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Abstract We consider two new variants of online integer programs that are duals. In
the packing problemwe are given a set of items and a collection of knapsack constraints
over these items that are revealed over time in an online fashion. Upon arrival of
a constraint we may need to remove several items (irrevocably) so as to maintain
feasibility of the solution. Hence, the set of packed items becomes smaller over time.
The goal is to maximize the number, or value, of packed items. The problem originates
from a buffer-overflow model in communication networks, where items represent
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information units broken intomultiple packets. The other problem considered is online
covering: there is a universe to be covered. Sets arrive online, and we must decide for
each set whether we add it to the cover or give it up. The cost of a solution is the total
cost of sets taken, plus a penalty for each uncovered element. The number of sets in
the solution grows over time, but its cost goes down. This problem is motivated by
team formation, where the universe consists of skills, and sets represent candidates
we may hire. The packing problem was introduced in Emek et al. (SIAM J Comput
41(4):728–746, 2012) for the special case where the matrix is binary; in this paper we
extend the solution to general matrices with non-negative integer entries. The covering
problem is introduced in this paper; we present matching upper and lower bounds on
its competitive ratio.

Keywords Competitive analysis · Randomized algorithm · Packing integer
programs · Online set packing · Team formation · Prize-collecting multi-covering

1 Introduction

In this paper we study two related online problems based on the classic packing and
covering integer programs. The first is a general packing problem called Online
Packing Integer Programs (abbreviated opip). In this problem we are given a
set of n items and a collection of knapsack constraints over these items. Initially the
constraints are unknown and all items are considered packed. In each time step, a new
constraint arrives, and the online algorithm needs to remove some items (irrevocably)
so as to maintain feasibility of its solution. The goal is to maximize the number, or
value, of packed items. Formally, the offline version of the problem we consider is
expressed by the following linear integer program (N denotes the set of non-negative
integers):

max
n∑
j=1

b j x j

s.t.
n∑
j=1

ai j x j ≤ ci ∀i

x j ≤ p j ∀ j
x j ∈ N ∀ j

(PIP)

We assume that A ∈ Nm×n and c ∈ Nn . The value of x j represents the number of
copies of item j that are packed, p j is a cap (an upper bound) on the number of copies
of item j, b j is the benefit obtained by packing item j , and ci is the capacity of the
i th constraint. The online character of opip is expressed by the following additional
assumptions: (1) knapsack constraints arrive one by one, and (2) the variables can only
be decreased. The special case, where A ∈ {0, 1}m×n and c = 1n is known as Online
Set Packing [8].

An LP-relaxation of (PIP) is obtained by replacing the integrality constraints by
x j ≥ 0, for every j . It follows that the integral version of the dual of the LP-relaxation
is:
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min
m∑
i=1

ci yi +
n∑
j=1

p j z j

s.t.
m∑
i=1

ai j yi + z j ≥ b j ∀ j

yi ∈ N ∀i
z j ∈ N ∀ j

(TF)

The program (TF) describes the offline version of the second problem considered
in this paper, called the Team Formation problem (for reasons that will become
apparent below). In this problem we are given n elements, where element j has a
covering requirement b j and a penalty p j . There are m sets,1 where the coverage of
set i of element j is ai j and its cost is ci . The solution is a collection of the sets,
where multiple copies of sets are allowed. The cost of a solution is the cost of selected
sets plus the penalties for unsatisfied covering requirements. In (TF), the value of yi
represents the number of copies of i taken by the solution, and z j is the amount of
unsatisfied coverage of set j (for which we pay penalty).

Our online version of the Team Formation problem, denoted otf, is as follows.
Initially, the elements are uncovered—and hence incur a unit penalty per each unit of
uncovered element. Sets with various coverage and cost arrive online. In each time
step, a new set arrives, and the algorithm must decide how many copies of the arriving
set to add to the solution. The goal is to minimize the total cost of sets taken plus
penalties for uncovered elements.

Our main measure, as is customary with online algorithms, is the competitive ratio:
in the covering case, the ratio of cost incurred by the algorithm (expected cost if the
algorithm is randomized) to the best possible cost for the given instance, and in the
packing case, the ratio between the benefit earned by the optimum solution to the
(expected) benefit earned by the algorithm.

Motivation. The otf problem is an abstraction of the following situation (correspond-
ing to a binary matrix and binary requirements). We are embarking on a new project
that requires some n skills. The requirement for skill j can be satisfied by outsourcing
for some cost p j , or by hiring an employee who possesses skill j . The goal is to min-
imize the project cost under the following procedure: We interview candidates one by
one. After each interview we know the skills and the hiring cost of the candidate and
must then decide irrevocably whether to hire the candidate.

