithm with
bandwidth s = O(

√
n), which ignores the dependencies.

We use Yao’s principle (see [16, 15]) to extend
the result to randomized algorithms. We consider the
following probabilistic distribution of requests set over n
items: 1+

√
n requests arrive at time t = 0; one request

asks for an uniform random subset S0 of size n−√
n of



the n items; and each of the requests S1, . . . , S√
n asks

for one random distinct item among the
√

n remaining
items. Consider again any deterministic algorithm
A with bandwidth s. Since A is deterministic and
ignores the dependencies, the schedule designed by A
schedule is independent of the random instance. At
time t = n/(2s), the broadcast of at least n/2 items
is not completed. Thus, the probability that request
Sj , for j > 1, asks for one of these items is at least
1/2. Then, the expected number of unsatisfied request
at time t = n/(2s) is at least

√
n/2. We conclude that

the expected flow time for any deterministic algorithm
with bandwidth s under this distribution of request is at
least n

√
n/(4s). According to Yao’s principle, the worst

expected flow time of any randomized algorithm over
the collection of all the considered instances is at least
n
√

n/(4s). But BOPT1 ∼ 3
2n, which concludes that no

randomized algorithm is s-speed c-competitive, for all s
and c <

√
n/(6s). �

3 The Algorithm B-EquiSet

Definitions. A request Sj for a subset of items is
said to be alive at time t if t > aj and if the download
of at least one item Ii ∈ Sj is not yet completed at
time t, i.e., t < C(Ii, aj). We say that an item Ii ∈ Sj

whose download is not yet completed (i.e., such that
aj 6 t < C(Ii, aj)) is alive for Sj at time t.

The B-EquiSet Algorithm. Consider that we
are given a bandwidth s. Let R(t) be the set of
alive requests at time t during the execution of the
algorithm. For all t, B-EquiSet allocates to each
alive request the same amount of bandwidth, s/|R(t)|;
then, for each alive request Sj , it splits arbitrarily the
s/|R(t)| bandwidth allotted to Sj among its alive items.
Precisely, it allocates to each item Ii alive for Sj at
time t, an arbitrary amount of bandwidth, rj,i(t) > 0,
such that

∑

Ii alive for Sj

rj,i(t) = s/|R(t)|.

B-EquiSet then broadcasts at time t each item Ii at
a rate

ri(t) =
∑

Sj∈R(t) : Ii is alive for Sj at time t

rj,i(t).

Figure 1 illustrates two executions of the algorithm:
in the first (to the left) B-EquiSet chooses for each
alive request Sj, to divide up the bandwidth allotted
to Sj equally among every Sj ’s alive items; in the
second (to the right), B-EquiSet chooses for each
alive request Sj , to broadcast in the bandwidth allotted
to Sj the lowest indexed alive item in Sj .

Note that bandwidth adjustments for each item are
necessary only when new requests arrive or when the
broadcast of some item completes.

As in [8], we deduce the performances of our broad-
cast algorithm B-EquiSet from the analysis of the
performances of an other algorithm, Equi◦A, for a
variant of the non-clairvoyant scheduling problem stud-
ied in [7] which includes dependencies. Section 4
presents this later problem and analyzes the compet-
itiveness of algorithm Equi◦A. Then, Section 5 de-
duces the competitiveness of B-EquiSet by simulat-
ing Equi◦A on a particular instance of non-clairvoyant
scheduling built on the execution of B-EquiSet.

