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Abstract

Cellular automata are often used to model systems in physics, social sciences, biology that are
inherently asynchronous. Over the past 20 years, studies have demonstrated that the behavior
of cellular automata drastically changes under asynchronous updates. Still, the few mathemat-
ical analyses of asynchronism focus on one-dimensional probabilistic cellular automata, either
on single examples or on specific classes. As for other classic dynamical systems in physics,
extending known methods from one- to two-dimensional systems is a long lasting challenging
problem.

In this paper, we address the problem of analyzing an apparently simple 2D asynchronous
cellular automaton: 2D Minority where each cell, when fired, updates to the minority state of
its neighborhood. Our simulations reveal that in spite of its simplicity, the minority rule exhibits
a quite complex response to asynchronism. By focusing on the fully asynchronous regime, we
are however able to describe completely the asymptotic behavior of this dynamics as long as the
initial configuration satisfies some natural constraints. Besides these technical results, we have
strong reasons to believe that our techniques relying on defining an energy function from the
transition table of the automaton may be extended to the wider class of threshold automata.

An abstract version of this paper has been published in [18].

1 Introduction

In the literature, cellular automata have been both studied as a model of computation presenting
massive parallelism, and used to model phenomena in physics, social sciences, biology... Cellular
automata have been mainly studied under synchronous dynamics (at each time step, all the cells
update simultaneously). But real systems rarely fulfill this assumption and the cell updates rather
occur in an asynchronous mode often described by stochastic processes. Over the past 20 years,
many empirical studies [1, 3, 4, 15, 20] have been carried out showing that the behavior of a cellular

3was at the Centro de Modelamiento Matemático, Universidad de Chile (Santiago de Chile), when this work was
conducted.

1

Manuscript



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

automaton often vary widely when introducing asynchronism, thus strengthening the need for theo-
retical framework to understand the influence of asynchronism. Still, the few mathematical analyses
of the effects of asynchronism focus on one-dimensional probabilistic cellular automata, either on sin-
gle examples [7, 8, 17] or on specific classes [5, 6]. As for other classic dynamical systems in physics,
such as spin systems or lattice gas, extending known methods from one- to two-dimensional systems
is a long lasting challenging problem. For example, understanding how a configuration all-up of
spins within a down-oriented external field evolves to the stable configuration all-down has only
recently been solved mathematically and only for the limit when the temperature goes to 0, i.e.,
when only one transition can occur at a time (see [2]). Similarly, the resolution of the study of one
particular 2D automaton under a given asynchronism regime is already a challenge.

Our contribution. In this paper, we address the problem of understanding the asynchronous
behavior of an apparently simple 2D stochastic cellular automaton: 2D Minority where each
cell, when fired, updates to the minority state of its neighborhood. We show experimentally in
Section 2 that in spite of its simplicity the minority rule exhibits a quite complex response to
asynchronism. We are however able to show in Section 3 that this dynamics almost surely converges
to a stable configuration (listed in Theorem 8) and that if the initial configuration satisfies some
natural constraints, this convergence occurs in polynomial time (and is thus observable) when only
one random cell is updated at a time. Our main results (Theorems 10, 15 and 23) rely on extending
the techniques based on one-dimensional random walks developed in [5, 6] to the study of the two-
dimensional random walks followed by the boundaries of the main components of the configurations
under asynchronous updates. We have strong reasons to believe that our techniques relying on
defining an energy function from the transition table of the automaton may be extended to the
wider class of threshold automata.

Note that the present study is different from classical analysis of some interacting particle sys-
tems [13] like voter processes [14], in the sense that some of the transitions are irreversible in our
model, which implies important macroscopic differences (checkerboard stains tend to disappear
rapidly to reach an uniform checkerboard configuration). We investigate these macroscopic differ-
ences by focusing on out-of-equilibrium systems and evaluating the time needed to return to a stable
configuration from the worst configurations.

2 Simulation results

This section presents experimental observations whose formalizations are already challenging open
questions. The next section will present in a proper theoretical framework our progresses in the
understanding of these phenomena. The configurations studied here consist in a set of cells organized
as a n × m torus (n and m are even) in which each cell can take two possible states: 0 (white)
or 1 (black). The asynchronous behavior of 2D minority automaton turns out to be surprisingly
complex for both of the studied neighborhoods:

• von Neumann (N-neighborhood for short), where each selected cell updates to the minority
state within itself and its four closest neighbors N, S, E, and W; and

• Moore (M-neighborhood for short), where each selected cell updates to the minority state
among itself and its 8 closest neighbors N, S, E, W, NE, NW, SE, and SW.
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α = 1 α = 0.95 α = 0.75 α = 0.5 α = 0.25 α = 0 Pr{cTs is stable}

v. Neumann neigh.
at Step 20N

Go to [12]
for animated

sequences 1 αc≈.83 0

Moore neigh.
at Step 50N

Go to [12]
for animated

sequences 1 αc≈.57 0

Empirical
observations

Large flashing
homogeneous
regions

Random noise erodes
large flashing regions

A stable pattern emerges (checkerboards and
stripes for N- and M-neighborhoods respectively)
and rapidly covers the whole configuration when
both dimensions are even.

Fig. 1. 2D Minority under different α-asynchronous dynamics with N50 = 50 × 50
cells. The last column gives, for α ∈ [0, 1], the empirical probability that an initial
random configuration converges to a stable configuration before time step Ts ·N50 where
Ts = 1000 and Ts = 2000 for von Neumann and Moore neighborhood respectively.

– von Neumann (N-neighborhood for short), where each selected cell updates
to the minority state within itself and its neighbors N, S, E, and W; and

– Moore (M-neighborhood for short), where each selected cell updates to the
minority state among itself and its 8 closest neighbors N, S, E, W, NE, NW,
SE, and SW.

In this section, we present a report on extensive experiments conducted on 2D
Minority for both N- and M-neighborhood.

In this section, we consider the α-asynchronous 2D Minority dynamics in
which at each time step, each cell updates to the minority state in its own
neighborhood independently with probability α. We denote by α = 0 the fully
asynchronous 2D Minority dynamics in which at each time step, a daemon se-
lects uniformly at random one cell and updates it to the minority state in its
neighborhood.
The synchronous regime (α = 1) of 2D Minorityhas been thoroughly stud-
ied in [10] where it is proved that it converges to cycles of length 1 or 2. Ex-
perimentally, from a random configuration, the synchronous dynamics in both
neighborhoods converges to sets of large flashing white or black regions.
As soon as a little bit of asynchronism is introduced, the behavior changes
drastically for both neighborhoods (see Fig. 1 and open our website [12] for
animated sequences). Due to the asynchronism at each step, some random cells
do not update and this creates a noise that progressively erodes the flashing
homogenous large regions that were stable in the synchronous regime. After few
steps, the configuration seems to converge rapidly to a homogeneous flashing
background perturbed by random noise.
Experiments provide evidences that there exists a threshold αcαcαc,
αc ≈ .83 and αc ≈ .57 for the N- and M-neighborhoods respectively, such that
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Figure 1: 2DMinority under different α-asynchronous dynamics with N50 = 50×50 cells. The last
column gives, for α ∈ [0, 1], the empirical probability that an initial random configuration converges
to a stable configuration before time step Ts · N50 where Ts = 1000 and Ts = 2000 for the von
Neumann and Moore neighborhoods respectively.