The opip problem originates from the following natural networking situation [8].
High-level information units, called frames, can be too large to fit in a single network
packet, in which case the frames are fragmented into multiple packets. As packets
traverse the network, they may arrive at a bottleneck link that cannot deliver them
all, giving rise to a basic online question: which packets to drop so as to maximize
the number of frames that are delivered in full. If we ignore buffers, this question is
precisely our version of opip. Namely, in each time step i , a burst of packets arrives,
corresponding to the i th constraint in (PIP): ai j is the size of the packet from frame j
that arrives at step i , and ci is the total size that the link can deliver at time i .

1 We misuse the term “set” for simplicity.
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Our problems appear unique in the literature of online computation in that solutions
get progressively smaller with time. Traditionally, the initial solution is expected to
be the empty set, and its value or cost only increases as the input is progressively
presented. In our class of problems, some aspects of the input are known, inducing a
naïve initial solution. The presented input progressively elucidates the structure of the
instance, adding more constraints (in maximization problems) or providing increas-
ing opportunities for cost reductions or optimizations (in minimization problems). In
reality, the issue is often less what to include than what to keep. We feel that this
complementary viewpoint is natural and deserves further treatment.

Contribution and Results. The contributions of this paper are twofold. On the concep-
tual level, we are the first to formalize the otf problem, to the best of our knowledge
(the opip problem was introduced in [8]). On the technical level, we present nearly
tight results for both the opip and the otf problems.

For opip, we extend the results of [8] from a binarymatrix to the case of general non-
negative integer demands. This is a useful extension when we consider our motivating
network bottleneck scenario: it allows the algorithm to deal with packets of different
size, while previous solutions were restricted to uniform-size packets. The competitive
ratio of our algorithm is O(Cmax

√
ρmax), where Cmax the maximal sum of entries in a

column, and ρmax is the maximal ratio of the load on constraint i , namely
∑

j p j ai j ,
to its capacity ci . Observe that for the case of unit caps (i.e., p = 1), ρmax is the sum
of entries in a row i to its capacity ci . We remark that the extension is non-trivial,
although it uses known techniques.

Regardingotf, we provematching upper and lower bounds on the competitive ratio:
We show that even randomized algorithms cannot have competitive ratio better than
"(

√
ρmax), where ρmax is the maximal ratio, over all elements, between the highest

and lowest cost of covering a given element. This result holds even for the case where
the algorithm may discard a set from its running solution (but never takes back a
set that was dismissed). On the other hand, we give a simple deterministic algorithm
with a competitive ratio of O(

√
ρmax). The algorithm requires prior knowledge of the

value of ρmax; we show that without such knowledge only the trivial O(ρmax) bound
is possible.

We note that our techniques can be used for the variant of otf in which yi is
bounded (e.g., there is only one copy of a given candidate).

Related Work. Online packing was studied in the past, but traditionally the elements
of the universe (equivalently, the constraints) are given ahead of time and sets arrive
on-line (e.g., in [2]). In a similar vein, online set cover was defined in [1] as follows.
A collection of sets is given ahead of time. Elements arrive online, and the algorithm
is required to maintain a cover of the elements that arrived: if the arriving element
is not already covered, then some set from the given collection must be added to the
solution. Our problems have the complementary view of what is known in advance
and what arrives online (see also [5]).

Let us first review some results for the offline packing problem pip. The single
constraint case (m = 1) is simply the Knapsack problem, which is NP-hard and has
an FPTAS [17,21]. If the number of constraints is constant, the offline version of pip
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becomes the Multi- dimensional Knapsack problem that has a PTAS [11], while
obtaining an FPTAS is NP-hard [18]. Raghavan and Thompson [20] used randomized
rounding to obtain solutions whose benefit is t1 = "(opt/m1/α) for pip, where
α = min j mini

c j
ai j

. A solution of benefit t2 = "(opt/m1/(α+1)) is also given for

the case where A ∈ {0, 1}m×n (In this case α = min j c j ). Srinivasan [22] improved
these results by obtaining solutions whose benefits are "(tα/(α−1)

1 ) and "(tα/(α−1)
2 ).

Chekuri and Khanna [6] showed that, for every fixed integer α and fixed ε > 0,
pip with c = αm and A ∈ {0, 1}m×n cannot be approximated within a factor of
m1/(α+1)−ε, unless NP=ZPP. They also showed that pip with uniform capacities
cannot be approximated within a factor of m1/(α+1)−ε, unless NP=ZPP, even with a
resource augmentation factor α (In this case the solution x satisfies Ax ≤ αc).

