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Abstract. The data-broadcast problem consists in finding an infinite
schedule to broadcast a given set of messages so as to minimize the
average response time to clients requesting messages, and the cost of the
broadcast. This is an efficient means of disseminating data to clients,
designed for environments, such as satellites, cable TV, mobile phones,
where there is a much larger capacity from the information source to the
clients than in the reverse direction.

Previous work concentrated on scheduling indivisible messages. Here,
we studied a generalization of the model where the messages can be
preempted. We show that this problem is NP-hard, even in the sim-
ple setting where the broadcast costs are zero, and give some practical
2-approximation algorithms for broadcasting messages. We also show
that preemption can improve the quality of the broadcast by an arbi-
trary factor.

1 Introduction

1.1 Motivation

Data-broadcast is an efficient means of disseminating data to clients in wire-
less communication environment, where there is a much larger capacity from
the information source to the recipients than in the reverse direction, such as
happens when mobile clients (e.g. car navigation systems) retrieve information
(e.g. traffic information) from base-station (e.g. the emitter) through a wireless
medium. In a broadcasting protocol, items are broadcast according to an infinite
horizon schedule and clients do not explicity send a request for an item to the
server, but connect to the broadcast channels (shared by all the clients) and
wait until the requested item is broadcast. These system are therefore known as
pseudo-interactive or push-based: the server “pushes” the items, or messages, to
the clients (even if disconnected) according to a schedule which is oblivious to
the effective requests; as opposed to the “traditional” pull-based model, where
the clients send a request to “pull” the required item from the server when they
need it. The quality of the broadcast schedule is measured by the expected ser-
vice time of the addressed requests. Furthermore, as each message has a cost for
broadcasting (e.g. a weather broadcast and a news broadcast may have differ-
ent costs for the emitter), the server also tries to minimize the resulting cost of
service. The server has then to minimize the expected service response time of
the requests (quality of service) and the broadcast cost of the resulting schedule
(cost of service). The server designs the broadcast schedule from the profile of



the users: given the messages M, ... , M,,, the profile consists of the popular-
ities of the different messages, that is to say the probabilities (p;)1<i<m, that
Message M; is requested by a random user. [17] proposes some techniques to
gauge user profiles in push-based environment.

With the impressive growth of the wireless, satellite and cable network, the
data dissemination protocols have a number applications in research and com-
mercial frameworks. One of the earliest applications was the Boston Community
Information System (BCIS, 1982) developed at the MIT to deliver news and
information to clients equipped personally with radio receivers in metropolitan
Boston. It was also introduced in early 1980’s in the context of Teletext and
Videotex [8,3]. It is now used by applications that require dissemination among
a huge number of clients. The Advanced Traffic Information System (ATIS) [14],
which provides traffic and route planning information to cars specially equipped
with computers, may have to serve over 100,000 clients in a large metropolitan
city during the rush hours. The news delivery systems on the Internet, such as
Pointcast inc. (1997), or Airmedia inc. (1997), require efficient information dis-
semination system. A comparison of the push-based system to the traditional
pull-based approach for those problems can be found in [1].

Note that the data-broadcast problem also models the maintenance schedul-
ing problem and the multi-item replenishment problem [5, 6, 10].

While previous work made the assumption that messages transmission cannot
be preempted, we focus in this paper on the case where the messages do not have
uniform transmission times and can be split.

1.2 Background

Since the early 1980’s, many authors [8,3-6,11] have studied the data-broadcast
problem in the restrictive setting where all messages have the same length, the
broadcast is done on a single channel, and time is discrete (this restricted prob-
lem is also known as Broadcast disks problem or Dissemination-based systems).
In particular, Ammar and Wong [3,4] give an algebraic expression of the ex-
pected service time of periodic schedules, provide a lower bound, and prove the
existence of an optimal schedule which is periodic. Our Lemmas 2, 3 and Propo-
sition 1 are generalizations of these results to our setting. Bar-Noy, Bhatia, Naor
and Schieber [6] prove that the problem with broadcast costs is NP-hard, and
after a sequence of papers giving constant factor approximations [5, 6], Kenyon,
Schabanel and Young [11] design a PTAS for the problem. The papers [2,1,9,
15,12,13] study related questions pertaining to prefetching, to caching and to
indexing.

