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Abstract. Biologists are somehow pioneers on the
idea that progress can be driven by randomness: ran-
domness is one of the main engine of evolution; small
variations induced by randomness coupled with nat-
ural selection allows the species to self-adapt to their
moving environment. Studies from the last 40 years
in computer science suggest that randomness is in
fact able of doing much more and revealed unex-
pected possibilities which might appear impossible at
first. Furthermore, it turns out that these discover-
ies are faster, cheaper and above all exponentially
thriftier than their deterministic alternatives. This
means that random explorations would almost surely
generate a stochastic process way before any equiv-
alent deterministic counterpart is found. It follows
that most likely these processes are favored by evo-
lution and should thus be known to anyone dealing
with systems (alive or not) having access to random
sources. This article presents some of these counter-
intuitive results as a possible source of inspiration for
studying systems fed with randomness.

Keywords. Randomness, Model, Algorithms, Ap-
plications of Computer Science to Biology Modeling.

1. Introduction

Since the 1970s, with the work of the two pioneers
Erdös and Rabin [12, 15, 5, 1], several important
progresses in computer science have shown how in-
tuition can fail to capture the true power of random-
ness. Randomness is often associated with the notion
of noise, unpredictability, regularization (law of large
numbers), inhomogeneity... It then appears as arbi-
trary, independent of our will and beyond our under-
standing, a source that perturbs a system: sometimes

for the good (inhomogeneous gas in space leads to the
formation of stars and planets; or it allows to extract
simple laws from a very complicated situation in ideal
gas) sometimes for the bad (noise over communica-
tion channels).

Darwin and later on Wallace were among the first
to envisage randomness as the engine or the fuel
of a system rather than a perturbation: the ran-
dom changes from parent to children coupled with
some deterministic selection process (the necessary
adaption to their moving environments,...) yields to
the evolution of species, a phenomenon that could
not take place if one of these two ingredients (ran-
dom changes and deterministic selection) was miss-
ing: pure randomness is unable to focus on e�cient
moves, and deterministic process alone would lack the
necessary creativity. Another well-known example
where randomness plays a key role is game theory:
it is known since von Neumann [17, 11] that optimal
strategies are probabilistic for zero-sum games (i.e.
games where the loser pays to the winner). For in-
stance, in scissors-paper-stone, the optimal strategy
consists in playing scissors, paper or stone uniformly
at random. Any deterministic strategy can be easily
fooled. Von Neumann’s result implies that some ran-
domness has to be input into key political decisions
in order to make the ”right” choice according to the
optimal probabilistic strategy. Ruelle [14] sees in this
result an interesting explanation for the emergence
of religions: their sacrificial rituals are a very reliable
source of randomness and civilizations using these rit-
uals in their decision process could thus have had a
decisive advantage to take over civilizations making
their decision deterministically.

Researches from the past two decades in computer
science pushed these principles much further and have
taught us that instead of being confronted, random-
ness could be used to design better and more e�cient
systems. In a series of examples, we will see in the
next sections how to count up to 10309 on our ten
fingers only; how to correct a system with unknown
(deterministic) bugs by calling it several times on ran-
dom entries and recombining the outputs; and most
strikingly, how to convince someone that we know
something without revealing anything about it (the
Graal in system security), showing that the true na-
ture of information is quite puzzling.

Alongside to these results in computer science, the
emerging field of compressive sensing reveal similar
surprising trend reversals in physics. A wise use of
randomness allows for instance much better signal
sampling procedures: when the sample dates are cho-
sen at random, the number of samples required to re-
construct a given signal does not depend anymore on
the highest frequency in the signal but on the number
of frequencies in the signals which is several order less
in practice, allowing to reduce the time spent by pa-
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tients in MRI machines for instance (e.g., [4]). Inter-
estingly enough, these results heavily rely on the dig-
italization of the data. This digitalization allows to
capture the data non-figuratively (for instance a su-
perposition of the very same image translated in ran-
dom directions) and then to process them by sophisti-
cated mathematical transformations to yield the de-
sired result. An other example is the case of low-
light photography: a wide open diaphragm would
reduce considerably the depth of field whereas ran-
domly placed pin-holes yield a superposition of vari-
ous infinite-depth-of-field captures of the scene on the
digital sensor. This superposition can be easily pro-
cessed to obtain a perfect image with infinite depth-
of-field and with the same amount of light as the wide
open diaphragm. The same kind of ideas allows to
annihilate the motion blur in low-speed photography
(e.g., [13]).
The power of randomness comes from essentially

two key properties: 1) it is unpredictable and thus it
prevents from been fooled by a noxious agent which
tries to bypass the protections; 2) it is able to se-
lect uniformly a random individual and thus to scan
reliably the whole space of possibilities, even if this
space is totally unstructured. The combination of
these two properties allows to accomplish astonish-
ing results that are detailed in the following.