As mentioned before, the special case of pip where A ∈ {0, 1}m×n and c = 1n is
known as set packing. This problem is as hard as Maximum Independent Set
even when all elements have degree 2 (i.e., A contains at most two non-zero entries
in each row), and therefore cannot be approximated to within a factor of O(n1−ϵ),
for any ε > 0 [15]. In terms of the number of elements (constraints, in pip terms),
set packing is O(

√
m)-approximable and hard to approximate within m1/2−ε, for

any ε > 0 [13]. When set sizes are at most k (A contains at most k non-zero entries
in each column), it is approximable to within (k + 1)/3 + ε, for any ε > 0 [7], and
within (k + 1)/2 in the weighted case [4], but known to be hard to approximate to
within o(k/ log k)-factor [16].

opip was introduced in [8], assuming that the matrix is binary, namely each set
requires either one or zero copies of each item. A randomized algorithm was given
for that case with a competitive ratio of O(k

√
ν), where k is the maximal set size

and ν is the maximal ratio, over all items, between the number of sets containing
that item to the number of its copies. In opip terms this bound is O(Cmax

√
ρmax). A

nearly matching lower bound of "̃(k
√

ν) was also given for the unit capacities case.
This translates to an "̃(Cmax

√
ρmax) lower bound for opip. Subsequent work extended

these results to allow for redundancy [19], i.e., when the benefit of a set is earned when
at least a β-fraction of its elements are assigned to it, for some fixed β > 0. For the
special case of unit capacity opip in which the constraint matrix has the consecutive
ones property, a deterministic O(log Rmax)-competitive algorithm was given in [14],
where Rmax the maximal sum of entries in a row, as well as a matching lower bound.

Previously, the online packing problem where sets arrive online and constraints are
fixedwasdefined in [2], and anO(log n)-competitive algorithmgiven for the casewhen
each set requires at most a 1/ log n-fraction of the cap of any element. A matching
lower bound shows that this requirement is necessary to obtain a polylogarithmic
competitive ratio.

Regarding team formation, we are unaware of any prior formalization of the prob-
lem, let alone analysis. The online cover problem defined in [1] has an algorithm with
competitive ratio O(log n logm). Another related problem is the secretary problem
(see, e.g., [10,12]; further results and references can be found in [3,9]). In this family
of problems, n candidates arrive in random order (or with random value), and the goal
is to pick k of them (classically, k = 1) that optimize some function of the set, such as
the probability of picking the candidates with the top k values, or the average rank of
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selected candidates. The difficulty, similar to our otf formulation, is that the decision
must be taken immediately upon the candidate’s arrival. However, the stipulation that
the input is random makes the secretary problem very different from otf. Another
difference is that unlike otf, the number of candidates to pick is set in advance.

Paper Organization. The remainder of this paper is organized as follows. In Sect. 2
we introduce some notation. In Sect. 3 we describe and analyze our online algorithm
for opip, and in Sect. 4 we consider otf.

2 Preliminaries

In this section we define our notation. Given a matrix A ∈ Nm×n , let R(i) = ∑
j ai j

be the sum of entries in the i th row, and let C( j) = ∑
i ai j be the sum of entries in

the j th column. Denote Rmax = maxi R(i) and Cmax = max j C( j). Define ρ(i) =
(
∑

j p j ai j )/ci , for every i , and ρmax = maxi ρ(i).
Observe that if

∑
j p j ai j ≤ ci for some i , in an opip instance, then constraint i is

redundant. Hence, we assume w.l.o.g. that
∑

j p j ai j > ci for every i , which means
that ρ(i) > 1, for every i .

We assume hereafter that gcd(ai1, . . . , ain, ci ) = 1, for every i . Otherwise, wemay
divide ai1, . . . , ain , and ci by this common factor. This does not change ρ(i), but it
may decrease Cmax and our bound on the competitive ratio. On the other extreme, we
assume that ai j ≤ ci for every i and j : if ai j > ci then item j is not a member in any
feasible solution.

Given a subset J of items and a constraint i , let J (i) =
{
j ∈ J : ai j > 0

}
be the

subset of items from J that participate in constraint i . For example, if opt is the set
of items in some fixed optimal solution, then opt(i) denotes the items in opt that are
active in constraint i . Also, let RJ (i) =

∑
j∈J ai j , and define the weighted benefit of

a constraint i as wb(i) = ∑
j ai j · b j .

Given an otf instance, R(i) = ∑
j ai j is the coverage potential of a single copy

of set i , and
∑

j p j ai j is the potential savings in penalties of a single copy of set i .
Hence, ρ(i) is the ratio between the savings and cost of set i , namely it is the cost
effectiveness of set i . Observe that we may assume that ρ(i) > 1, since otherwise we
may ignore the set. Intuitively, the cheapest possible way to cover the elements is by
sets with maximum cost effectiveness. Hence, ignoring the sets and simply paying the
penalties (i.e., the solution y = 0 and z = b) is a ρmax-approximate solution.