As can be seen from the example of broadcasting weather and news reports,
in many applications, it does not make sense to assume that all messages have
the same transmission time; thus a couple of recent papers have explored the
case of non-uniform transmission times. In [16] Vaidya and Hameed report some
experimental results for heuristics on one or two channels. In [10] Kenyon and
Schabanel show that the case where the messages do not have the same trans-
mission time, the data-broadcast problem is NP-hard, even if message have zero



broadcast cost, and does not always admit an periodic optimal schedule. They
show that the natural extension of the lower bound given in [3, 6] is arbitrarily
far from the optimal when the messages have very different length. The main
difficulty is due to the fact that, while a long message is being broadcast, all
requests for shorter and more popular messages have to be put on hold. But
in that case, it seems reasonable to allow a occasional interruption of a long
“boring” message transmission so as to broadcast a short popular message. In
other word, one should allow preemption. This is the main motivation to the
preemptive model introduced and studied in this paper.

1.3 Owur contribution

This paper introduces and studies the model where the messages to be broad-
cast have non uniform transmission time and where their transmission can be
preempted. One of the most interesting contribution from the practical point
of view is that our algorithms (Section 4) generate preemptive schedules whose
costs can be arbitrarily smaller than the optimal cost of any non-preemptive
schedule on some inputs (See Note 1 in Section 4). Thus there is an infinite gap
between the preemptive and non-preemptive problem.

We adopt the following model. The input consists of m messages My, ..., My,
and an user profile determined by the probabilities (p;)1<i<m that a user requests
Message M; (p1 + -+ + pm = 1). Each message M;, i = 1..m, is composed of
¢; packets with transmission time 1 and each broadcast of a packet costs ¢; > 0.
The packets of the messages are broadcast over W identical and synchronized
broadcast channels split into time slots of length 1 (time slot ¢ is the period
of time [t — 1,¢]). Given a schedule S of the packets into the slots, over the
W channels, a client requesting Message M;, starts monitoring all the channels
at some (continuous) point, downloads the different packets of M; one at a
time when they are broadcast on some channel, and is served as soon as it has
downloaded all the £; packets of Message M;. The order in which the client has
received the packet of M; is irrelevant, as in TCP/IP.

The problem is to design a sequence S to schedule the packets over time, so
as to minimize the sum of the expected service time of Poisson requests and of
the average broadcast cost, i.e. so as to minimize lim supy_, . (EST(S, [0, T]) +
BC(S,[0,T1)); here, EST(S, [0, T]) denotes the expected service time of a request
which is generated at a random uniform (continuous) instant between 0 and T,
requests Message M; with probability p;, and must wait until the ¢; packets of M;
have been broadcast and downloaded; and BC(S, [0, T7) is the average broadcast
cost of the packets whose broadcast starts between 0 and 7. Note that this
definition agrees with the one in the literature (e.g. [6]), in the uniform-length
case where the messages are composed of a single packet.

The results presented in this paper are obtained thanks to the simple but
crucial observation made in Lemma 1: for all i, an optimal schedule broadcasts
the packets of Message M; in Round Robin order. We can thus restrict our search
to Round Robin schedules. From this observation, we get an tractable algebraic



expression for the cost of such a schedule in Lemma 2, from which we derive
the lower bound in Lemma 3. This lower bound is the key to the two main
results of the papers: 1) the problem is strongly NP-hard, even if no broadcast
cost are assumed, in Theorem 1 (note that the NP-hardness proof given in [6]
for the uniform length case requires non-zero broadcast cost); 2) there exists
polynomial algorithm which constructs a periodic schedule with cost at most
twice the optimal, in Section 4.