2. Too small is big enough

Let us take a first example: how much memory
do we need to count up to n? Here is the setting:
imagine that we want to keep track inside each inter-
net router of the number of times a specific event
occurs, for instance, the number of packets pass-
ing through the router towards a specific direction
in order to detect possible attacks as soon as pos-
sible; how much resources does it require to count
n events one-by-one? Deterministically, we need to
write down n which requires a logarithmic number
of digits, i.e. log2 n bits in binary or log10(n) dig-
its in decimal: counting ten billions (1010) packets
would require log10(10

10) = 10 digits in decimal or
log2(10

10) =̇ 34 bits in binary. One can save a lot of
resources using instead a stochastic counter X as fol-
lows [10, 6]: start with X = 0 and each time you see
an event then you increase X by one with probability
1/2X and leave it unchanged otherwise; if asked for
the number of events, output N = 2X�1. It can eas-
ily be shown by recurrence that the expected value
of N is precisely n the number of events! (see Fig. 1
for a proof, and we refer to [6] for improvements on
the variance). Now X requires logarithmically less
resources then n: only log2(log2(n)) bits in binary
or log10(log2(n)) in decimal, that is to say 6 bits in-
stead of 34 in binary or only 2 digits instead of 10 in
decimals for n = 1010 (ten billions of) events! This

Mathematical Analysis of the Stochastic

Counter

Let X

n

denote the random variable for the value of

the stochastic counter X after n increments. By def-

inition:

X0 = 0

X

n>1 =

⇢
1 +X

n�1 with probability 2

�Xn�1

X

n�1 otherwise

Given that X

n�1 is x, the expected value of 2

Xn
is:

E
⇥
2

Xn
��
X

n�1 = x

⇤
= 2

�x · 2x+1
+ (1� 2

�x

) · 2x

= 2

Xn�1
+ 1

By immediate recurrence, since 2

X0 � 1 = 0, the

expected value output after n increments, 2

Xn � 1,

is n, as claimed:

E
⇥
2

Xn � 1

⇤
= E

⇥
2

Xn�1 � 1

⇤
+ 1 = (n� 1) + 1 = n

Figure 1: Analysis of the stochastic counter.

simple stochastic counter allows then to save 83% of
the resources for n = 1010 without compromising the
accuracy of count on average, and it saves more and
more as n grows, more than 99% of the resources for
very large numbers as n = 10309 by using 10 bits only
instead of 1024! As illustrated in Fig. 4.

Why does this saving matter? Because it is ex-
ponential : using a deterministic counter requires
exponentially more resources than the probabilistic
counter. Concretely, imagine that the counter is real-
ized by network of AND/OR gates (natural neurons
can implement this type of gates). A deterministic
counter would require as many gates as all the pos-
sible networks of gates altogether of the size of the
one performing a probabilistic counter (see Fig. 2).
This implies, if one adopts an evolutionary point of
view: nature would spend less resources scanning ran-
domly all the possible gate networks of the same size
as the one performing a probabilistic counter than
trying only one single network of the size required to
perform one single deterministic counter (see Fig. 3).
This means that nature would almost surely find
and be satisfied of the probabilistic counter network
long before it even tries any deterministic ones. Fur-
thermore, the probabilistic counter is much more re-
sources e�cient to run than the deterministic one: it
is thus much easier to find by random tries and almost
much more economical to run. The deterministic gate
network would thus almost surely be condemned in
a natural selection scenario with reliable sources of
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Deterministic counter

▲ Exponentially smaller probabilitic counter 

An even more robust    
probabilitic counter ▶

Figure 2: Probabilistic counters save a lot of resources with
respect to deterministic counters. Replicating them to reduce
their error probability is still much more economical and frees
space to do other things.