3 Online Packing Integer Programs

In this section we present a randomized algorithm for opip whose competitive ratio is
2Cmax

√
ρmax. We describe an algorithm for opip with unit caps, namely for the case

where p j = 1, for every j , that is a slight generalization of the algorithm given in [8],
allowing us to deal with non-binary instances. We solve the general case by simply
treating each item j as p j items, namely by duplicating the j th column p j times.
Observe that this transformation does not change Cmax or ρmax.
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For the rest of this section we assume that unit item upper bounds, namely that
p = 1. In particular, we assume that ρ(i) = R(i)/ci , for every i .

Random Variables. For w > 0, let Dw : R → [0, 1] be a (cumulative) distribution
function of a random variable Z that is defined by

Dw(z) = Pr[Z ≤ z] =

⎧
⎨

⎩

0 if z < 0;
zw if 0 ≤ z < 1;
1 if 1 ≤ z.

Note that D1 is the uniform distribution over [0, 1] and, in general, for a positive
integer q, Dq is the distribution of the maximum of q independent and identically
distributed variables, each uniformly distributed over [0, 1].

Algorithm RP. Initially, we independently choose for each item j a random priority
r( j) ∈ [0, 1] with distribution Dbj . When constraint i arrives, we construct ci subsets
Si1, . . . , Sici as follows. Each item j chooses ai j subsets at random. Then, for each
subset Siℓ, ℓ ∈ {1, . . . , ci }, we reject all items but the one with the highest priority.
Observe that an item survives only if it has the highest priority in all of its chosen sets.

Example 1 Supposed that the instance contains four items whose priorities are r(1) =
0.5, r(2) = 0.8, r(3) = 0.4, and r(4) = 0.9. Upon arrival of the i th constraint:
x1 + 3x2 + 2x3 + 2x4 ≤ 4, Algorithm RP constructs ci = 4 random subsets: Si1 =
{1, 3} , Si2 = {2, 3, 4} , Si3 = {2, 4}, and Si4 = {2}. Item 2 is eliminated due to S2
and S3, while Item 3 is eliminated due to S1 and S2. Items 1 and 4 are not eliminated
by this constraint.

Intuitively, the approach is to prefer items with high priority. In the special case
where ai j ∈ {0, 1}, one may simply choose the ci items with highest priority. A
somewhat more subtle approach, based on a reduction to the unit capacity case is used
in [8]: Items are randomly partitioned into ci equal-size subsets; from each subset only
the top priority item survives. Our Algorithm RP use a variation of this approach: we
construct ci subsets whose expected sizes are equal, such that item j is contained in
exactly ai j subsets.

Analysis. Observe that each subset Siℓ induces the following constraint:
∑

j∈Siℓ x j ≤
1. Hence, the algorithm implicitly constructs a new uniform capacity opip instance
by defining the matrix A′ ∈ {0, 1}(

∑
i ci )×n as follows: a∑

t<i ck+ℓ, j = 1 if and only if
j ∈ Siℓ. Each row of A′ corresponds to one of the random constraints generated by
the algorithm. See example in Fig. 1.

In what follows we usem′ to denote the number of rows in A′, namelym′ = ∑
i ci .

Also, we use R′(i) to denote
∑

j a
′
i j , C

′( j) to denote
∑m′

i=1 a
′
i j , and so forth. See

example in Fig. 2. Notice that b remains the same, since the item set did not change.
However, the weighted benefit of a new constraint i is wb′(i) = ∑

j a
′
i j · b j . Since A′

is binary, wb′(i) is the sum of benefits that correspond to variables that appear in new
constraint i .

123



1212 Algorithmica (2016) 74:1205–1223

x1 + 3x2 + 2x3 + 2x4 ≤ 4 =⇒

x1 + x3 ≤ 1
x2 + x3 + x4 ≤ 1
x2 + x4 ≤ 1
x2 ≤ 1

Fig. 1 The inequalities that are induced by the sets in Example 1

Fig. 2 The rows of A′ that correspond to the inequalities that are given in Fig. 1. In this case we have that
R′(

∑
j<i c j + 1) = 2

Observation 1 C( j) = C ′( j), for every j , and E[R′(
∑

t<i ct +ℓ)] = ρ(i), for every
i and ℓ.

Proof C( j) = C ′( j), since the item j appears in ai j new constraints with coefficient
1, for every such constraint i . Each item j participates in the ℓth new constraint
corresponding to original constraint i with probability ai j/ci . Hence,

E
[

R′
(
∑

t<i

ct + ℓ

)]

=
∑

j

E
[
a′∑

t<i ct+ℓ, j

]
=
∑

i

ai j
ci

= R(i)
ci

= ρ(i),

where the last equality holds in the unit caps case. ⊓+

Let N [ j] denote the items that are in conflict with item j , namely

N [ j] = {k : ∃i, ℓ s.t. j, k ∈ Siℓ} .