In this section, we present a report on extensive simulations conducted on 2D Minority for both N-
and M-neighborhoods.

In this section, we consider the α-asynchronous 2D Minority dynamics in which at each time step,
each cell updates to the minority state in its own neighborhood independently with probability α.
We denote by α = 0 the fully asynchronous 2D Minority dynamics in which at each time step, a
daemon selects uniformly at random one cell and updates it to the minority state in its neighbor-
hood.

The synchronous regime (α = 1) of 2D Minority has been thoroughly studied in [9] where it
is proved that it converges to cycles of length 1 or 2. Experimentally, from a random configuration,
the synchronous dynamics in both neighborhoods converges to sets of large flashing white or black
regions.

As soon as a little bit of asynchronism is introduced, the behavior changes drastically for both
neighborhoods (see Fig. 1 and open our website [12] for animated sequences). Due to the asyn-
chronism at each step, some random cells do not update and this creates a noise that progressively
erodes the flashing homogenous large regions that were stable in the synchronous regime. After few
steps, the configuration seems to converge rapidly to a metastable state consisting of a homogeneous
flashing background perturbed by random noise.

Simulations provide evidences that there exists a threshold αcαcαc, αc ≈ .83 and αc ≈ .57 for the
N- and M-neighborhoods respectively, such that if α 6 αc, then stable patterns arise (checkerboards
and stripes for N- and M-neighborhoods respectively). As it may be observed in [12], above the
threshold, when α > αc, these patterns are unstable, but below and possibly at αc, these patterns
are sufficiently stable to extend and ultimately cover the whole configuration.
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Convergence in asynchronous regimes. The last column of Fig. 1 shows that experimentally,
when α 6 αc, the asynchronous dynamics appears to converge, at least with constant probability,
rapidly to very particular stable configurations tiled by simple patterns known to be stable for the
dynamics. Above the threshold, when αc < α < 1, the asynchronous dynamics appears experimen-
tally to be stuck into randomly evolving configurations in which no structure seems to emerge.

We will show in Theorem 10 that if at least one of the dimensions is even, the dynamics will almost
surely reach a stable configuration, for all 0 6 α < 1, after at most an exponential number of steps.
We conjecture that below the threshold αc this convergence occurs in polynomial time on expectation
if both dimensions are even (the threshold Ts = 2000 is probably too low for the M-neighborhood
in Fig.1). We will prove this result in Theorems 15 and 23 for the fully asynchronous regime under
the N-neighborhood under certain natural constraint on the initial configuration. Similar results to
the ones to be presented below have been obtained in [19] for the M-neighborhood by extending of
the techniques presented here.

3 Analysis of fully asynchronous 2D Minority

We consider now the fully asynchronous dynamics of 2D Minority with von Neumann neighbor-
hood. Let n andm be two positive integers and T = Zn×Zm the n×m-torus. A n×m-configuration
c is a function c : T→ {0, 1} that assigns to each cell (i, j) ∈ T its state cij ∈ {0, 1} (0 is white and 1
is black in the figures). We consider here the von Neumann neighborhood : the neighbors of each
cell (i, j) are the four cells (i± 1, j) and (i, j ± 1) (indices are computed modulo n and m, we thus
consider periodic boundary conditions). We denote by N = nm, the total number of cells.

Definition 1 (Stochastic 2D Minority) We consider the following dynamics δ that associates
to each configuration c a random configuration c′ obtained as follows: a cell (i, j) ∈ T is selected
uniformly at random and its state is updated to the minority state in its neighborhood (we say that
cell (i, j) is fired), all the other cells remain in their current state:

c′ij =

{
1 if cij + ci−1,j + ci+1,j + ci,j−1 + ci,j+1 6 2
0 otherwise

and c′kl = ckl for all (k, l) 6= (i, j). We say that a cell is active if its neighborhood is such that its
state changes when the cell is fired.

Definition 2 (Convergence) We denote by ct the random variable for the configuration obtained
from a configuration c after t steps of the dynamics: ct = δt(c); c0 = c is the initial configuration.
We says that a configuration c is stable under the δ dynamics if δ(c) = c (whatever the random
bits are). We say that the dynamics δ converges almost surely from an initial configuration c0 to a
configuration c̄ if the random variable T = min{t : ct = c̄} is finite with probability 1. We say that
the convergence occurs in polynomial (resp., linear, exponential) time on expectation if E[T ] 6 p(N)
for some polynomial (resp., linear, exponential) function p.

As seen in Section 2, any configuration tends to converge under this dynamics towards a stable
configuration, i.e., towards a configuration where all cells are in the minority state of their neigh-
borhood, i.e., inactive.
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Von Neumann
neighborhoods

Isolated Peninsula Corner Bridge Border Surrounded

Minority δ(c)δ(c)δ(c) Inactive Inactive
Active

Reversible
∆E(c) = 0

Active
Reversible
∆E(c) = 0

Active
Irreversible
∆E(c) = −4

Active
Irreversible
∆E(c) = −8

Outer-totalistic
976

δ̂(ĉ) = ⊕ δ( ⊕ ĉ)δ̂(ĉ) = ⊕ δ( ⊕ ĉ)δ̂(ĉ) = ⊕ δ( ⊕ ĉ)

Active
Irreversible
∆E(c) = −8

Active
Irreversible
∆E(c) = −4

Active
Reversible
∆E(c) = 0

Active
Reversible
∆E(c) = 0

Inactive Inactive

1

Figure 2: Neighborhood’s names and transition tables of Minority δ and its counterpart Outer-
Totalistic 976 δ̂ (see Section 3.3): only active cells switch their states when fired.

Checkerboard patterns. We say that a subset of cells R ⊆ T is connected if R is con-
nected for the neighborhood relationship. We say that R is checkerboard-tiled if all adjacent
cells in R are in opposite states. A horizontal (resp., vertical) band of width w is a set of cells
R = {(i, j) : k 6 i < k + w} for some k (resp., R = {(i, j) : k 6 j < k + w}).