A single word of exponential length 4n...

... uses as much resources as all the words of length n over 4 characters (here n = 3)

c c g a c c t t t t g g g c a c c a c g g c c c g a g a t t c a a t c c a a c t t t c c a c g c
c t t a a c c t c t t a t a a t t c c t c g g a c t c c a a g g t g g a t t t a t g a g t a c g
g g g t a a a c a c g a c c g c t a c g a a g t g g c c g g a a c g a c g a t g c c t t g c a c
g c t g c c c t t g c g a c g c t g t c g g a a t t t g a t t g a t a c a c a a t c g a g a c c

a a a a a c a a g a a t a c a a c c a c g a c t a g a a g c a g g a g t a t a a t c a t g a t t
c a a c a c c a g c a t c c a c c c c c g c c t c g a c g c c g g c g t c t a c t c c t g c t t
g a a g a c g a g g a t g c a g c c g c g g c t g g a g g c g g g g g t g t a g t c g t g g t t
t a a t a c t a g t a t t c a t c c t c g t c t t g a t g c t g g t g t t t a t t c t t g t t t

Figure 3: A single word of exponential length consumes as
much resources (characters) as all words of exponentially
smaller length — as an illustration for one single deterministic
(exponentially larger) neuronal network consuming the same
number of neurons as required to build all possible stochastic
neuronal networks of the same size as the neuronal network
performing the stochastic counter.

randomness.

Reliable probabilistic counters save resources on the
long run. Note also as shown on Fig. 2, that repre-
sented as a gate network, the probabilistic counter
uses exponentially less space in the brain as the de-
terministic one. One can thus reduce the probability
of error by replicating this counter and it still costs
much less than the deterministic counterpart. Repli-
cating it until obtaining perfect counting would still
use no more resources as deterministic counters (see
[6]).

3. Information conveyed in random signals

Consider now the scenario of an unreliable multi-
plier unit: it only responds correctly to a fraction
1� ✏ of the possible inputs. For instance, ✏ 6 10% if
its outputs are correct for at least 90% of the inputs.
This means that for at least 90% of the pairs of in-
tegers (a, b), its output is indeed the product a ⇥ b
whereas it can be an arbitrary integer for any of the
remaining 10% of pairs. The question is: can we still
compute the right value for the product of two in-
tegers a and b for which the unit always output the
wrong answer? I.e., can we correct a buggy multiplier
using only the buggy multiplier? The answer is Yes,
and it uses randomness (and a reliable adder).

Buggy systems can be made reliable as follows. The
self-correction scheme has been proposed by Blum,
Luby and Rubinfeld [2, 18] and is illustrated in Fig. 5.
The key is to use the property of the multiplication
that you can write the product of any two integers as
the sum of four products of uniformly random pairs
of integers. Assume we want to compute the product
a⇥ b of two integers a and b with a buggy multiplier.
We first draw to random numbers r and s uniformly
and independently.1 We then compute the sums a+r
and b+s (we assume that only the multiplier is buggy
and that we can compute every addition correctly,
this is not a restrictive assumption since reliable ad-
dition can be obtained from a buggy adder by similar
technics, see [18]). Then, we ask the multiplier for its
outputs for the four products m1 = (a+ r)⇥ (b+ s),
m2 = (a + r) ⇥ s, m3 = r ⇥ (b + s) and m4 = r ⇥ s.
We then output m = m1 �m2 �m3 +m4.

What is the probability that the output is correct, i.e.
that m = a⇥ b?. First, remark that if all four prod-
uctsm1, m2, m3, andm4 are correct thenm is indeed
the right value:

m = m1 �m2 �m3 +m4 = (a+ r)⇥ (b+ s)

� (a+ r)⇥ s

� r ⇥ (b+ s) + r ⇥ s

= a⇥ b

Now, what is the probability that all four outputsm1,
m2, m3, and m4 are correct? Because s and r are in-
dependent uniform random numbers, each of these
products is the product of two independent uniform
random numbers (the sum of a uniform random num-
ber with an other number is still a uniform random
number, see1). The buggy multiplier will thus output
the right answer for each of them with probability at