Notice that j ∈ N [ j]. We also define N ( j) = N [ j] \ { j}. Clearly, item j is satisfied
by the algorithm if and only if its priority is higher than that of all other items with
whom it competes, i.e., if r( j) > r(k), for every k ∈ N ( j).

First, consider the probability of satisfying an item j .

Lemma 2 Pr[r( j) > max{r(k) : k ∈ N ( j)}] = E
[

b j
b(N [ j])

]
.

Proof Suppose that N ( j) = N and let rmax = max{r(k) : k ∈ N }. Then, for any
z ∈ [0, 1] we have

Pr[rmax < z] =
∏

k∈N
Pr[r(k) < z] =

∏

k∈N
zbk = z

∑
k∈N bk = zb(N );

that is, rmax has distribution Db(N ). Hence,
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Pr[r( j) > rmax] =
∫ 1

0
Pr[rmax < z] · fr( j)(z)dz =

∫ 1

0
zb(N ) · b j zb j−1dz

= b j

b(N )+ b j
,

where fr( j) denotes the probability density function of the random variable r( j). It
follows that

Pr[r( j) > max{r(k) : k ∈ N ( j)}]
=

∑

N

Pr[N ( j) = N ] · Pr[r( j) > max{r(k) : k ∈ N }|N ( j) = N ]

=
∑

N

Pr[N ( j) = N ] · b j

b(N )+ b j

= E
[

b j

b(N ( j))+ b j

]
,

as required. ⊓+

Next, we provide a lower bound on the expected performance of Algorithm RP.
We abuse notation by referring to the output of the algorithm by RP, as well.

Lemma 3 For any subset of items J, E[b(RP)] ≥
(∑

j∈J b j

)2

E
[∑

j∈J b(N [ j])
] .

Proof By Lemma 2 and by linearity of expectation we obtain

E[b(RP)] =
∑

j∈J

b j · Pr[ j ∈ RP]

=
∑

j∈J

b j · E
[

b j

b(N [ j])

]

= E

⎡

⎣
∑

j∈J

b2j
b(N [ j])

⎤

⎦

≥ E
[

(
∑

j∈J b j )
2

∑
j∈J b(N [ j])

]

,

where the inequality is due to the following consequence of the Cauchy–Schwarz
inequality (with b j for α j and b(N [ j]) for β j ): for positive reals α1, . . . ,αn and

β1, . . . ,βn , we have
∑

j
α2
j

β j
≥

(∑
j α j

)2
∑

j β j
. Jensen’s inequality (for a non-negative ran-

dom variable X, E
[ 1
X

]
≥ 1

E[X ] ) then implies that
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E[b(RP)] ≥ E

⎡

⎢⎣

(∑
j∈J b j

)2

∑
j∈J b(N [ j])

⎤

⎥⎦ ≥

(∑
j∈J b j

)2

E
[∑

j∈J b(N [ j])
] ,

and the lemma follows. ⊓+
Our next step is to bound

∑
j∈J b(N [ j]). Recall that, since A′ is binary, wb′(i)

is the sum of benefits that appear in new constraint i . Hence, if j appears in new
constraint i , its weighted competition is at most wb′(i).

Lemma 4 Let J be a subset of items. Then,
∑

j∈J b(N [ j]) ≤ ∑m′
i=1 R

′
J (i) ·wb′(i).

Proof Observe that

∑

j∈J

b(N [ j]) =
∑

j∈J

∑

k∈N [ j]
bk (1)

≤
∑

j∈J

∑

(i,ℓ): j∈Siℓ

∑

k∈Siℓ
bk (2)

=
∑

j∈J

∑

(i,ℓ): j∈Siℓ
b(Siℓ) (3)

=
m∑

i=1

ci∑

ℓ=1

|Siℓ ∩ J | · b(Siℓ)

=
m′∑

i=1

R′
J (i) · wb′(i) ,

where (1) and (3) are by definition, and (2) is since there can bemore than one collision.
⊓+

To complete the analysis we derive appropriate upper bounds for the denominator
when J = [n] and when J = opt.