4 Non-Clairvoyant Seq-Par Batch Scheduling

For the sake of completeness we first sum up the results
in [7], reader may skip this paragraph in a first reading.
Edmonds’s non-clairvoyant scheduling problem consists
in designing an online algorithm that schedules jobs
on p processors without any knowledge of the progress
of each job before its completion. An instance of
non-clairvoyant job scheduling problem consists in a
collection of jobs (Jk) with arrival times (ak); each
job Jk goes through a series of phases J1

k , . . . , Jmk

k ;
the amount of work in each phase J l

k is wl
k; at time

t, the algorithm allocates to each uncompleted job Jk

an amount ρt
k of processors (the (ρt

k)s are arbitrary
non-negative real numbers, such that at any time:
∑

k ρt
k 6 p); each phase J l

k progresses at a rate given
by a speed-up function Γl

k(ρk) of the amount ρk of
processors allotted to Jk during phase J l

k, that is to
say that the amount of work accomplished between t
and t + dt during phase J l

k is Γl
k(ρt

k)dt; let tlk denote
the completion time of the l-th phase of Jk, i.e. tlk is

the first time t′ such that
∫ t′

t
l−1

k

Γl
k(ρt

k) dt = wl
k (with

t0k = ak). The overall goal is to minimize the flow time

of the jobs, that is to say the sum of the processing
time of each job, i.e. J-FlowTime =

∑

k(tmk

k − ak).
We denote by JOPTs(J) the flow time of an optimal s-
speed schedule for J. The algorithm is non-clairvoyant

in the sense that it does not know anything about the
progress of each job and is only informed that a job is
completed at the time of its completion. In particular,
it is not aware of the different phases that the job goes
through (neither of the amount of work nor of the speed-
up function). One of the striking results of [7] is that
in spite of this total lack of knowledge, the algorithm
Equi that allocates an equal amount of processors
to each uncompleted job is (2 + ǫ)-speed (2 + 4/ǫ)-
competitive when the speed up functions are arbitrary
non-decreasing sub-linear functions (i.e., such that for
all ρ < ρ′, Γl

k(ρ)
/

ρ > Γl
k(ρ′)

/

ρ′, for all k, l).
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The instance consists of three items A, B, C of length 1.5 and four requests S1 = {A, B, C} (in red),
S2 = {A} (in green), S3 = {B} (in blue), and S4 = {C} (in yellow) with arrival times a1 = 0, a2 = 1,
a3 = 2, and a4 = 3.
Three schedules are presented: an optimal schedule with unit bandwidth (at the center) and two
executions of B-EquiSet with bandwidth s = 1.5. To the left, B-EquiSet evenly splits the bandwidth
of each alive requested set among its alive items. To the right, B-EquiSet gives all the bandwidth alloted
to each set to its lowest indexed alive item.
Time flies downwards. Four lines to the right of each schedule represent each request’s lifetime; the
bandwidth allotted to each request is outlined in its respective color. The fill color of each item gets darker
as its broadcast progresses.
Consider, for instance, the schedule to the left. B-EquiSet first allots all the bandwidth to S1 and
splits it evenly among its items A, B and C (items A, B, and C get darker and darker as their broadcasts
progress). At time 1, S2 arrives and B-EquiSet splits the bandwidth evenly between S1 and S2, thus item
A is broadcast at a rate: 1.5× (1

2 + 1
2 × 1

3 ) = 1 and its broadcast completes at time 2. At time 2, S3 arrives,
and B-EquiSet splits the bandwidth evenly between S1, S2 and S3; S1 has completed its download of A,
thus B-EquiSet splits the bandwidth allotted to S1 among B and C only; S2 was too late to download
A, so it starts a new broadcast of A. S1, S2, S3, and S4 are finally served at time 3 + 2

3 , 5 + 1
6 , 5 + 5

6 and
6, for a total flow time B-EquiSet1.5(S) = 14 + 2

3 whereas BOPT1 = 11. Note that the lowest-index-first
execution of B-EquiSet (to the right) does better for this instance: B-EquiSet

′
1.5(S) = 12 + 7

8 .

Figure 1: Two 1.5-speed executions of B-EquiSet algorithm.



Two particular kinds of phases are of interest for our
purposes: sequential and parallel. During a sequential

phase, Γ(ρ) = 1, that is to say that the job progresses
at a unit rate whatever amount of processing power it
receives (even if it receives no processor at all, i.e. even
if ρ = 0)! During a parallel phase, the job progresses
proportionally to the processing power it receives, i.e.