3.1 Energy of a configuration

An important measure of the stability of the system is given by the energy function introduced for
instance in [2, 9, 10]. Each cell is assigned a potential equal to the benefit of switching its state;
this potential is naturally defined as the number of its adjacent cells to which it is opposed (i.e.,
here, the number of cells which are in the same state as itself); summing the potentials over all
the cells defines the total energy of the configuration at that time. As we consider arbitrary initial
configuration, the system evolves out-of-equilibrium until it (possibly) reaches a stable configuration,
thus its energy will vary over time; in particular, as will be seen in Theorem 4, its energy will strictly
decrease each time an irreversible transition is performed (i.e., each time a cell of potential > 3 is
fired). It turns out that this energy function is not sufficient to prove the convergence of the system
but plays a central role in defining, in Section 3.6, the variant that will be used to prove Theorem 23.
We will see in particular that as observed experimentally in Section 2, the system tends to reach
configurations of minimal energy as one would expect in a real physical system.

Definition 3 (Energy) The potential vij of cell (i, j) is the number of its four adjacent cells that
are in the same state as itself. The energy of a configuration c is defined as the sum of the potentials
of the cells: E(c) =

∑
i,j vij .

Definition 4 (Borders) We say that there is a border between two neighboring cells if they are
in the same state, i.e.:

• the edge between cells (i, j) and (i, j + 1) is an horizontal border if cij = ci,j+1;

• the edge between cells (i, j) and (i+ 1, j) is a vertical border if cij = ci+1,j .

Definition 5 (Homogeneous regions) An alternating path is a sequence of neighboring cells that
does not go through a border, i.e., of alternating states. This defines an equivalence relationship

5
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« being connected by an alternating path », the equivalence classes of this relationship are called the
homogenous regions of the configuration.

By construction, we have the two following easy propositions.

Theorem 1 Each homogeneous region is connected and tiled by one of the two checkerboard pat-
terns, either or . The boundary of each homogeneous region is exactly the set of borders touching
its cells.

Theorem 2 The potential of a cell is the number of borders among its sides. The energy of a
configuration is twice the number of borders. A cell is active if and only if at least two of its sides
are borders.

The energy takes thus its values as follows:

Corollary 3 If both dimensions n and m have the same parity, (∀c)E(c) ∈ 4N; otherwise,
(∀c)E(c) ∈ 2 + 4N.

Proof. Since the energy is twice the number of borders, it is enough to prove that the parity of
the number of vertical (resp. horizontal) borders in each row (resp. column) matches the parity of
the corresponding dimension, m (resp., n). This is clear since when we scan a row, the parity of
the number of changes from one checkboard to the other has to match the parity of the length of
the row in order to match in the toric configuration. �

Maximum and minimum energy configurations. The energy of a n × m-configuration
belongs to {0, 2, 4, . . . , 4N} since each pair of adjacent cells in the same state are counted twice
and 0 6 vij 6 4 for all (i, j). There are two configurations of maximum energy 4N : all-black and
all-white. If n and m are even, there are two configurations of energy zero: the two checkerboards.
If n is even and m is odd, the minimum energy of a configuration is 2n and such a configuration
consists in a checkerboard pattern wrapped around the odd dimension creating a vertical band of
width 2 tiled by pattern .

Energy of stable configurations. A cell is inactive if and only if its potential is 6 1. It follows
that the energy of any stable configuration belongs to {0, 2, . . . , N}. Stable configurations are thus
as expected of lower energy. If n and m are even and at least one of them is a multiple of 4, there are
stable configurations of maximum energy N , tiled by one of the “fat” checkerboards or .

Energy is non-increasing. Under the fully asynchronous dynamics δ, the energy cannot in-
crease over time.

Theorem 4 From any initial configuration c, the random variables E(ct) form a non-increasing
sequence and E(ct) decreases by at least 4 each time a cell of potential > 3 is fired.

Proof. When the state of a cell of potential v is changed, its potential becomes 4− v. Among its
neighbors, the potential of v of them decreases by one and the potential of 4−v of them increases by
one. Thus, the total variation of the energy of the configuration when the state of a cell of potential
v is flipped is 8− 4v, which is non-positive since active cells have potential > 2. �
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Figure 3: Evolution of the mean energy with time, taken over 100 random sequences E(ct) starting
from random initial 50 × 50 configurations c0 (each cell is initially in state 0 or 1 with equal
probability).

Fig. 3 shows the average evolution of the energy which is also the typical behavior. One can observe
that in a first phase, the energy drops very fast as checkerboard patterns emerge in the configuration
and in a second phase, the energy decreases more slowly until the configuration becomes stable.
Theorems 5 and 7 below show indeed that the energy drops rapidly at the beginning as checkerboard
patterns emerge; Theorems 15 and 23 (in Sections 3.5 and 3.6) will later on show that the last steps
of the convergence are indeed done in polynomial time on expectation, as long as at least one of the
dimension is even.

Initial energy drop. After a polynomial number of steps and from any arbitrary initial config-
uration, the energy falls rapidly below 5N/3, which is observed experimentally through the rapid
emergence of checkerboard patterns in the very first steps of the evolution:

Theorem 5 (Initial energy drop) The random variable T = min{t : E(ct) < 5N/3} is almost
surely finite and E[T ] = O(N2).

Proof. Consider a configuration c with energy E > 5N/3. We will show that either c contains
a cell of potential > 3 or two adjacent cells of potential 2 in opposite states. Let us proceed by
contradiction and assume that every cell of c has potential 6 2 and that every pair of adjacent
cells of potential 2 are in the same state. Let b1− , b2 (resp. w1− and w2) be the number of black
(resp. white) cells of potential 6 1 and 2. Let us consider the bipartite graph that connects
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each black cell of potential 2 to its adjacent white cells of potential 6 1. Every black cell of
potential 2 is adjacent to exactly 2 white cells of potential 6 1 and every white cell of potential
6 1 is adjacent to at most 4 black cells of potential 2. The number of edges in the bipartite graph
is thus at least 2b2 and at most 4w1− , it follows that 2b2 6 4w1− . Symmetrically, 2w2 6 4b1− .
But, N = b1− + b2 + w1− + w2 > 3(b2 + w2)/2, thus the configuration admits at most 2N/3 cells of
potential 2 and its energy is 6 N + 2N/3, contradiction.

Consider now the variant Ψ(ct) = 3E(ct)/2 − N3+(ct) where N3+(ct) is the number of cells of
potential > 3 in ct. For all time t, 0 6 Ψ(ct) 6 6N . Let N2 be the number of pairs of adjacent cells
with potential 2 in opposite states. E(ct) is a non-decreasing function of time and each time a cell
of potential > 3 is fired, E(ct) decreases by at least 4; it follows that:

E[E(ct+1)− E(ct)] 6 −4N3+(ct)
N

.

A cell of potential 3 may disappear only if itself or one of its four neighbors are fired; and each time
a cell of potential 2 adjacent to a cell of potential 2 in an opposite state is fired, the potential of the
later cell increases to 3. It follows that:

E[N3+(ct+1)−N3+(ct)] > N2(ct)− 5N3+(ct)
N

.

Summing up the two terms yields:

E[Ψ(ct+1)−Ψ(ct)] 6 −N3+(ct) +N2(ct)
N

.