Lemma 5

E

⎡

⎣
m′∑

i=1

R′
[n](i)b̄′(i)

⎤

⎦ < 2
m∑

i=1

ρ(i) · wb(i) , (4)

E

⎡

⎣
m′∑

i=1

R′
opt(i)b̄

′(i)

⎤

⎦ ≤
∑

j∈[n]
C( j)b j +

∑

j∈opt
C( j)b j ≤ 2

∑

j∈[n]
C( j)b j . (5)

Proof Consider i ′ ∈ [m′] that corresponds to the ℓth new constraint of original con-
straint i , and two items j ̸= k. We have that

Pr[ j, k ∈ Siℓ] = Pr [ j ∈ Siℓ] · Pr[k ∈ Siℓ] =
ai j
ci

· aik
ci

,
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due to the independence of the random choices of j and k. Hence, for i ∈ [m]we have
that

E
[ ci∑

ℓ=1

R′
J

(
∑

t<i

ct + ℓ

)

b̄′
(
∑

t<i

ct + ℓ

)]

=
∑

j∈J (i)

∑

k

ci∑

ℓ=1

bk Pr[ j, k ∈ Siℓ]

=
∑

j∈J (i)

ai j
ci

∑

k ̸= j

ci bk
aik
ci

+
∑

j∈J (i)

ci b j
ai j
ci

≤
∑

j∈J (i)

ai j
ci

· wb(i)+
∑

j∈J (i)

ai j · b j

≤ ρJ (i) · wb(i)+ wbJ (i).

It follows that

E

⎡

⎣
m′∑

i=1

R′
J (i) · wb′(i)

⎤

⎦ ≤
∑

i

ρJ (i) · wb(i)+
∑

i

wbJ (i). (6)

Since ρ(i) > 1, for every i , Inequality (4) is obtained by assigning J = [n] in (6).
To prove Inequality (5) we assign J = opt. In this case, ρopt(i) ≤ 1, for every i ,

since opt is a feasible solution. Hence

E

⎡

⎣
m′∑

i=1

R′
opt(i) · wb′(i)

⎤

⎦ ≤
∑

i

wb(i)+
∑

i

wbopt(i)

=
∑

i

∑

j

ai j b j +
∑

i

∑

j∈opt
ai j b j

=
∑

j

b j
∑

i

ai j +
∑

j∈opt
b j

∑

i

ai j

=
∑

j

b jC( j)+
∑

j∈opt
b jC( j),

and the lemma follows. ⊓+

Lemma 5 implies that

Theorem 1

E[b(RP)] ≥ max

{
b([n])2

2
∑

i ρ(i) · wb(i)
,

b(opt)2

2
∑

j C( j)b j

}

≥ b([n])b(opt)
2
√∑

i ρ(i) · wb(i) ·∑ j C( j)b j

.
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Theorem 1 implies the following:

Corollary 2 There is an opip algorithm with competitive ratio at most 2Cmax
√

ρmax.

Proof By definition,

∑

i

ρ(i) · wb(i) ≤ ρmax
∑

i

∑

j

ai j b j = ρmax
∑

j

b jC( j) ≤ ρmaxb([n])Cmax,

and

∑

j

C( j)b j ≤ Cmaxb([n]).

Hence, it follows from Theorem 1 that

E[b(RP)] ≥ b([n])b(opt)
2
√

ρmaxb([n])Cmax · Cmaxb([n])
= b(opt)

2Cmax
√

ρmax
,

and we are done. ⊓+

4 Competitive Team Formation

In this section we provide a deterministic online algorithm for otf and a matching
lower bound that holds even for randomized algorithms. Furthermore, our lower bound
holds for a more general case, where the commitment of the online algorithm is only
“one way” in the following sense. Once a set is dismissed it cannot be recruited again,
but a set in the solution at one point may be thrown out of the solution later.

4.1 An Online Algorithm

Our algorithm generates a monotonically growing collection of sets based on a
simple deterministic threshold rule. Recall that ρmax is the maximum cost effec-
tiveness, over all sets. Algorithm Threshold assumes knowledge of ρmax and
works as follows. Let y be the set vector constructed by Threshold, and define
zij = max

{
b j − ∑

ℓ≤i aℓj yℓ, 0
}
, i.e., zij is the amount of missing coverage for ele-

ment j after the introduction of set i . Note that zij is monotone non-increasing with
i .

The solution is constructed as follows. Upon arrival of a new candidate i , assign
yi ← v, where v is the maximum integer that satisfies

v · ci ≤
∑

j min
{
v · ai j , zi−1

j

}
· p j

√
ρmax

. (7)

123



Algorithmica (2016) 74:1205–1223 1217

Intuitively, we take the maximum possible number of units of set i that allows us to
save a factor of at least

√
ρmax over the penalties it replaces. Note that min{vai j , zi−1

j }
is the amount of coverage that v copies of set i add to element j . Hence, the total
amount of penalties that are saved by v copies of set i is

∑
j min{vai j , zi−1

j }p j . Also
notice that v is well-defined because (7) is always satisfied by v = 0.

We show that the competitive ratio of Threshold is at most 2
√

ρmax − 1.

Theorem 3 Let (y, z) be the solution computed by Algorithm Threshold, and let
(y∗, z∗) be an optimal (integral) solution. Then,

∑

i

ci yi +
∑

j

p j z j ≤
(
2
√

ρmax − 1
)∑

i

ci y∗
i +

∑

j

p j z∗j .