Γ(ρ) = ρ. Remark that these two kinds of speed-up
functions match the requirement of Edmond’s theorem
and thus Equi is (2+ ǫ)-speed (2+4/ǫ)-competitive on
instances consisting of a collection of jobs composed of
sequential and parallel phases.

As in [8], we reduce the analysis of our broad-
cast algorithm B-EquiSet to the analysis of a non-
clairvoyant scheduling algorithm. For that purpose, we
need to introduce dependencies between the jobs in Ed-
monds’s framework. We consider the following variant
of the non-clairvoyant scheduling problem.

Non-Clairvoyant Seq-Par Batches Schedul-

ing. An instance of this variant consists in a collection
B = {B1, . . . , Bq} of batches Bj = {Jj,1, . . . , Jj,uj

} of
jobs with arrival times a1, . . . , aq, where each job Jj,i

is composed of two phases: a sequential phase of work
ws

j,i > 0 followed by a parallel phase of work wp
j,i > 0.

(Note that this problem is different from the classical
batch scheduling problem in which only one batch has
to be treated.) The scheduler is non-clairvoyant and
discovers each batch of jobs at the time of its arrival
and is in particular not aware of the amounts of work

of each job in each batch. The scheduler allocates to
each job Jj,i, arrived and uncompleted at time t, a cer-
tain amount ρt

j,i of the processors (ρt
j,i is an arbitrary

non-negative real number). Let tj,i denote the com-
pletion time of job Jj,i ; tj,i is the first date verifying
∫ tj,i

aj+ws
j,i

ρt
j,i dt = wp

j,i. We say that a batch is com-

pleted as soon as all its jobs are completed; let tj denote
the completion time of batch Bj , tj = maxi=1,...,uj

tj,i.
The goal is to minimize the flow time of the batches,
i.e. B-FlowTime =

∑

Bj∈B
(tj − aj). We denote by

BOPTs(B) the flow time of an optimal s-speed sched-
ule for B.

Similarly to the broadcast setting, we say that
a request Bj (resp., a job Jj,i) is alive at time t if
aj 6 t 6 tj (resp., aj 6 t 6 tj,i).

Equi◦A Algorithms Family. Given a job

scheduling algorithm A, we define the batches schedul-
ing algorithm Equi◦A as follows. Let R(t) denote the
set of batches that are alive at time t. Equi◦A allots
to each batch alive at time t an equal amount of pro-
cessors, i.e., p/|R(t)|; then, it runs algorithm A on each
alive batch Bj to decide how to split the amount of pro-
cessors alloted to Bj among its own alive jobs Jj,i. In
the following, we only require algorithm A to be fully

active, i.e., that it allots at all times all the amount of

processors it is given to the alive jobs (i.e., never idles on
purpose). Under this requirement, our results hold in-
dependently of the choice of A. Examples of fully active
algorithms A are: A = Equi which equally splits the
amount of processors; or A = MinIdx which allots all
the amount of processors to the smallest indexed alive
job Jj,i in Bj , i.e. i = min{i′ : Jj,i′ is alive at time t}.

Analysis of Equi◦A. To analyze the compet-
itiveness of Equi◦A, we associate to each batches
scheduling instance B, two instances, J′ and J′′, of job
scheduling. We first bound the performances of our al-
gorithm Equi◦A on B from above by the performances
of Equi on J′ (Lemma 4.1). We then use the “harder”
job instance J′′ to show that the job instance J′ was in
fact “easier” than the batch instance B if one increases
slightly the number of processors (Lemmas 4.2 and 4.3).
Since Equi is competitive on J′, we can then conclude
on the competitiveness of Equi◦A on B (Theorem 4.1).