1In order to be rigourous, we would need to conduct every
operation modulo some large integer, see [18].
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1

1

0 0 0 0 0 0 0

0

1 1

1 1

1

1
1

1

1

Xn = 1100110111 in binary =  823 in decimal   

(and n ≈ 2Xn - 1 ≈ 5.59 x10247)  

Xn' = 1100111000 in binary =  824 in decimal

(and n' ≈ 2Xn' - 1 ≈ 1.12 x10248)  

 +1 with probability 2-823 1

1

0 0 0 0

0

0 0 0 0

0

1

0 0 0 0

0

0 0 0 0
1

0 0 0 0

0

0 0 0

1

0

0 0 0 0

0

0 0 0

 +1 with probability 1=2-0

 +1 w
ith probability

 1/2=2
-1

 +1 with probability 1/4=2-2

. . .
. . .

X0 = 0000000000 in binary = 0 in decimal   

(and n = 2X0 - 1 = 0)  
Xn = 0000000001 in binary = 1 in decimal   

(and n ≈ 2Xn - 1 = 1)  

Xn = 0000000010 in binary = 2 in decimal   

(and n ≈ 2Xn - 1 = 3)  

Xn = 0000000011 in binary = 3 in decimal   

(and n ≈ 2Xn - 1 = 7)  

. . .

Left  Hand Right  Hand

Figure 4: Counting up to 10

309
on our ten fingers only. At any time the expected value of (2Xn � 1) is precisely n

after n increments. Each of the ten fingers store a bit of X
n

: if the i-th finger from the right is straight, the i-th bit of X
n

writen in binary is 1, and 0 otherwise. Our ten fingers allows to increase X up to 210 � 1 = 1023 and thus to count up to
n = 21023 � 1 ⇠ 10309. Note that given X, increasing X by one with probability 2�X is easily done with ten fingers: we
increase X by one if we obtain X ”head”s in a raw by flipping X times independently an unbiased coin.

4



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

least 1 � ✏ (= 90%), since each input, taken inde-
pendently, is uniformly random. It follows that all
four outputs will be the correct products with prob-
ability at least 1 � 4✏ (> 60%) by the union bound
(even if they are correlated). If we are not satisfied
with this probability, just rerun it several times, take
the majority and the probability of error will drop
exponentially fast to a tiny pourcentage.

Randomness allows to correct an unreliable systems
with unknown bugs. Surprisingly, in this scheme, we
do not need to know what is wrong in the buggy mul-
tiplier to obtain a correct answer from it with high
enough probability for all inputs. We do not even
need to known for which entries the output was in-
correct. We just need to know that errors do not oc-
cur for too many entries. This kind of scheme applies
to a wide variety of functions [18] including addition,
Fourrier transforms, linear operations,... It also sug-
gests that if some living form contains some source
of randomness (as many do), then for at least some
specific tasks, the unit supposed to accomplish this
task does not need to perform it perfectly. Some er-
ror may occur that can be corrected with this kind of
scheme. Furthermore, if building a buggy unit costs
much less resources, then from an evolutionary point
of view, this buggy unit is much more likely to arise
in nature.

Random signals may convey deterministic informa-
tions. An other important remark is that whatever
a and b are, the ”signals” (the integers) exchanged
with the buggy unit (the multiplier) are pure random
numbers (see Fig. 5) and apparently do not convey
any information at all. If the evolutionary hypoth-
esis above is correct, it may be the case in nature
that some apparently unstructured, random signals
convey in fact a deterministic information, once re-
combined together; the randomness being used just
to improve the robustness of the system.

4. Convincing without revealing anything

This last section presents one of the most puzzling
results of computer science from the last decades: the
zero-knowledge proofs introduced by Goldwasser, Mi-
cali and Racko↵ [7]. This domain started from the ob-
servation that before delivering money to someone, an
ATM2 needs to make sure that he is the right owner
of the bank account and this is done by providing to
the ATM at the same time your credit card and the
corresponding pin code which is assumed to be only
known by you. If the ATM has both, it then assumes

2
ATM: Automated Teller Machine used to withdraw cash

with a credit card.

that you are indeed who you claim to be. This pro-
tocol has however an important flaw: at some point,
the ATM has both your card and your pin code and
could make a copy of both and steal your identity
(this technics is known as scamming and is not un-
usual in the USA). The question raised by Goldwasser
et al is whether one could just convince the ATM that
the client knows the pin code without revealing any-
thing about it: the ATM would be convinced that the
client is who he pretends to be, and the ATM would
not learn anything about the pin code and thus could
not steal his identity.