Proof We first bound
∑

i ci yi . By condition (7),

∑

i

ci yi ≤ 1√
ρmax

∑

i

∑

j

min
{
ai j yi , zi−1

j

}
· p j

= 1√
ρmax

∑

j

p j
∑

i

min
{
ai j yi , zi−1

j

}

≤ 1√
ρmax

∑

j

p j (b j − z j ),

where the second inequality follows since min{ai j yi , zi−1
j } is the amount of cov-

erage that is added to j in the i th round, and therefore the total coverage of
j,
∑

i min{ai j yi , zi−1
j }, is at most b j − z j .

On the other hand, since ρ(i) = (
∑

j p j ai j/ci ), for every i , we have that

∑

i

ci y∗
i =

∑

i

1
ρ(i)

y∗
i

∑

j

p j ai j ≥ 1
ρmax

∑

j

p j
∑

i

y∗
i ai j

≥ 1
ρmax

∑

j

p j

(
b j − z∗j

)
.

It follows that

∑

i

ci yi ≤ 1√
ρmax

∑

j

p j (b j − z j )

= 1√
ρmax

⎛

⎝
∑

j

p j (b j − z∗j )+
∑

j

p j z∗j −
∑

j

p j z j

⎞

⎠

≤ √
ρmax

∑

i

ci y∗
i + 1√

ρmax

∑

j

p j

(
z∗j − z j

)
.
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Next, we turn to bound the penalties that (y, z) pays and (y∗, z∗) does not pay,
namely we bound

∑
j p j max{z j − z∗j , 0}. Define

)i = max
{
y∗
i − yi , 0

}
.

If ) = 0, then z j ≤ z∗j , for every j , and we are done. Otherwise, let i be an index
such that )i > 0. Due to condition (7) in the i th step, we have that

ci yi ≤
∑

j min
{
ai j yi , zi−1

j

}
· p j

√
ρmax

while

ci y∗
i >

∑
j min{ai j y∗

i , z
i−1
j } · p j

√
ρmax

.

Observe that j’s coverage increases by min{ai j yi , zi−1
j } = zij − zi−1

j in the i th step. If
we further increase yi to y∗

i we may gain min{)i ai j , zij } additional coverage for item
j . Hence,

ci)i = ci y∗
i − ci yi >

∑
j min{ai j)i , zij } · p j

√
ρmax

≥
∑

j min
{
ai j)i , z j

}
· p j√

ρmax
.

It follows that

√
ρmax

∑

i

ci)i >
∑

i

∑

j

min
{
ai j)i , z j

}
· p j

≥
∑

j

p j min

{
∑

i

ai j)i , z j

}

≥
∑

j

p j max
{
z j − z∗j , 0

}
,

where the last inequality follows from the fact that y+) ≥ y∗ and therefore) covers
at least max{z j − z∗j , 0}, for every j . Hence,

∑

j

p j max
{
z j − z∗j , 0

}
≤ √

ρmax
∑

i

ci)i ≤ √
ρmax

∑

i

ci y∗
i .

Putting it all together, we get that

∑

i

ci yi +
∑

j

p j z j ≤
∑

i

ci yi +
∑

j

p j z∗j +
∑

j

p j max{z j − z∗j , 0}
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≤ √
ρmax

∑

i

ci y∗
i + 1√

ρmax

∑

j

p j (z∗j − z j )+
∑

j

p j z∗j

+
∑

j

p j max{z j − z∗j , 0}

≤ √
ρmax

∑

i

ci y∗
i +

∑

j

p j z∗j + (1 − 1/
√

ρmax)
∑

j

p j max{z j − z∗j , 0}

≤ (2
√

ρmax − 1)
∑

i

ci y∗
i +

∑

j

p j z∗j ,

as required. ⊓+

This leads us to an upper bound on the competitive ratio.

Corollary 4 Algorithm Threshold is (2
√

ρmax − 1)-competitive.

We note that the same approach would work for the variant of otf in which there
is an upper bound ui on the number of copies of set i that can be used, i.e., yi ≤ ui . In
this case the value of v in condition (7) is also bounded by ui . The rest of the details
are omitted.

4.2 A Lower Bound

In this section we present a matching lower bound, which holds for randomized algo-
rithms, and even for the case where the algorithm may discard a set from its running
solution (but never takes back a set that was dismissed).

We start with a couple of simple constructions. In the first construction, the input
consists of sets of size one, and in the second all costs and penalties are the same.

Theorem 5 The competitive ratio of any randomized online algorithm for otf is
"(

√
ρmax). This bound holds for inputs with only two elements and sets of size one,

with unit coverage and uniform penalties.