Then, as long as E(ct) > 5N/3, Ψ(ct) decreases at each time step by at least 1/N on expectation.
Since Ψ is bounded by 6N , a classic stopping time analysis (see for example, Lemma 2 in [5])
shows that after at most O(N2) steps on expectation, either E(ct) drops below 5N/3 or Ψ(ct) drops
below 3N/2 which also implies that E(ct) 6 5N/3. �

Emergence of checkerboard patterns. According to simulations, checkerboard patterns
emerge very rapidly in the very first steps of the dynamics. We explain this fact as a consequence
of the initial energy drop as follows. Let Ck denote here the number of 2× 2 squares of cells in the
configuration that contain exactly k borders inside themselves.

Fact 6 C0 is the number of 2 × 2 squares tiled by a checkerboard pattern, N = C0 + C2 + C4,
and E = 2C2 + 4C4.

Proof. By Theorem 1, borders are the boundaries of the checkerboard regions, so the only
possible values for k are even, i.e. 0, 2 or 4; it follows that the total number of 2 × 2 squares
is N = C0 + C2 + C4. By Theorem 1 again, C0 counts the 2 × 2 squares tiled by a checkerboard.
Finally, by Theorem 2, the energy equals twice the number of borders, and since every border
appears in exactly two squares, we get E = 2C2 + 4C4. �

Theorem 7 (Emergence of checkerboards) After O(N2) steps on expectation, at least N/6 of
the 2× 2 squares of cells are tiled by a checkerboard in the configuration.

8
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E = 0 E = 4N
a) n and m are even b) only n is even

Figure 4: Examples of stable configurations.

is N = C0 + C2 + C4. By Proposition 1 again, C0 counts the 2× 2 squares tiled by a checkerboard.
Finally, by Proposition 2, the energy equals twice the number of borders, and since every border
appears in exactly two squares, we get E = 2C2 + 4C4. !

Proposition 7 (Emergence of checkerboards) After O(N2) steps on expectation, at least N/6
of the 2× 2 squares of cells are tiled by a checkerboard in the configuration.

Proof. Combining the two equations in Fact 6, we get C0 = N − E/2 + C4 " N − E/2. But, by
Proposition 5, after O(N2) on expectation, E # 5N/3, which implies that C0 " N/6 and concludes
the proof. !

3.2 Stable configurations

Proposition 8 (Stable configurations) Stable configurations are the configurations composed of
checkerboard-tiled bands. More precisely:

• if n or m is even, the stable configurations are the configurations composed of a juxtaposition
of horizontal bands (or of vertical bands) of width " 2 tiled by checkerboards;

• if n (resp., m) is odd and m (resp., n) is even, the bands are necessarily horizontal (resp.,
vertical);

• finally, if n and m are odd, no stable configuration exists.

Proof. In a stable configuration, every cell touches at most one border. It follows that borders of
the homogeneous regions form straight lines at least 2 cells apart from each other. !

Corollary 9 If n and m are odd, the dynamics δ never reaches a stable configuration.

3.3 Coupling with Outer-Totalistic 976

From now on up to the end of section 3, we assume that n and m are even (with the only exceptions
of Corollary 11 and Section 3.5). We denote by the checkerboard configuration of energy 0 defined
as follows: ij = (i + j) mod 2. Given two configurations c and c′, we denote by c ⊕ c′ the xor
configuration c′′ such that c′′

ij = (cij + c′
ij) mod 2.

9

Figure 4: Examples of stable configurations.

Proof. Combining the two equations in Fact 6, we get C0 = N − E/2 + C4 > N − E/2. But, by
Theorem 5, after O(N2) on expectation, E 6 5N/3, which implies that C0 > N/6 and concludes
the proof. �

3.2 Stable configurations

Theorem 8 (Stable configurations) Stable configurations are the configurations composed by
checkerboard-tiled bands. More precisely:

• if either n or m are even, the stable configurations are the configurations composed by a juxta-
position of horizontal bands (or of vertical bands) of width > 2 tiled by checkerboards;

• if n (resp., m) is odd and m (resp., n) is even, the bands are necessarily horizontal (resp.,
vertical);

• finally, if n and m are odd, no stable configuration exists.

Proof. In a stable configuration, every cell touches at most one border. It follows that borders of
the homogeneous regions form straight lines at least 2 cells apart from each other. �

Corollary 9 If n and m are odd, the dynamics δ never reaches a stable configuration.

3.3 Coupling with Outer-Totalistic 976

From now on up to the end of Section 3, we assume that n and m are even (with the only exceptions
of Corollary 11 and Section 3.5). We denote by the checkerboard configuration of energy 0 defined
as follows: ij = (i + j) mod 2. Given two configurations c and c′, we denote by c ⊕ c′ the xor
configuration c′′ such that c′′ij = (cij + c′ij) mod 2.

Dual configurations. As observed above, the fully asynchronous dynamics ct tends to converge
from any initial configuration c0 to configurations tiled by large checkerboard regions. It is thus
convenient to consider instead, the sequence of dual configurations (ĉt) defined by ĉt = ⊕ ct, in
which the large checkerboard regions of ct appear as large homogeneous black or white regions.
Clearly, the dual sequence ĉt evolves according to the dynamics δ̂(.) = ⊕ δ( ⊕ .), indeed for all t,
ĉt+1 = ⊕ ct+1 = ⊕ δ(ct) = ⊕ δ( ⊕ ĉt) = δ̂(ĉt).

9
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Primal

Dual

Step 0N Step 1N Step 5N Step 20N Step 50N Step 300N Step 381N

Fig. 4. The coupled evolutions of Minority δ on the primal configurations (ct) (above)
and its counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note
that from step 50N on, (ct) an (ĉt) are bounded configurations.

corresponding dynamics δ and δ̂ are coupled probabilistically (see [14]): the same
random cell is fired in both configurations at each time step. A simple calculation
shows that the dual dynamics δ̂ associates to each dual configuration ĉ, a dual
configuration ĉ′ as follows: select uniformly at random a cell (i, j) (the same cell
(i, j) as δ fires on the primal configuration c) and set:

ĉ′ij =






1 if Σ ! 3
1− ĉij if Σ = 2

0 otherwise
with Σ = ĉi−1,j + ĉi+1,j + ĉi,j−1 + ĉi,j+1

and ĉ′kl = ĉkl for all (k, l) "= (i, j). It turns out that this rule corresponds to
the asynchronous dynamics of the cellular automaton Outer-Totalistic 976 [11].
The corresponding transitions are given in Fig. 2.
Stable configurations of Outer-Totalistic 976. We define the energy of
the dual configuration ĉ and the potentials of each of its cells (i, j) as the cor-
responding quantities, E(c) and vij , in the primal configuration c. By Proposi-
tion 5, the stable dual configurations under the dual dynamics δ̂ are the dual
configurations composed of homogeneous black or white bands of widths ! 2.
The two dual configurations of minimum energy 0 are all-white and all-black.