Zero-knowledge principle. In the classic ATM with-
drawal scenario, you are identified as the rightful
owner of the account by your ability to provide the
pin code matching the credit card, which is hard to
guess by any other person since he has only 1/10, 000
probability to guess it correctly and can try only three
times (which yields a probability 0.3% for success-
fully guessing the pin code with no more than three
trials). In zero-knowledge proof, you are identified by
your ability to solve one hard problem, that is to say a
problem that no one else can solve. You can solve this
problem because it was constructed especially for you
together with its solution (as the credit card with its
built-in pin code), and it is hard because if someone
does not have the solution, then constructing it from
the problem is impossible in reasonable time.3 The
key to zero-knowledge protocols is to find a problem
for which we can test if you know the solution with-
out needing to know anything about how to solve the
problem. Sounds impossible? Well, here is how to
accomplish this paradoxical task. Without surprise,
it makes extensive use of randomness.

The leaves-counting example. Zero-knowledge proto-
cols are based on known-to-be-hard problems in com-
puter science, such as graph isomorphism that will be
discussed later on. But let us rather focus on a toy ex-
ample to understand how zero-knowledge proofs are
indeed possible. Suppose that we want to identify
Alice and that Alice is known to be the only one who
knows how to count the leaves of real-life trees, this
is her secret, no one else knows how to solve this very
hard problem in reasonable time, but Alice knows and
does not want to leak any part of her secret. How an
ATM can be convinced that Alice knows this secret
without knowing how to do it itself? The protocol is
illustrated in Fig. 6.

First the ATM chooses a random tree around and
ask Alice for its number of leaves. Alice answers
some number, 123,470 for instance. Of course, the

3The NP-complete problems in computer science are pre-
cisely hard in that sense.
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Buggy products of two independent 
uniform random numbers which

are all correct with probability ≥ 1-4ε

    Two random       independent numbers identically distrib     uted as r and s

The correct product a × b       with probability ≥ 1-4ε    

Two uniform  independent random numbers

×× × ×

∑

+

+

44011715630475405322775078264862758860420233397757819516508050291284037987346587082042665741311485160113149470635478656547701794450407503745306723229375097338053661352483312718741554145835039717444712

r × s 

96828572122577680292178657972622568316942808605764497560766925698507138319869729780741682783157229472019447302316104263486929522982460315054330734101125820835135760507481869786685357403014422609670022

(a + r) × s 

93227109008935176471197509331762831228210802620540170876051343924902330843937373970673534164058708239190391510135295302810532591665407378778710596921634126617599530828162815732166426827043154292510026

(a + r) × (b + s) 

40410252497079815079818620981607960043248721239687566905865875925086551499068543370739948134558642828518661568578126485081181406254342221783760660123290810527877925500320308046938426038999551647198296

r × (b+s) 

00000000019753086421975308642395061728439506172845925925926592592592679012345687901234568987654321098765432109876543210790123456879012345685925925926592592592639506172843950617284197530864219753086420

a × b = (a + r) × (b + s) - (a + r) × s - r × (b + s) + r × s 

95569805172791112865765532899195001631549160559748461068959759078119062942155999774600532054596018344489516906303925855247066215709697674549648402497836535855727155432934138198275876297814335964876792

r

10907413353208438552548465393441469621298989856456384140035124187845437803910746908624403167132099015309774230004459726195572881621284036417128221281868324390381016386268791855673992221152121427025011

s

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000987654321000000000009876543210000000000098765432100000000000987654321000000000009876543210

a

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000002000000000200000000020000000002000000000200000000020000000002000000000200000000020000000002

b

95569805172791112865765532899195001631549160559748461068959759078119062942155999774600532054596018344489516907291580176247066215719574217759648402497935301287827155432935125852596876297814345841420002

a + r

10907413353208438552548465393441469621298989856456384140035124187845437803910746908624403167132099035309774232004459726395572881641284036419128221282068324390401016386270791855674192221152141427025013