The lower bound also reveals some important structural differences between
our model and the previous models. First, surprisingly, as opposed to all the
previous studies, the lower bound cannot be realized by scheduling the packets
regqularly but by gluing them together (see Lemma 3): from the individual point
of view of a request for a given message, the message should not be preempted.
This allows to derive some results from the non-preemptive case studied in [10].
But, whereas non-preemptive strategies cannot approach this lower bound, we
obtain, all the same, efficient approximation scheme within a factor of 2 by
broadcasting the packets of each message regularly. Second, although the lower
bound specializes to the one designed in [6] when all messages are composed
of a single packet, deriving the lower bound is no longer a straight forward
relaxation on the constraints on the schedule and requires a finer study of the
“ideal” schedules. Moreover, its objective function is no longer convex and its
resolution (in particular the unicity of its solution) needs a careful adaptation,
presented Section 4.5, of the methods introduced in [6, 10].

Note that our preemptive setting models also the case where users do request
single messages but batches of messages. We can indeed consider the packets of
a message as messages of a batch. The preemptive case studied here is the case
where the batches are all disjoint. In that sense the paper is an extension of some
results in [7].

1.4 The cost function

We are interested in minimizing the cost of the schedule S, which is a com-
bination of two quantities on S. The first one, denoted by EST(S), is the ez-
pected service time of a random request (where the average is taken over the
moments when requests occur, and the type M; of message requested). If we
define by EST(S, I), the expected service time of a random request arrived in
time interval I, EST(S) is: EST(S) = limsupy_, ., EST(S, [To, T]), for any Tp.
If we denote by ST(S, M;,t), the service time of a request for M; arrived at
time ¢, and by EST(S, M;,I) the expected service time of a request for M; ar-
riving in time interval I, we get: EST(S, M;,I) = ﬁf{ ST(S, M;,t) dt, and
EST(S,I) = S, pi EST(S, M;, ).

The second quantity is the broadcast cost BC(S) of the messages, defined
as the asymptotic value of the broadcast cost BC(S,T) over a time interval I:
BC(S) = limsupy_, ., BC(S, [Ty, T]), for any Tp. By definition, each broadcast
of a packet of M; costs ¢;. For a time interval I, BC(S, I) is the sum of the cost
of all the packets whose broadcast begins in I, divided by the length of I. The



quantity which we want to minimize is then: COST(S) = EST(S)+BC(S). Note
that up to scaling the costs ¢;, any linear combinaison of EST and BC can be
considered.

2 Preliminary Results

2.1 Structural properties

The following lemma is a crucial observation that will allow to deal with the
dependencies in a tractable way. From this observation, we derive an algebraic
expression for the cost of periodic schedule. In the next section, we show that
this expression yields to a lower bound on the cost of any schedule. The lower
bound will be used in Section 4 to design efficient approximation algorithm.

Definition 1. A schedule S is said Round Robin if at most one packet of each
message M; is broadcast in any time slot according to S, and if S schedules the
packets of each message in Round Robin order (i.e. according to a cyclic order).

Lemma 1 (Round Robin). For any schedule S, consider the Round Robin
schedule S’ constructed from S by rescheduling in Round Robin order the packets
of each message M; within the slots reserved in S to broadcasting a packet of M;.
Then: COST(S") < COST(S).

Moreover, if S is periodic and is not Round Robin, then S’ is periodic and:

COST(S') < COST(S).

Proof. First, S and S’ have the same broadcast cost. Second, consider a request
for M; arriving at time ¢ in S, and the ¢; first time slots where a packet of M;
is broadcast in S after time ¢. The service time of the request is minimized iff
the /; packets of M; are broadcast in those slots. Thus the expected service time
in S’ is at most as large as in S. Moreover, if S is periodic with period T" and is
not Round Robin, then S’ is periodic with period < T'[[~, ¢; and its expected
service time is smaller than S’s. O

W.l.o.g. we will now only consider Round Robin schedules.