Experimentally, any dual configuration under the fully asynchronous dynam-
ics δ̂ evolves towards large homogeneous black or white regions (corresponding
to the checkerboard patterns in the primal configuration). Informally, these
regions evolve as follows (see Fig. 2): isolated points tend to disappear as well as
peninsulas; borders and surrounded points are stable; large regions are eroded
in a random manner from the corners or bridges that can be flipped reversibly
and their boundaries follow some kind of 2D random walks until large bands
without corners ultimately survive (see Fig. 4 or [12]).

9

Figure 5: The coupled evolutions of Minority δ on the primal configurations (ct) (above) and its
counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note that from step 50N
on, (ct) an (ĉt) are bounded configurations.

By construction, the two dual random sequences (ct) and (ĉt) as well as their corresponding dynam-
ics δ and δ̂ are coupled probabilistically (see [16]): the same random cell is fired in both configurations
at each time step. A simple calculation shows that the dual dynamics δ̂ associates to each dual
configuration ĉ, a dual configuration ĉ′ as follows: select uniformly at random a cell (i, j) (the same
cell (i, j) as δ fires on the primal configuration c) and set:

ĉ′ij =





1 if Σ > 3
1− ĉij if Σ = 2

0 otherwise
with Σ = ĉi−1,j + ĉi+1,j + ĉi,j−1 + ĉi,j+1,

and ĉ′kl = ĉkl for all (k, l) 6= (i, j). It turns out that this rule corresponds to the asynchronous
dynamics of the cellular automaton Outer-Totalistic 976 [11]. The corresponding transitions are
given in Fig. 2.

Stable configurations of Outer-Totalistic 976. We define the energy of the dual configura-
tion ĉ and the potentials of each of its cells (i, j) as the corresponding quantities, E(c) and vij , in
the primal configuration c. By Theorem 8, the stable dual configurations under the dual dynamics δ̂
are the dual configurations composed by homogeneous black or white bands of widths > 2. The
two dual configurations of minimum energy 0 are all-white and all-black.

Experimentally, any dual configuration under the fully asynchronous dynamics δ̂ evolves towards
large homogeneous black or white regions (corresponding to the checkerboard patterns in the primal
configuration). Informally, these regions evolve as follows (see Fig. 2):

• isolated points tend to disappear as well as peninsulas;

• borders and surrounded points are stable;

• large regions are eroded in a random manner from the corners or bridges which can be flipped
reversibly; their boundaries follow some kind of 2D random walks until large bands without
corners ultimately survive (see Fig. 5 or [12]).

10
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3.4 Convergence from any initial configuration

In this section, we consider arbitrary initial configurations c0 and show that indeed the dynamics δ
converges to a stable configuration almost surely and after at most an exponential number of steps
on expectation, as soon as at least one of the dimensions is even.

Theorem 10 From any initial n ×m-configuration c0, where n and m are even, the dynamics δ
convergences to a stable configuration after at most 2N2N+1 steps on expectation.

Proof. According to the coupling above, it is equivalent to prove this statement for the dual
dynamics. The following sequence of δ̂-updates transforms any dual configuration ĉ into a dual
stable configuration :

• Phase I : as long as there are active white cells, choose one of them and switch its state to
black;

• Phase II : as long as there are active black cells, choose one of them and switch its state to
white.

During phase I, the black regions expand until they fill their surrounding bands or surrounding
rectangles. Clearly according to the transition table Fig. 2, after phase I of the algorithm, every
white cell is inactive and thus is either a border or surrounded. In particular, no white band of
width 1 survived. During phase II, the black cells enclosed in rectangles or in bands of width 1
are eroded progressively and ultimately disappear. Finally, only black bands of width > 2 survive
at the end of phase II and the configuration is stable since it is composed by homogeneous white
or black bands of width > 2 (see Theorem 8). During each phase, at most N cells change their
state. We conclude that, from any configuration ĉ, there exists a path of length at most 2N to a
stable configuration. Now, splits the sequence (ct) into segments (c2Nk+1, ..., c2N(k+1)) of length 2N .
The sequence of updates in each of these segments has a probability 1/N2N to be the sequence of
at most 2N updates given above that tranforms configuration c2Nk into a stable configuration.
Since these events are independent, this occurs after N2N trials on expectation. We conclude that
the dynamics δ̂ and thus δ converge to a stable configuration after at most 2N · N2N steps on
expectation. �

Corollary 11 From any initial n×m-configuration c0, where n is even andm is odd, the dynamics δ
converges to a stable configuration after at most 3N3N+1 steps on expectation.

Proof. Consider the cells within the n × (m − 1) rectangle excluding the last column m − 1.
Consider the dual configuration inside this rectangle and apply the same sequence of updates as
above. After Phase I, the black regions within the rectangle have been extended up to their bounding
rectangles and furthermore no proper white horizontal band remains because since m is odd, either
one of the white cells at the extremity of such a band would be active (whatever the states of the
cells in the last column are). After Phase II, the black rectangles have been erased as well as the
proper horizontal black bands (since m is odd, either one of the cells at the extremities of such a
band would be active). At this stage, the only remaining active cells are within the last column
m− 1 and possibly in either one of the two neighboring columns 0 or m− 2. An extra series of at
most 2n updates allows then to stabilize the cells in these two columns. It follows that a sequence
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of at most 2N + 2n 6 3N updates stabilize any configuration, which concludes the result by the
same argument as above. �

Example 1 (Conjecture) Draw a rectilinear red line wrapped twice around the short odd dimen-
sion of a (2n+ 1)× 2n3-configuration. Cut the configuration along this line and tile the unwraped
configuration with a checkerboard pattern. Once rewrapped, the only active cells of the configura-
tion are along the red line (see Fig. 6).

2n+1

2n3

Figure 6: An odd× even configuration with an exponential convergence time?

The dynamics δ can converge only after that the red line is unwrapped, i.e., only after it merges
with itself somewhere, which is only possible if the line bends itself into a rectangle whose opposite
corners meet at the same point of the torus. Unfortunately, the “tension” imposed by the wrapping
around tends to spread apart the two parts of the red line around the torus (in order to bend
itself into a rectangle, the n random walks of the corners on the red line have to synchronize). We
thus conjecture that this necessary self-crossing of the red line may only occur after an exponential
number of steps (which is confirmed by simulations).

3.5 Convergence from a semi-bounded configuration

We assume here that n is even, while m may be odd or even. We show in this section that as soon
as the configuration contains a two-cells-wide checkerboard-tiled column, the dynamics will quickly
converge to a fixed point configuration almost surely, i.e., after a polynomial number of steps on
expectation.