Consider a Seq-Par batches scheduling instance B =
{B1, . . . , Bq} where each batch Bj = {Jj,1, . . . , Jj,uj

}
arrives at time aj and each Jj,i in Bj consists of a
sequential phase of work ws

j,i followed by a parallel phase
of work wp

j,i. Consider the s-speed schedule obtained

by running algorithm Equi◦A on instance B; let ρt
j,i

denote the amount of processors allotted by Equi◦A
to job Jj,i at time t, and ρt

j =
∑

Jj,i∈Bj
ρt

j,i denote the
amount of processors allotted to batch Bj at time t;
let tj,i (resp., tj) be the completion time of job Jj,i

(resp., batch Bj). We define a Seq-Par job scheduling
instance J′ = {J ′

1, . . . , J
′
q}, where each job J ′

j arrives at
time aj , and is composed of a sequential phase of work
w′

j
s

= maxJj,i∈Bj
ws

j,i, followed by a parallel phase of

work w′
j
p

=
∫ tj

aj+w′

j
s ρt

j dt; intuitively, w′
j
s

is the length

of the longest sequential phase among the jobs in Bj

and w′
j
p

is the total amount of parallel work in Bj to be
scheduled by Equi◦A after the completion of the last
sequential phase among the jobs in Bj .

The key to the next lemma is that one gets exactly
the same job schedule of the jobs in J′ by running
algorithm Equi on instance J′ as by allotting at all
times to each job J ′

j the same amount of processors as
the jobs in Bj received from Equi◦A.

Lemma 4.1. (Reduction to job scheduling) If A
is fully active, then

Equis◦A(B) = Equis(J
′).

Proof. As long as the longest sequential phase among
the jobs in batch Bj is not completed, the batch Bj is
alive. By construction, job J ′

j is also alive as long as this
sequential phase is not completed. Since the amount
of processors given to batch Bj in Equi◦A is given



by Equi, and since Equi is non-clairvoyant, Equi◦A
allots the same amount of processors to Bj as Equi

allots to J ′
j until the completion of the longest sequential

phase among the jobs in batch Bj . By construction, the
longest sequential phase in batch Bj and the sequential
phase of J ′

j end at the same time and at this moment,
all the jobs alive in Bj are in their parallel phase.
Thus by construction, the overall amount of remaining
parallel work in Bj at that time is equal to the parallel
work assigned to J ′

j . By construction, the amount of
processors given to J ′

j equals the amount of processors
alloted to batch Bj which is in turn equal to the total
amount alloted to each of its remaining alive jobs since
A is fully active. The overall remaining amount of
parallel work is thus identical in J ′

j and Bj until they
complete at the same time. Their flow times are thus
identical in both schedules. We conclude the proof by
reasoning inductively on the completion times (sorted
in non-decreasing order) of each phase of each job in
each batch. �

We now define the job instance J′′ = {J ′′
1 , . . . , J ′′

q }.
J′′ is a kind of worst case instance of the batch instance
B, where all the parallel work in each batch Bj has to be
scheduled after the longest sequential phase in Bj . Job
J ′′

j arrives at time aj and consists of a sequential phase

of work w′′
j

s
= maxJj,i∈Bj

ws
j,i, followed by a parallel

phase of work w′′
j

p =
∑

Jj,i∈Bj
wp

j,i.

Lemma 4.2. (J′ is easier than J′′)

JOPTs(J
′) 6 JOPTs(J

′′).

Proof. Since for all j, the sequential works of jobs J ′
j and

J ′′
j are identical and the parallel work in J ′

j is bounded
from above by the parallel work in J ′′

j , any schedule of
J′′ is valid for J′. �

Lemma 4.3. (J′′ with δ extra processors is “al-
most as easy” as B) For all δ > 0,

JOPT1+δ(J
′′) 6 (1 + 1/δ)BOPT1(B).

Proof. The proof consists in showing that when δ extra
processors are given, delaying the completion of each
batch Bj by a constant factor, (1 + 1/δ), allows to
postpone the schedule of all the parallel job phases in
Bj after the completion of the last sequential phase in
Bj , which concludes the proof by construction of J′′.