Lemma 2 (Cost). Consider a periodic schedule S with period T. For each i,
n; is the number of broadcasts of message M; in a period, and (t;)lgjgnﬂi the
time elapsed between the beginnings of the j™* and the (j + 1)™ broadcasts of a
packet of Message M;. Then:

m nili 4i t ) )
BST(9) =143 m 3 {5 + (i ++ o)}
i=1

j=1
m

1
and BC(S) = T Z cinil;, where the indices are considered modulo n;l;.
i=1



Proof. Consider ¢ in {1,...,m}. Message M; is broadcast n; times per period,
its contribution to the broadcast cost is then n;l;c;/T. A request is for Message
M; with probability p; and arrives between the j*" and the (j 4+ 1)*" broadcasts
of a packet of M; with probability t;- /T. Tt starts then downloading the first
packet after t;- /2 time on expectation and ends downloading the last packet
after t§+1 + -4 t;‘ﬂfrl + 1 other time slots.

Remark 1 (Trapezoids g:r’\:‘i':Lated
representation). Note that Timeof \ ‘ & ‘ ‘ ;
we can represent the cu- Requests ;L= 2H3 —1
mulated response time to & 7z !
po between ., //// o :
request for a given message Packets... 7] | » |
over a period of time by 1and2 ; // ‘

the sum of the areas of 9 -
trapezoids as shown Fig-
ure 1; the black arrows are - __ ‘ ‘ ‘
two example of requests, ; .
their waits are highlight in ‘
black, and the extra cost

for downloading the last
packet is in grey. Fig. 1: The expected service time.

2.2 Optimality results

Theorem 1 (NP-Hardness). Finding the optimal schedule is strongly NP-
hard on a single channel and with zero cost messages.

Proof sketch. (Omitted) The proof is derived from the NP-hardness proof of
the non-preemptive case given in [10]: we show that deciding whether the lower
bound in Lemma 3 is realized is at least as hard as N-partition. O

Remark 2. Note that [6] yields an other NP-hardness proof by stating that the
uniform length case with non zero cost is already NP-hard; however the present
proof does not use costs.

Proposition 1 (Optimal periodic). There ezists an optimal schedule which
is periodic. It can be computed in exponential time.

Proof sketch. (Omitted) The proof is based on the search of a minimum cost cycle
in a finite graph, and the lemmas are broadly inspired from [4,5,10] but their
proofs need to be widely adapted in order to take into account the segmentation
of the messages into packets. O

3 A lower bound

Finding a good lower bound is a key point to designing and proving efficient
approximation algorithms for this problem. An algorithm to compute the value
of the following lower bound, will be given Section 4.5.



Lemma 3 (Lower bound). The following minimization problem is a lower
bound to the cost of any schedule of the packets of My, ... , My, on W channels:

T (Tzéz él — 1) C;
min Di +4;— + —
i=1

>0 2 2T T;

LB(M) m
Subject to: (i) Vi, 7, > 1 and (i) Z

i=1

:‘I»—‘

This minimization problem admits a unique solution 7. LB(M) is realized if
and only if one can broadcast all the packets of each M; consecutively periodically
exactly every (17 - {;).

Proof sketch. According to Lemma 1, let S be a periodic Round Robin sched-
ule of the packets of messages M, ..., M,, on W channels with period 7. We
use the same notations (n;) and (t}) as in Lemma 2. Given that Message M; is
broadcast n; times per period, we seek for the optimal value of the (t;) for each
message independently. We relax the constraints on the schedule by authorizing
messages to overlap and to be scheduled outside the slots. The proof works in
three steps:

1. If the expected service time for M; with ¢; > 2 is minimized, then for any pair
of consecutive broadcasts of the same packet of M; at time ¢; and t2 (1 < t2),
a packet of M; is broadcast at time (¢; + 1) or (t2 — 1).