Definition 6 (Semi-bounded configuration) We say that a configuration c is semi-bounded if
it contains a two-cells-wide checkerboard-tiled column. W.l.o.g., we assume that this is the leftmost
column and that it is tiled according to , so that a configuration c is semi-bounded if cij =
(i+ j) mod 2 for all (i, j) with 0 6 j 6 1.

Lemma 12 If c is a semi-bounded configuration, δ(c) is also semi-bounded.

Proof. The cells within the checkerboard-tiled column have three neighbors inside this column in
the opposite state to their own; these cells are thus inactive (whatever the state of their adjacent
cell outside the column is). �

In the dual of a semi-bounded configuration, the two leftmost columns are all white and the white
tends to contaminate gradually the neighboring columns, unless two neighboring columns get all
black at the same time (in which case they turn inactive and will remain black forever). We study
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Figure 7: A semi-bounded configuration and its dual configuration.

Proof. The cells within the checkerboard-tiled column have three neighbors inside this column in
the opposite state to their own; these cells are thus inactive (whatever the state of their adjacent
cell outside the column is). !

In the dual of a semi-bounded configuration, the two leftmost columns are all white and the white
tends to contaminate gradually the neighboring columns, unless two neighboring columns get all
black at the same time (in which case they turn inactive and will remain black forever). We study
here this contamination process and show that almost surely and after O(n2N) steps on expectation,
either the third column is all white (and thus inactive) or the third and fourth columns are all black
(and thus inactive). The polynomial bound on the expected convergence time will clearly follow.
In order to do so, we introduce a variant that somehow measures the distance to these target
configurations, and show that the dynamics gets at each time step closer on expectation to these
configurations.

Variant. Consider a semi-bounded configuration c. Let us call a zone, a sequence of neighboring
cells in the same dual state in the third column (ĉ0,2, ĉ1,2, . . . , ĉn−1,2). Let

Ψ(c) =

{
n + 1, if the third column of ĉ is all white;

the length of the largest white zone in the third column of ĉ, otherwise.

Let ∆Ψ(c) = Ψ(δ(c))−Ψ(c) be the random variable standing for the variation of the variant Ψ after
one step of the dynamics δ from configuration c.

Lemma 13 For all semi-bounded configuration c whose cells in the third column are not all inactive,
(a) E[∆Ψ(c)] " 0 and (b) Pr{|∆Ψ(c)| " 1} " 1

N .

Proof. Note first, that since the second column of ĉ is all white, any dual white cell in the
third column strictly within a white zone is always inactive, whereas any dual black cell in the
third column with at least one dual white neighbor in the third column is always active (recall
Fig. 2).

Assume first that there is only one black cell in the third column of ĉ. This cell is necessarily active
and firing it would increase Ψ(c) by 2. Its two white neighbors might also be active and firing any
of these would decrease Ψ(c) by at most 1. All other cells in that column are inactive. Thus, in
that case (a) and (b) hold.

Now, assume that there exists only one largest white zone in the third column of ĉ, of length at
most n − 2. Only the white cells at the ends of the zone might be active and firing any of them
would decrease Ψ(c) by at most 1. The two black cells next to the zone are necessarily active and

13

Figure 7: A semi-bounded configuration and its dual configuration.

here this contamination process and show that almost surely and after O(n2N) steps on expectation,
either the third column is all white (and thus inactive) or the third and fourth columns are all black
(and thus inactive). The polynomial bound on the expected convergence time will clearly follow.
In order to do so, we introduce a variant that somehow measures the distance to these target
configurations, and show that the dynamics gets at each time step closer on expectation to these
configurations.

Variant. Consider a semi-bounded configuration c. Let us call a zone, a sequence of neighboring
cells in the same dual state in the third column (ĉ0,2, ĉ1,2, . . . , ĉn−1,2). Let

Ψ(c) =

{
n+ 1, if the third column of ĉ is all white;

the length of the largest white zone in the third column of ĉ, otherwise.

Let ∆Ψ(c) = Ψ(δ(c))−Ψ(c) be the random variable standing for the variation of the variant Ψ after
one step of the dynamics δ from configuration c.

Lemma 13 For all semi-bounded configuration c whose cells in the third column are not all inactive,
(a) E[∆Ψ(c)] > 0 and (b) Pr{|∆Ψ(c)| > 1} > 1

N .

Proof. Note first, that since the second column of ĉ is all white, any dual white cell in the
third column strictly within a white zone is always inactive, whereas any dual black cell in the
third column with at least one dual white neighbor in the third column is always active (recall
Fig. 2).

Assume first that there is only one black cell in the third column of ĉ. This cell is necessarily active
and firing it would increase Ψ(c) by 2. Its two white neighbors might also be active and firing any
of these would decrease Ψ(c) by at most 1. All other cells in that column are inactive. Thus, in
that case (a) and (b) hold.

Now, assume that there exists only one largest white zone in the third column of ĉ, of length at
most n − 2. Only the white cells at the ends of the zone might be active and firing any of them
would decrease Ψ(c) by at most 1. The two black cells next to the zone are necessarily active and
firing any of them would increase Ψ(c) by at least 1. Firing any other white cell would leave Ψ(c)
unchanged and firing any other black cell may only increase Ψ(c). It follows again that (a) and (b)
hold.

Assume now that there exists at least two largest white zones in the third column of ĉ. Then, Ψ(c)
cannot decrease in one step of the dynamics. Furthermore, firing any of the black cells next to these
zones would increase Ψ(c) by at least 1. We conclude thus that (a) and (b) hold.
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Finally, if the third column of ĉ is all black, Ψ(c) cannot decrease and firing any black active cell in
this column will increase Ψ(c) by 1, so again, (a) and (b) hold. �

Lemma 14 For any semi-bounded configuration c, the cells of the third column are all inactive
after O(n2N) updates on expectation.

Proof. Note first that once all the cells in the third column are inactive, they will remain in that
state forever. Indeed, if all these cells are inactive, either they are all white in the dual configuration
and will remain in that state forever, or one cell is black and since it is inactive and its neighbor of
the first column is white, its three neighbors in the third and fourth column have to be black and
by immediate recursion, all the cells in the third and fourth column are black and are thus inactive
and will remain in that state forever.

Lemma 13 proves that as long as there is an active cell in the third column, the expectation of
the variation of the variant Ψ(c) is non-negative and it has a probability at least 1/N to vary by
at least 1. Since Ψ(c) takes integer values between 0 and n + 1, Lemma 5 in [5] guarantees that
after O(n2N) updates on expectation, either Ψ(c) will reach the value n+ 1 (in which case all the
cells of the third column in ĉ are white and thus inactive), or all the cells in the third column have
turned inactive (by turning all black together with the cells in the fourth column in ĉ). It follows
that after O(n2N) updates on expectation, all the cells of the third column are inactive. �

Theorem 15 The fully asynchronous minority dynamics δ converges almost surely from any initial
semi-bounded configuration c to a stable configuration, and the expected convergence time is O(nN2).