b + s

Figure 5: The self-corrected version of a buggy multiplier. Here we want to multiply two 200-digits numbers a and b
and for that purpose we use two 200-digits uniform and independent random numbers r and s. Each number is represented
as an abacus (the i-th digit from the right of each number is represented by a bar and a ball whose height is the value of the
corresponding digit). As one can observe in the figure, a, b and a⇥ b do not look random, whereas all the other numbers ”look”
perfectly random (and they are). The scheme to compute a ⇥ b is to ask the buggy multiplier to do the four multiplication
(a + r) ⇥ (b + s), (a + r) ⇥ s, r ⇥ (b + s) and r ⇥ s and to recombine the four outputs to obtain the desired product. In the
graphics above, the random numbers that depends on r (a+ r and r) and on s (b+ s and s) lie on path colored in green and red
respectively and it can thus clearly be seen that each of the four multiplications is conducted only on truly independent uniform
pairs of random numbers (a red and a green) and has thus each a probability at most ✏ to fail. As one can see the recombination
of the four random-looking intermediate products yields the expected non-random looking product a ⇥ b. Random looking
signals may thus convey, once recombined, deterministic information.
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ATM cannot check whether this is right or wrong.
Then, the ATM blindfolds Alice, draws a small ran-
dom number, for instance 41, and removes 41 leaves
from the tree. The ATM then asks Alice to unfold
her eyes and asks her for the number of leaves again.
If her answer is di↵erent from 123,429 = 123,470�41,
the ATM knows for sure that she does not know how
to count the leaves of trees and that she cannot be
Alice. Now, if Alice’s answer is 123,429 then she cor-
rectly guessed the number of leaves removed and the
only way for her to guess it for sure was to know how
to count the leaves. The ATM is thus convinced that
Alice probably knows how to count the leaves of trees.
If not, the ATM can redo the test several times, the
error probability will drop exponentially fast and be
soon much lower than the 0.3% of the current credit
card protocol.

What did the ATM learn? Nothing besides only being
convinced that Alice knows the secret. Not even the
number of leaves in the tree it choosed! Indeed, Alice
concealed this information by drawing first a small
random number, for instance 14, and then adding it
to the real number of leaves: she counted 123,456
leaves, but answered 123,456 + 14 = 123,470. For
the second question, Alice counted 123,415 leaves and
answered 123,415 + 14 = 123,429 leaves. The ATM
did not learn anything from this protocol besides the
conviction that Alice knows how to count the leaves
of trees.

How does it work?. The essential ingredient here was
the unpredictability of random numbers: Alice pro-
tected her secret by adding an unpredictable number
to her counts, and the ATM ensured the validity of its
test by removing an unpredictable number of leaves.
This example shows how deep the notion of informa-
tion is and how wrong our intuition can be: there
is no absolute necessity to know or learn anything
about something, to certify that someone knows it.

Zero-knowledge in real-life. A typical problem that
is used in zero-knowledge protocols is the problem of
Graph Isomorphism. A graph is a set of points con-
nected by a set of straight lines (called edges). The
problem of Graph Isomorphism consists in deciding
whether one graph can be obtained from another by
moving its points. It turns out to be a very hard
problem that no one knows presently how to solve
in practice (see Fig. 7). Instances of this problem
are however very easy to build: just draw a random
graph and move its points randomly to obtain an iso-
morphic copy of it; the credit card will be the pair
of graphs and the secret pin code will be the secret
movements of the points. It turns out that one can
test if someone knows the secret without leaking any
information on the movement of the points. Note also
that zero-knowledge proofs are bounded to number

Figure 7: Are these two graphs isomorphic?

problems (e.g., graph isomorphism), and that not all
problems admit zero-knowledge proofs but this would
take us too far.