2. If the expected service time of M; is minimized, the packets of M; are broad-
cast within blocks of ¢; consecutive time slots.

3. The blocks are optimally scheduled periodically every T'/n;.

Step 1. Consider M; with ¢; > 2 and two consecutive packets of M; (w.l.o.g.
packets 1 and 2). For 1 < k < ny, let Iy, Ji, and K}, be the intervals delimited
by the end of the k' broadcast of packet 1, the beginning and the end of the
kth broadcast of packet 2, and the beginning of the next broadcast of a packet
of M; as illustrated below (Note that |Ji| = 1).

§) G —F ——H

Iy, Jp K, Iy 1Je+1 Ky
—

t

Let S’ be the schedule that schedules the packets of M; as in S except that
packet 2 is always scheduled next to packet 1. A request for M; that raises outside
intervals Iy, J;, and Ky has the same service time in S and in S’. A request that
raises in I is served one time unit later in S’ than in S. But a request that
raises in Jj, U Ky, is served |Ig41| earlier in S’ than in S. The expected service

time varies then from S to S’ by:
ng

D (k| x 1= (1 + [K]) X |Tiga]) Z |Kk| - [ Te41] <

i=1
Thus, the expected service time in S’ is at most as big as in S and smaller if
there exists in S a pair of consecutive broadcasts of packet 2 occuring at time #;
and t2 (t; < t2) so that no packet of M; is broadcast at time (t; +1) (| K%| # 0)

and (t2 — 1) (|| #0).



Step 2 is obtained by contradiction using the transformation in Step 1.

Step 8. We are thus left with n; blocks of ¢; packets of M;. Let t; be the time
elapsed between the beginning of the k£*® and the (k+1)*" block. Lemma 2 yields
that the expected service time for M; is:

n; 2
t Wil — 1
)Y - ARLIC )
£\ 2T 2T
which is minimized under the constraint Y, t;, = T, when for all k, t, = T/n;.

Define 7; = T'//(n¢;). The cost of S is thus bounded from below by:

o Ti& él -1 C;
COST(S) 2;{p2< o+ o >+n}

Finally n;¢; < T and Y-, ni¢; < WT imply: (i) 7; > land (i) Y-, 1/ < W.
Minimizing over those constraints yields the lower bound on the cost of any
schedule. The unicity of the solution 7* to the minimization problem will be
proved Section 4.5.

Moreover by construction, the lower bound is realized iff there exists a periodic
Round Robin schedule that broadcast the ¢; packets of each M; in consecutive
slots, periodically every 7;°¢;. O

Remark 3. One can derive a trivial lower bound close up to an additive term
ZZL pil; to ours by simply optimizing the time needed to download a given
packet for each message. If this later lower bound is sufficient to analyze our
heurisitics, it is never realized and cannot be used to yield our NP-hardness
result.

4 Constant factor approximation algorithms

Note 1. The optimal ficticious schedule suggested by the lower bound LB(M) is
not realizable in general. Actually, as shown in [10], if no preemption are used,
the optimal cost of a schedule can be arbitrary far from the lower bound LB(M).
Consider the problem of scheduling W + 1 messages M, ... , My 1 on W chan-
nels, where M; counts ¢; = L'~!' packets, cost ¢; = 0, and request probabil-
ity p; = a/ L*~1, where « is such that p; +- - -+p,, = 1. In that case, one can show
by induction on W that when L goes to infinity, the optimal schedule without
preemption has a cost OPTwhithout preemption = 9(L1/2w)7 but LB(M) = 9(1)

In order to minimize the cost of the
schedule, we won’t follow exactly the ficti-
cious schedule suggested by the lower bound
in Lemma 3. In fact, remark that if we spread
regularly the packets of each message M;,
every T7;, in this ficticious schedule, the ex- _ = 7i .