Proof. Consider a semi-bounded configuration c. Let t1 = 0 and for 2 6 j < m, tj the first time t
where all the cells in the j leftmost columns of ct are inactive. By definition, tm−1 is the convergence
time of the process. But, tm−1 =

∑m−1
j=2 tj − tj−1 and by Lemma 14, E[tj − tj−1] = O(n2N).

Thus, E[tm−1] = O(n2Nm) = O(nN2). �

3.6 Convergence from a bounded configuration

We consider now that both n and m are even. It can be observed experimentally that most of
the time, the dynamics converges rapidly to one of the two checkerboard configurations of energy
zero. We show in this section that indeed, if the dynamics reaches a configuration composed
by an arbitrary region surrounded by a checkerboard, then it will converge to the corresponding
checkerboard configuration almost surely within a polynomial number of steps on expectation; this
corresponds to the analysis of the last steps of the behavior observed in simulations. As opposed
to semi-bounded configuration, when the configuration is completely surrounded by a checkerboard
pattern, the expected convergence time is much lower. This tighter bound is also obtained by
different means. We believe that the techniques developed here may be extended to prove that
the dynamics converges to a stable configuration in polynomial expected time from any initial
configuration (see discussions in Section 4).

Definition 7 (Bounded configuration) We say that a configuration c is bounded if there exists
a (n − 2) × (m − 2) rectangle such that the states in c of the cells outside this rectangle are equal
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to the corresponding states in one of the two checkerboard configurations. W.l.o.g., we assume that
the upper-left corner of the rectangle is (1, 1) and that the checkerboard is , i.e., a configuration c
is bounded if cij = (i+ j) mod 2 for all (i, j) ∈ {(i, j) : (−1 6 i 6 0) or (−1 6 j 6 0)}.

Lemma 16 If c is a bounded configuration, δ(c) is also bounded.

Proof. The cells belonging to the checkerboard pattern outside the rectangle have 3 adjacent cells
in the state opposite to their own states; these cells are thus inactive (whatever the state of their
adjacent cell inside the rectangle is). �

A bounded configuration is thus equivalent to a finite perturbation of an infinite planar configuration
in Z2 tiled by the pattern. Since the dual of is the configuration all-white, the dual of a
bounded configuration is thus equivalent to a finite number of black cells, included into a (n− 2)×
(m − 2) rectangle within an infinite white planar configuration in Z2. We shall now consider this
setting.

Definition 8 (Convexity) We say that a set of cells R ⊆ Z2 is convex if for any pair of cells (i, j)
and (i+ k, j) (resp., (i, j + k)) in R, the cells (i+ `, j) (resp., (i, j + `)) for 0 6 ` 6 k belong to R.
We say that R is an island if R is connected and convex.

Our proof of the convergence of the dynamics in polynomial time for bounded configurations relies
on the definition of a variant which decreases on expectation over time. It turns out that in order
to define the variant, we do not need to consider the exact internal structure of the bounded
configuration, but only the structure of the convex hull of its black cells.

Definition 9 (Convex hull of a configuration) For any finite set of cells R ∈ Z2, we denote by
hull(R) the convex hull of the cells in R, i.e., hull(R) = ∩

{
S ⊆ Z2 : S is convex and S ⊇ R}. Given

a bounded dual configuration ĉ, we define the convex hull of ĉ, hull(ĉ), as the dual configuration
whose black cells are the cells in the convex hull of the black cells of ĉ, i.e., if R = {(i, j) : ĉij = 1},
hull(ĉ)ij = 1 if and only if (i, j) ∈ hull(R). We say that a configuration c is convex if ĉ = hull(ĉ).

We say that ĉ 6 ĉ′ if for all (i, j), ĉij 6 ĉ′ij . Let ĉ be a convex dual bounded configuration. We define
for each black cell (i, j) in ĉ, the island of ĉ that contains cell (i, j), as the maximum connected and
convex configuration ĉ′ such that ĉ′ij = 1 and ĉ′ 6 ĉ. This defines a unique decomposition into black
islands of the convex bounded configuration ĉ (see Fig. 8 for an illustration).

The variant. We now consider the following variant :

Φ(ĉ) =
E(hull(ĉ))

4
+ |hull(ĉ))|,

where |hull(ĉ))| is the number of black cells in the convex hull configuration hull(ĉ). We will show
that from any initial configuration c0, Φ(ct) decreases by at least 1/N on expectation at each time
step until it reaches the value 0, i.e., until the primal and dual configurations ct and ĉt converge
to the infinite checkerboard and the infinite all-white configurations respectively. In order to prove
that Φ(ct) decreases on expectation, we need to study the evolution of the convex hull of ĉt; for
this purpose, we introduce a modified coupled dual dynamics δ̄ that preserves the convexity of a
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t = N t = 5N t = 10N t = 15N

t = 20N t = 25N t = 30N t = 35N

Figure 8: A typical evolution of a bounded dual configuration together with its convex hull (in
blue). Note that the convex hull is not necessarily connected: from t = 15N , one can observed that
it is composed by several islands.

dual configuration. Given a dual configuration ĉ, we denote by δ̄(ĉ) the following (coupled) random
configuration such that:

δ̄(ĉ) =

{
δ̂(ĉ) if the cell updated by δ̂ is not a black bridge,
ĉ otherwise.

Lemma 17 If ĉ is a convex bounded configuration, δ̄(ĉ) is a convex bounded configuration.

Proof. The only active transition in δ̂ that would break the convexity of the black cells is updating
a black bridge (see Fig. 2), but this transition is not allowed in δ̄. �

Lemma 18 For all convex bounded configurations ĉ and ĉ′, if ĉ 6 ĉ′, then E(c) 6 E(c′).

Proof. The energy of a configuration ĉ is by definition twice the number of adjacent cells in
opposite states in ĉ, that is to say twice the number of sides of cells on the boundaries of the black
islands that compose ĉ, i.e., twice the sum of their perimeters. Since ĉ 6 ĉ′, the black islands that
compose ĉ are included within the black islands that compose ĉ′. Moreover, since the sets of rows
and columns touched by the black islands that compose a convex configuration are pairwise disjoint,
the sum of the perimeters of the black islands of ĉ that are included in the same black island of ĉ′

is bounded from above by the perimeter of this later island. �

The following lemma proves that the image of the convex hull of ĉ by the dynamics δ̄ bounds from
above the convex hull of the image of ĉ by the dynamics δ̂.

Lemma 19 For all bounded configuration ĉ, δ̂(ĉ) 6 δ̄(hull(ĉ)).
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Proof. We only need to prove that 1) if δ̂ updates a white active cell in ĉ, the corresponding cell
in δ̄(hull(ĉ)) is black and 2) if δ̄ updates an active black cell in hull(ĉ), then the corresponding cell
in δ̂(ĉ) is white. This is a direct consequence of the coupling of the dynamics of δ̂ and δ̄.