Sort the batches of B by non-increasing arrival
time, i.e., assume a1 > a2 > . . . > aq. Consider an
optimal schedule BOPT1 of batches B1, . . . , Bq on one
processor. We show by induction that there exists a
schedule S of J′′ on 1 + δ processors such that each

job J ′′
j completes before time tj + fj/δ, where tj and

fj = tj − aj denote the completion time and the flow
time of Bj in BOPT, respectively. We now show that
the parallel phase of each job J ′′

j can be scheduled
between time tj and tj + fj/δ; this concludes the proof
since, by construction, the sequential phase of J ′′

j is
necessarily completed before tj . Start with the first job
J ′′

1 . Clearly, w′′
1

p
6 f1. Thus, the total parallel phase of

J ′′
1 can be scheduled on the δ extra processors between

time t1 and t1 + f1/δ. Assume now that the parallel
phases of jobs J ′′

1 , . . . , J ′′
j−1 have been scheduled in S

during the time intervals [t1, t1 + f1/δ], . . . , [tj−1, tj−1 +
fj−1/δ] respectively, and consider job J ′′

j . Since the
jobs are considered in non-increasing arrival times, each
job J ′′

k whose parallel phase has been scheduled in S

between tj and tj + fj/δ arrived in the time interval
T = [aj , tj + fj/δ] and furthermore tk 6 tj + fj/δ. The
total parallel work W of all the jobs currently scheduled
in S during T , is then in fact scheduled completely in
BOPT1 during T . Note that the parallel work of J ′′

j

was also scheduled in BOPT1 during this time interval.
Since BOPT1 uses only one processor, we conclude that
W + w′′

j
p

6 tj + fj/δ − aj = (1 + 1/δ)fj. As one can
schedule up to (1 + δ)fj/δ = (1 + 1/δ)fj parallel work
between time tj and tj + fj/δ on 1 + δ processors, the
parallel work w′′

j
p

of J ′′
j can be scheduled in S on time.

�

We can now conclude the analysis of Equi◦A.

Theorem 4.1. (Competitiveness of Equi◦A)
For all ǫ > 0 and δ > 0, Equi◦A is a (2 + ǫ)(1 + δ)-
speed (2 + 4/ǫ)(1 + 1/δ)-competitive algorithm for the

Non Clairvoyant Seq-Par Batches Scheduling problem.

Proof. We use the result of [7] on the competitiveness
of Equi for the non-clairvoyant job scheduling problem
to conclude the proof:
Equi(2+ǫ)(1+δ)◦A(B)

= Equi(2+ǫ)(1+δ)(J
′) (Lemma 4.1)

6 (2 + 4/ǫ) JOPT(1+δ)(J
′) (Theorem 1 in [7])

6 (2 + 4/ǫ) JOPT(1+δ)(J
′′) (Lemma 4.2)

6 (2 + 4/ǫ)(1 + 1/δ)BOPT1(B). (Lemma 4.3)

�

5 Competitiveness of B-EquiSet

Consider an instance of the online data broadcast
problem with dependencies: a set S = {S1, . . . , Sq} of
q requests with arrival times a1, . . . , aq, over n items
I1, . . . , In of lengths ℓ1, . . . , ℓn. Let Es be the s-speed
schedule designed by B-EquiSet on instance S, and



B-EquiSets(S) be its flow time. Let O1 be a 1-speed
optimal schedule of S, and BOPT1(S) be its flow time.

Following the steps of [8], we define an instance B of
non-clairvoyant seq-par batches scheduling from Es and
O1, such that the performances of B-EquiSet on S

can be compared to the performances of Equi◦A on B

for a particular fully-active algorithm A. More precisely,
we construct B such that 1) the flow time of Equi◦A
on B bounds from above the flow time of B-EquiSet

on S and 2) the (batches) optimal flow time for B is
at most the (broadcast) optimal flow time for S if it is
given extra resources. Since Equi◦A is competitive,
we can then bound the performances of B-EquiSet

with respect to the (batches) optimal flow time of B

which is by 2) bounded by the (broadcast) optimal flow
time of S.