. . . Fig.2: Spreading the packets regu-
pected service time to a random request in- larly
creases by less than a factor of 2. This will be '
helpful in order to design an efficient approximation algorithm for the preemptive




Algorithm 1 Randomized algorithm | Algorithm 2 Greedy algorithm

Input: Some positive numbers 71,... ,7nm, | Input: Some positive numbers 7, ... , 7,
verifying Y7 1/7 < 1. verifying Y7 1/7 < 1.
Let 70 > 0 so that: Let co = po = 0 and 75 > 0 so that:
Yro=1-3"1/mi Yro=1-33"1/mi
Output: Output:
for t =1..00 do for t =1..00 do
Draw ¢ € {0,1,...,m} with prob- Select ¢ € {0,1,...,m} which mini-
ability 1/7;. Schedule during slot ¢, mizes (¢; — piTs Zli tfl)

j=1%i.j
the next packet of Message M; in the
Round Robin order, if 7 > 1; and Idle
during slot ¢, otherwise.

Schedule during slot ¢, the next packet
of M; in the Round Robin order, if i >
1; and Idle during slot ¢, otherwise.

case.

We will first present algorithms that construct efficient schedules on a single
channel in Sections 4.1, 4.2 and 4.3; then Section 4.4 shows how to extend these
algorithms to the multichannel case, using a result of [6].

4.1 A randomized algorithm

Theorem 2. Given m messages My,... , My, the expected cost of the one-
channel schedule S generated by the randomized algorithm 1, is:

1 = :
E[COST(S)] = 5 + > (pinéi + j—)
i=1 v

Thus if T = 7* realizes LB(M): E[COST(S)] < 2-LB(M) —3/2.

Proof. A packet of M; is broadcast with probability 1/7; in S. The expected
frequency of M; is then 1/7; and E[BC(S)] = >, ¢;/7. A request for M; is
served after ¢; downloads of a packet of M;: it waits on expectation 1/2 until
the end of the current time-slot and 7;¢; upto the end of the download of the
last packet of M;. Then, E[EST(S)] =1/2+ Y1 piliTi.

Finally 7 > 1 and ¢; > 1 imply: 2LB(M) > Y7, (it} l; + ¢;/7}) + 2, which
yields the last statement.

4.2 A greedy approximation

We present in this section a derandomized version of the randomized algorithm

above.
As shown Figure 3, we define

the state of the schedule at time T Sltt t
slot ¢t as a vector s, such that:
for any i and 1 < j < ¥4;, the
4 of the ¢; last broadcasts of a
packet of M; before time ¢ starts at

last ¢; = 4 packets

t Coot t
Si1 Si2 Si3 Sig=4

Fig. 3: The state (s!;) at time ¢.



time (t — (s} ; 4 - - -+ si,¢;). Since no request arrive before ¢ = 0, we equivalently
assume that all the packets of all messages are fictively broadcast at time ¢t = 0,
and initially, at time ¢ = 0: for all i and j, s? ; = 0;.

Theorem 3. Given m messages My, ..., My, the cost of the one-channel
schedule S generated by the greedy algorithm 2, is:

1 i C;
< Z Tl 4+ =
COST(S) < 5T ;:1 <p,n£, + Ti)

Thus if T = 7* realizes LB(M): COST(S) <2-LB(M) —3/2.

Proof sketch. (Omitted) The greedy algorithm is a derandomized version of the
algorithm above. The greedy choice ensures that at any time ¢, the choice made in
time slot ¢ minimizes the expected cost of the already allocated slots 1,... ,t—1,
if the schedule would continue with the randomized scheme. Its cost is then, at
any time, bounded from above by the expected cost of the randomized schedule. O

4.3 A deterministic periodic approximation

It is sometimes required to have a fixed schedule instead of generating it on the
fly. For instance, it helps to design caching strategies [1]. The next result shows
that one can construct an efficient periodic schedule with polynomial period.
Note that this allow also to guarantee a bound (the period) on the service time
of any request.

Theorem 4. One can construct in polynomial time, a periodic schedule with
cost < 2 - LB(M) and period polynomial in the total length and cost of the

messages (S0 G+ 230 eils).