5. Conclusion

Randomness is much more than just noise when
properly coupled with deterministic decisions. Its
ability to draw uniformly over a large set of possi-
bilities allows to bypass unknown bugs in programs
(such as for the multiplier), count correctly on av-
erage without keeping track of the precise count (as
in the probabilistic counters). Its unpredictability al-
lows to be convinced that someone knows a secret
without any leak of his secret. Invisible correlations
between random-looking signals may convey deter-
ministic information once combined together. Fur-
thermore the stochastic systems obtained by this way
are most of time considerably more resource-e�cient
than their more familiar deterministic counterparts.
Smaller, they could be more likely to appear ran-
domly in nature. More resource-e�cient, they pro-
vide a strong advantage in the long run. Counter-
intuitive, they need to be learned in order to avoid
been puzzled when encountered for the first time.
Moreover, their failing error is most of time exponen-
tially small and thus their failure would occur only
after an exponential time which is at the living forms
time scale close to eternity. Such an unit should thus
be considered perfectly reliable at our time scale.

Could natural systems be random?. One can further-
more remark that the “structure” of engineered sys-
tems seems to di↵er considerably from natural sys-
tems (see for instance Fig. 8): the “structure” of nat-
ural systems is often much less visible with complex
interactions between entities (there could even be no
structure at all!), as opposed to engineered systems
which often adopt hierarchical structures because it
is suitable for proving the correctness of their behav-
ior and thus providing the required level of certifica-
tion to avoid accidents. These hierarchical structure
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I count 123456 leaves
Let's answer 123456 + 14

Let's pick a random 
number: 14

and remove 41 leaves 
while he is blindfolded

Let's pick a random tree

Let's answer 123415 + 14

How many leaves now?

123429 leaves

Let's pick a random 
number: 14

I now count 123415 leaves

Remember the random 
number I added before: 14

123470 - 123429 = 41 is indeed the 
random number of leaves I removed! 

Let's look at his two answers

Ok! You most probably 
know how to do it!

Let's blindfold him and 
pick a random number: 41

He is convinced that I know how 
to do it without learning 

anything about how I proceed, 
nor even the number of leaves in 
the tree since I hid it by adding 
my secret random number 14!

How many leaves in this tree?

123470 leaves

Let's guess it is 
353624

and remove 27 leaves 
while he is blindfolded

Well, I don't know how 
to count the leaves... 

Let's guess it has now 
353601 leaves

How many leaves now?

353601 leaves

353624 - 353601 ≠ 27 

Let's look at
his two answers

No! You certainly don't 
know how to do it!

Let's blindfold him and 
pick a random number: 27

I'm busted!

How many leaves in this tree?

353624 leaves

Any person who knows how to count the leaves of a tree will succeed at the test
and the controller will not learn anything on his secret "how to count leaves":

Any person who does not know how to count the leaves of a tree 
will fail at the test with constant probability:

Let's pick a 
random tree

Figure 6: The zero-knowledge protocol for leaves-counting.

Engineered systems
(Quadcore Opteron processor)

Natural systems
(Extract of metabolic pathways)

Figure 8: Engineered vs natural organizations.
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can be exponentially less resource e�cient, e.g. the
counter case. Natural systems just need to work (no
proof asked). Furthermore, they may have been ob-
tained by a succession of “lucky” random changes,
possibly favoring the solutions with moderate impact
of their environment. Adopting a computer scientist
point of view, the impact on the environment can be
minimized by favoring the smaller “programs/units”
accomplishing a given task: it requires less molecules
to built and consumes less energy to run. As argued
earlier: smaller programs not only save resources
but may also be more likely to be found by random
searches such as evolution theory suggests (this state-
ment would need to be argued more precisely and
should be the object of new developments that would
unfortunately not fit in the format of this article). If
smaller “programs/units” were to be favored in na-
ture, this could imply other interesting connections
between natural systems and randomness. Indeed,
minimal programs in computer science are known to
have very particular forms that look totally random
and present no evident structure: formally speak-
ing, they have a very high Kolmogorov complexity,
but being of very high Kolmogorov complexity is just
an other definition of being random (see the work
of Solomono↵, Komogorov, Chaitin, and Martin-Löf
[16, 8, 3, 9]). Informally, if the program had a struc-
ture, then we could use its structure to compress it a
little more and make it smaller: it follows that mini-
mal programs are necessarily random-looking. Thus,
the fact that smaller solutions could be favored in the
evolution process may explain why natural systems
seem to “look random”: they would indeed be close
to random. There could thus be new intriguing links
to discover between natural patterns and randomness
following this direction (experimentally and theoret-
ically) which might lead to a better understanding of
the consequences of natural selection on the evolution
of natural systems.
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