The intuition behind the construction of B is the
following. A batch of all-new jobs is created for each
newly arrived request, with one job per requested item.
Each job J stays alive until its corresponding item I
is served in Es. J is assigned at most two phases
depending on the relative service times of I in Es and O1.
The sequential phase of J lasts until either I is served
in Es, or the broadcast of I starts in O1. Intuitively,
this means that it is useless to assign processors to J
before the optimal schedule does. At the end of its
sequential phase, if J is still alive, its parallel phase
starts and lasts until the broadcast of I is completed
in Es; the parallel work for J is thus defined as the
total amount of bandwidth that its corresponding item
I received within J ’s corresponding (broadcast) request
in B-EquiSet. By construction, with a suitable choice
of A, Equi◦A constructs the exact same schedule as
B-EquiSet and claim 1) is verified. Concerning claim
2), the key is to consider the jobs corresponding to the
broadcast requests for a given item I that are served by
a given broadcast of I in O1 starting at some time t. The
only jobs among them that will receive a parallel phase,
are the one for which the broadcast of I in Es starts just
before or just after t. By construction, the total amount
of parallel work assigned to these jobs corresponds to
the bandwidth assigned to the two broadcasts of item
I by Es that start just before and just after time t,
each of them being bounded by the length of I. The
total amount of parallel work in the jobs for which the
broadcast of the corresponding item I starts in O1 at
some time t, is then bounded by twice the length of I,
and can thus be scheduled during the broadcast of I
in O1 if one doubles the number of processors, which
proves claim 2). The following formalizes the reasoning
exposed above.

The Job Set Instance B. Recall the broadcast
instance S, and the two broadcast schedules Es and

O1, defined at the beginning of this section, as well
as the notations given in Section 2. In particular, let
CE

s (Ii, t) denote the completion time of the broadcast
of item Ii that starts just after t in Es, and BO

1 (Ii, t)
be the time of the beginning of the first broadcast of
item Ii that starts after t in O1 (see Section 2). Recall
the description of algorithm B-EquiSet in Section 3:
at time t, let R(t) be the set of alive requests; B-

EquiSet splits equally the bandwidth s among the
alive requests and for each alive request Sj , it assigns
an arbitrary rate rj,i(t) to each alive item Ii in Sj,
such that

∑

Ii alive in Sj
rj,i(t) = s/|R(t)|; B-EquiSet

broadcasts then each item Ii at a rate ri(t) =
∑

j rj,i(t)
at time t.

Given S, Es and O1, we define the non-clairvoyant
batches scheduling instance B = {B1, . . . , Bq}, where
each batch Bj is released at the same time as Sj , i.e.

at time aj , and contains one seq-par job Jj,i for each
item Ii ∈ Sj (note that the indices i of the jobs Jj,i

in each batch Bj may not be consecutive depending on
the content of Sj). Each job Jj,i consists of a sequential
phase of work ws

j,i = (min{CE
s (Ii, aj), B

O
1 (Ii, aj)} − aj),

followed by a parallel phase of work wp
j,i. If

CE
s (Ii, aj) 6 BO

1 (Ii, aj), then wp
j,i = 0; otherwise,

wp
j,i =

∫ CE

s (Ii,aj)

BO

1
(Ii,aj)

rEs

j,i (t) dt + η where η is an infinitely

small amount of work, i.e. if the download of item Ii

in request Sj is completed in Es after it starts in O1,
then the amount of parallel work assigned to Jj,i is just
slightly higher than the total amount of bandwidth al-
lotted to item Ii within the bandwidth allotted to re-
quest Sj by B-EquiSets after the beginning of the
corresponding broadcast in O1. Adding an infinitely
small amount of work η to the parallel phase of Jj,i

does not change the optimal batches schedule (except
on a negligible (discrete) sets of dates) but since the al-
gorithm Equi◦A is non-clairvoyant, this ensures that
the job Jj,i remains alive until the broadcast of item
Ii completes even if B-EquiSets deliberately chooses
not to broadcast item Ii in the bandwidth allotted to re-
quest Sj (the introduction of infinitely small extra load
can be rigorously formalized by adding an exponentially
decreasing extra load γ/2k to the kth requested job for
a small enough γ).