Proof sketch. (Omitted All the packets in order

The ];chedule is ccgnstructegl m OM

as shown Figure 4: 1) First, Y- — Y- _%ig%\rﬁ;
schedule all the packets of f=0 P

each message during the T steps of Greedy Algorithm Junction fqr

first £ =qer Y, £; time slots; Round Robin

2) Second, executes T’ steps Fig.4: A periodic approximation.

of the greedy algorithm above; 3) Third, sort the set X = {k7; : 1 < k < {;} in
increasing order and schedule during the next £ time slots, the k*" packets of the
messages M; in order of increasing k7;; 4) Finally, complete with some packets
of the messages in order to ensure that for all i, the number of broadcasts of
a packet of M; in a period is a multiple of ¢;, and thus guaranty the Round
Robin property. One can show that the cost of the resulting schedule is at most
2LB(M) as soon as the period is bigger than L (3", 6;)* + 23, ¢;¢;. O

4.4 Multi-channel 2-approximations

The performance ratio proof for the randomized algorithm given above only rely
on the fact that we know how to broadcast the packets of each M; every 7; on



expectation. In order to extend the result to the multi-channel case, we only
need to manage to broadcast the packets of each M; with probability 1/7;, while
ensuring that two packets of the same messages are not broadcast during the
same time slot. A straight forward application of the method designed in [6],
to extend the single channel randomized algorithm to the multi-channel, yields
then the result.

The multi-channel greedy algorithm is again obtained by derandomizing the
schedule, and by extending the greedy choice as in [6]. Finally the extension of
the periodic approximation is then constructed exactly as in Section 4.3, except
that one uses the multi-channel greedy algorithm instead of the single channel
one.

4.5 Solving the lower bound

The aim of this last section is to solve the following generic non-linear pro-
gram (A), deﬁned by:

m

; 1
l
— Subject to: (¢) Vi, 7; > 1 and (¢¢ —<Ww
I;l;{)lz a;7; + - ubject to: (i) Vi, 7, > 1 and (i7) ; i
where W is a posmve integer, aq, ... ,a, are positive numbers, and by,... , by,

are arbitrary numbers.

We present essentially an extension of the method designed in [6] for the
special case where for all 7, b; > 0. The results presented are basically the same
but the proofs need to be adapted. As in [6], we introduce a relaxed minimization
problem (A’), which do not require the constraint (i), and which can be solved
algebraically. The solution to the relaxed problem will allow to construct and
prove the unicity of the solution to (A).

Lemma 4 (Relaxation). Given some positive numbers ai, ... ,a,,, a positive
integer W and some numbers bi,... bm, the following minimization problem:

mmZ a;T; + — Subject to: Z

admits a unique solution 7' vemfymg. 11 =/ (b; + \') /al, for a certain \' >
If, for all i, b; > 0 and ), \/a;/b; < W, then X' = 0; else X' is the unique

solution to: Y-, \/a;/(bi+ X)) =W
Proof sketch. (Omitted) Solved by carefull use of Lagrangian relaxation. O

Lemma 5. Consider the two non-linear minimization problems (A) and (A'),
a solution T to (A) and the solution 7' to (A"). Then, for all i, if 7] < 1,
then 17 = 1.

Proof. The proof given in [6] is only based on the unimodularity (and not on
the convexity) of the terms a;7; + b;/7;. Their proof then naturally extends to
the case where some b; may be negative. O

Corollary 1 (Unicity). The minimization problem (A) admits a unique solu-
tion T* which can be computed in polynomial time.



Proof. Consider a solution 7 to (A). We compute the solution 7’ to (4"). If for
some g, 7;, < 1, then 77 = 1. Thus, we remove this variable from Problem (A)
by fixing its value to 1, and iterate. If for all 4, 7/ > 1, 7’ is also solution of (A),
which is thus unique: 7* = 7/. O
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