If a white active cell in ĉ is fired and if the corresponding cell in (hull(ĉ)) is white then both cells
become black. If a white active cell in ĉ is fired and if the corresponding cell in (hull(ĉ)) is black
then, since the cell in ĉ is active, it has two black neighbors, and thus the cell in (hull(ĉ)) has two
black neighbors. The only kind of active cell with at least two neighbors of the same color under
the δ̄ dynamics is the corner cell. Indeed, if a corner white cell in ĉ is black in (hull(ĉ)) then it is
a border or surrounded cell. Thus if δ̂ updates a white active cell in ĉ, the corresponding cell in
δ̄(hull(ĉ)) is black.

An active black cell in hull(ĉ) under the δ̄ dynamics is an active black cell in ĉ under the δ̂ dynamics.
Thus if δ̄ updates an active black cell in hull(ĉ), then the corresponding cell in δ̂(ĉ) is white. �

Let ∆Φλ(ĉ) be the random variable for the variation of the variant after one step of a dynamics λ
from a configuration c, i.e., ∆Φλ(ĉ) = Φ(λ(ĉ))− Φ(ĉ).

Corollary 20 For all bounded configuration ĉ, ∆Φδ̂(ĉ) 6 ∆Φδ̄(hull(ĉ)).

Proof. By definition,

∆Φδ̄(hull(ĉ))−∆Φδ̂(ĉ) =
E(δ̄(hull(ĉ)))− E(hull(δ̂(ĉ)))

4
+ |δ̄(hull(ĉ))| − |hull(δ̂(ĉ))|.

According to Lemma 19, hull(δ̂(ĉ)) 6 δ̄(hull(ĉ)) and thus |hull(δ̂(ĉ))| 6 |δ̄(hull(ĉ))|. And by
Lemma 18, since both configurations are convex, E(hull(δ̂(ĉ))) 6 E(δ̄(hull(ĉ))). �

Lemma 21 For all bounded configuration ĉ that consists of a unique black island,

−4/N 6 E[∆Φδ̄(ĉ)] 6 −3/N.

Proof. Each active cell is fired with probability 1/N . According to the dynamics of δ̄ (the same
as the dynamics of δ̂, Fig. 2, except that black bridges are inactive), if ĉ consists of an island of size
at least 2,

E[∆Φδ̄(ĉ)] = − 1
N

(
#{black corners}+ 2 #{black peninsulas}

)
+ 1

N #{white corners}
= − 1

N#{salient angles}+ 1
N#{reflex angles} = − 4

N ,

since #{salient angles}−#{reflex angles} = 4 for all convex rectilinear polygon. Finally, if ĉ consists
of a unique (isolated) black cell, ∆Φδ̄(ĉ) = −3/N . �

Lemma 22 For any bounded not-all-white configuration ĉ, E[∆Φδ̂(ĉ)] 6 −`/N , where ` is the
number of islands that compose hull(ĉ).
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possibly active dual white cell at the 
junction between two islands

truly active dual white cell at the 
junction between two islands

surrounding rectangle of each island

surely inactive dual white cell 

Figure 9: The locations of the only possibly active cells outside the islands composing the convex
hull of the dual configuration.

Proof. By Corollary 20, E[∆Φδ̂(ĉ)] 6 E[∆Φδ̄(hull(ĉ))]. By convexity of hull(ĉ), the sets of rows and
columns touched by the islands that compose hull(ĉ) are pairwise disjoint. Thus, one can index the
islands from 1 to ` from left to right, and the contacts between islands can only occur between two
consecutive islands at the corners of their surrounding rectangles. Each contact creates at most two
new possibly active white cells that may contribute for +1/N each to E[∆Φδ̄(hull(ĉ))] (see Fig. 9).
The contribution of each island to E[∆Φδ̄(hull(ĉ))] is at most −3/N according to Lemma 21. It
follows that:

E[∆Φδ̄(hull(ĉ))] 6 −3`
N

+
2(`− 1)
N

6 − `

N
.

�

Theorem 23 The fully asynchronous minority dynamics δ converges almost surely from any ini-
tial bounded configuration c to the stable configuration of minimum energy, , and the expected
convergence time is O(AN) where A is the area of surrounding rectangle of the black cells in ĉ.

Proof. Initially and for all time t > 0, Φ(ĉt) 6 2(n − 2 + m − 2) + A 6 2N + A. As long
as ĉt 6≡ 0, Φ(ĉt) > 0 and according to Lemma 22, E[∆Φδ̂(ĉ

t)] 6 −1/N . It follows that the random
variable T = min{t : Φ(ĉt) 6 0} is almost surely finite and E[T ] = O(nA) (by applying for
example Lemma 2 in [5]); and at that time, ĉT and cT are the stable configurations all-white and ,
respectively. �

Example 2 (Worst case configurations) Consider the initial dual bounded n × n-
configuration ĉ consisting of a black 2 × (n − 2) rectangle. The expected time needed to
erase one complete line of the rectangle is at least Ω(nN) = Ω(AN).
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Proof. Consider the initial dual bounded n × n-configuration ĉ consisting of a black 2 × (n − 2)
rectangle. The first time the dynamics δ̂ will erase a black cell in a given column, this black cell has
to be a black corner, which was created by the erasure of one of its black neighbors in a adjacent
column. The expected time between the erasures of the first black cells in a given column and of the
first black cell in an adjacent columns is thus Ω(N) (the expected time to fire the new black corner)
and the expected time needed to erase one complete line of the rectangle is at least Ω(nN) = Ω(AN).
�

4 Concluding remarks

This paper proposes an extension to 2D cellular automata of the techniques based on random walks
developed in [5, 6] to study 1D asynchronous elementary cellular automata. Our techniques apply as
well with some important new ingredients, to the Moore neighborhood where the cell fired updates
to the minority state within its height closest neighbors [19]. We believe that these techniques may
extend to the wide class of threshold cellular automata, which are of particular interest, in neural
networks for instance. We are currently investigating refinements of the tools developed here,
based on the study of the boundaries between arbitrary checkerboard regions in order to try to
prove that every arbitrary n×m-configuration converges to a stable configuration in a polynomial
number of steps when n and m are both even (we conjecture a convergence in time O(N3) for
non-bounded toric configurations of even dimensions). This result would conclude the study of
this automaton under fully asynchronous dynamics. The simulations lead in Section 2 exhibit an
impressive richness of behavior for this yet apparently simple transition rule. An extension of our
results to arbitrary α-asynchronous regime is yet a challenging goal, especially if one considers that
most of the results concerning spin systems or lattice gas (at the equilibrium) apply only to the
limit when the temperature tends to 0, i.e., when only one transition occurs at a time.

Acknowledgements. We would like to thank C. Moore, R. D’Souza and J. Crutchfield for their
useful suggestions on the physics related aspects of our work.
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