Lemma 5.1. There exists a fully-active algorithm A
such that: B-EquiSets(S) 6 Equis◦A(B).

Proof. The proof follows the lines of [8]. Given an
amount of processors ρ for an alive batch Bj, algorithm
A assigns to each alive job Jj,i in Bj at time t the
same amount of processors as B-EquiSets would have
assigned at time t to the corresponding alive item Ii of
the corresponding alive request Sj which would have



been assigned a bandwidth ρ. Since B-EquiSets

allots all the bandwidth available to alive jobs, A is fully-
active. Now, since η is infinitely small, this extra load
does not affect the allocation of processors computed
by Equis◦A except over a negligible (discrete) set of
dates. By immediate induction, each job Jj,i remains
alive in the schedule computed by Equis◦A, as long as
item Ii is alive in batch Bj in Es. This is clear as long
as Jj,i is in its sequential phase. Once Jj,i enters its
parallel phase, as long as the broadcast of item Ii is not
completed, either Ii is broadcast by B-EquiSets in
batch Bj and Jj,i is scheduled by Equis◦A (A copies
B-EquiSets), or B-EquiSets deliberately chooses
not to broadcast the alive item Ii and since Jj,i has an
infinitely small amount of extra work, Jj,i remains alive
in Equis◦A as well. The flow time for each job Jj,i

is then at least the flow time of the corresponding item
Ii in Es; we conclude that each batch Bj completes in
Equis◦A no earlier than its corresponding request Sj

in B-EquiSets. �

Lemma 5.2. There exists a 2-speed batches schedule Υ2

such that: Υ2(B) 6 B-FlowTime(O1).

Proof. Again, the proof follows the lines of [8]. Consider
an item Ii. We partition the requests Sj containing item
Ii into classes C1, C2, . . ., one for each broadcast of Ii in
O1. The k-th class Ck contains all the requests Sj that
download Ii in O1 during its kth broadcast, i.e. all
requests Sj such that bO

1 (Ii, k − 1) < aj 6 bO
1 (Ii, k) (see

Section 2 for notations). We show that for all k, the
total parallel phases of the jobs Jj,i such that Sj ∈ Ck,
can be shoehorned into twice the area of bandwidth
allotted by O1 to the kth broadcast of item Ii. Since this
holds for all i and all k, we obtain a 2-speed schedule
Υ2 such that Υ2(B) 6 B-FlowTime(O1).

Let t1 = bO
1 (Ii, k) be the time of the beginning of

the kth broadcast of Ii in O1. Consider a request Sj

in class Ck, clearly aj 6 t1. By construction, job Ji,j is
assigned a non-zero parallel work only if Sj completes
the download of Ii after t1 in B-EquiSets. Since
Sj arrives before t1, it downloads Ii during one of the
two broadcasts of Ii in B-EquiSets that start just
before or just after t1; let C−

k (resp. C+
k ) be the set

of requests served by the broadcast that starts just
before t1 (resp. just after t1). Let t2 and t3 be the
completion times of the broadcast of Ii in B-EquiSets

that start just before and just after t1 respectively. By
construction, the total amounts W− and W+ of parallel
work assigned to the jobs Jj,i such that Sj ∈ C−

k and

C+
k are respectively:

W− =
∑

j : Sj∈C−

k

∫ t2

t1

rj,i(t) dt

and W+ =
∑

j : Sj∈C+

k

∫ t3

t1

rj,i(t) dt.

Let us rewrite W− + W+ = R1 + R2 with

R1 =

∫ t2

t1

∑

j : Sj∈Ck

rj,i(t) dt 6

∫ t2

t1

ri(t) dt

and R2 =

∫ t3

t2

∑

j : Sj∈C+

k

rj,i(t) dt 6

∫ t3

t2

ri(t) dt.

R1 and R2 are thus at most the total area alloted to
item Ii by B-EquiSets during the broadcasts of Ii

that start just before and just after t1; since a broadcast
is completed as soon as the rates sum up to the length of
the items, R1 6 ℓi and R2 6 ℓi, and thus W− + W+ 6

2ℓi. Since O1 allots a total bandwidth of ℓi to broadcast
item Ii after time t1, and since the parallel works of the
jobs Jj,i such that Sj ∈ Ck are released at time t1 and
sum up to a total W−+W+ 6 2ℓi, one can construct on
2 processors, a 2-speed schedule Υ2 in which the parallel
phases of each of these jobs Jj,i completes before the kth
broadcast of Ii completes in O1.

Since no processor needs to be allotted to the
sequential phases, repeating the construction for each
item Ii yields a valid 2-speed schedule Υ2 in which each
job Ji,j completes before the corresponding request Sj

completes the download of Ii in O1. It follows that each
batch Bj is completed in Υ2 before its corresponding
request Sj is served by O1. �

We now conclude with the proof of the main theo-
rem.

Proof of Theorem 1.1. Setting s = (4+ǫ)(1+δ),
the competitiveness of Equi◦A (Theorem 4.1) con-
cludes the result:
B-EquiSet(4+ǫ)(1+δ)(S)

6 Equi(4+ǫ)(1+δ)◦A(B) (Lemma 5.1)

6 (2 + 8/ǫ)(1 + 1/δ)BOPT2(B) (Theorem 4.1)

6 (2 + 8/ǫ)(1 + 1/δ)Υ2(B)

6 (2 + 8/ǫ)(1 + 1/δ) BOPT1(S) (Lemma 5.2)

�

The B-EquiSet-Edf algorithm. We apply the
same method as in [8]. Let s = (4 + ǫ)(1 + δ)2 and
c = (2 + 8/ǫ)(1 + 1δ)2. B-EquiSet-Edf simulates
the s/(1 + δ)-speed execution of B-EquiSet and at
each time t such that the broadcast of an item Ii in



B-EquiSet is completed, it releases an item I ′i of
length ℓi with a deadline t + (t − t′)/δ where t′ is the
time of the beginning of the considered broadcast of Ii

in B-EquiSet. Then, B-EquiSet-Edf schedules
on a bandwidth s each item I ′i according the earliest-
deadline-first policy. With an argument similar to
Lemma 4.3 or [8], one can show that a feasible schedule
of the items I ′i exists and thus that earliest-deadline-
first constructs it which ensures that B-EquiSet-Edf

is s-speed c-competitive. Since earliest-deadline-first
preempts the broadcast of an item only when a new item
arrives, B-EquiSet-Edf preempts each broadcast at
most once on average. Note that one can avoid long idle
period in B-EquiSet-Edf’s schedule by broadcasting
an arbitrary item Ii alive in B-EquiSet at time t if
no item I ′i is currently alive.

6 Concluding remarks

Several directions are possible to extend this work.
First, B-EquiSet does not have precise policy to de-
cide in which order one should broadcast the items
within each requested set; deciding on a particular pol-
icy may lead to better performances (bandwidth and/or
competitive ratio). Second, it might be interesting to
design a longest-wait-first greedy algorithm in presence
of dependencies; B-EquiSet shows that the items
should not simply receive bandwidth according to the
number of outstanding requested sets for this item (the
allotted bandwidth depends also on the number of out-
standing items within each outstanding set), it is thus a
challenging question to design proper weights to aggre-
gate the current waits of the requested sets including a
given item.
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