Proof Let alg be a randomized algorithm. Consider an input sequence consisting of
two elements with unit covering requirement and penalty p. The arrival sequence is
composed of two or three sets. The first set to arrive is {1} of cost 1. (The goal of the
first set is to make sure that the ratio between the penalty and the minimum cost is p.)
The second set is {2} of cost √p. If alg takes this set with probability less than half,
then the sequence ends; otherwise, the third set {2} of cost 1 arrives.

In the first case the optimal cost is 1 + √
p, while alg pays at least 1 + 1

2 p.
Otherwise, the optimal cost is 2, while alg pays at least 1 + 1

2
√
p. Notice that we

may repeat the second part of this sequence as many times as needed. Finally, notice
that ρmax = p. ⊓+

Theorem 6 The competitive ratio of any randomized online algorithm for otf is
"(

√
ρmax). This bound holds for inputs with unit costs and penalties.
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Proof Let alg be a randomized algorithm. Assume unit penalties and unit coverage
requirements. Consider the input sequence that starts with

√
n candidates, each with√

n fresh skills and cost 1. Let ℓ be the expected number of candidates alg takes from
this sequence. If ℓ <

√
n/2, this is the whole input. In this case the expected cost

of alg is at least 1
2n, whereas the optimal cost is

√
n. If ℓ ≥ 1

2
√
n, then we add an

omnipotent candidate (who has all skills) at the end, with cost 1. It follows that alg
pays at least 12

√
n in expectation, while opt pays only 1. Finally, notice that ρmax = n.

⊓+

Next, we give a lower bound construction that applies to the more general setting
in which the algorithm may discard a set from its solution.

Theorem 7 The competitive ratio of any randomized online algorithm for otf is
"(

√
ρmax). This bound holds even if the algorithm is allowed to discard sets. Further-

more, it holds also in the binary case, where all demands, coverages, penalties and
costs are either 0 or 1.

Proof Our lower bound construction uses affine planes defined as follows. Let n = q2,
where q is prime. In our construction, each pair (a, b) ∈ Zq × Zq corresponds to an
element. Sets will correspond to lines: a line in this finite geometry is a collection
of pairs (x, y) ∈ Zq × Zq satisfying either y ≡ ax + b (mod q), for some given
a, b ∈ Zq , or of the form (c, ∗) for some given c ∈ Zq . There are q2 + q = *(n)
such lines.

The important properties we use are the following:

1. All points can be covered by q disjoint (parallel) lines.
2. Two lines that intersect in more than a single point are necessarily identical.

We now describe the lower bound scenario. The elements correspond (in a 1–1
fashion) to the points in the affine plane. All elements have unit penalty and unit
covering requirement, i.e., p j = 1 and b j = 1, for every j . The input sequence starts
with a sequence of q2+q sets corresponding to all distinct lines of the plane, each with
unit cost. Fix any randomized online algorithm alg. We proceed by cases, depending
on the expected number r of these sets that alg retains at this point. If r ≤ √

n/2 or
r > n/2, then we are already done: at this time the cost to the algorithm is "(n) (due
either to penalties or to the cost of sets retained), while the optimal cost at this time is√
n by virtue of Property (1) above.
Otherwise,

√
n/2 < r ≤ n/2. Let L be a line chosen uniformly at random. The

probability that L is retained by the algorithm is at most 1/2, since r ≤ n/2. We now

extend the input sequence by one more set Lc def= {1, . . . , n} \ L , and assign Lc unit
cost. Note that by Property (2), if L is not retained by the algorithm, then the number
of other lines that cover the points of L cannot be smaller than |L| = √

n, and hence
the expected cost of alg due only to the points of L (either by covering set costs or by
incurred penalties) is at least

√
n/2. Obviously, throwing out any set from the solution

at this time will not help to reduce the cost. On the other hand, the optimal solution to
this scenario is the sets L and Lc, whose cost is 2, and hence the competitive ratio is
at least "(

√
n). ⊓+
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Remarks. First, we note that in the proof above, the unit-cost set Lc can be replaced
by

√
n − 1 sets, where each set covers

√
n elements and costs 1√

n−1 . Second, we note
that one may be concerned that in the first case, the actual ρmax of the instance is not
n. This can be easily remedied as follows. Let the instance consist of 2n elements: n
elements in the affine plane as in the proof, and anothern dummyelements. The dummy
elements will be all covered by a single set that arrives first in the input sequence. The
remainder of the input sequence is as in the proof. This allows us to argue that the
actual ρmax is indeed n, whatever the ensuing scenario is, while decreasing the lower
bound by no more than a constant factor.

The above theorems hold even if ρmax is known to the algorithm. However, if ρmax
is unknown, and discarding sets is not allowed, then we get a stronger lower bound.

Theorem 8 The competitive ratio of any randomized online algorithm for otf is
"(ρmax), if the algorithm cannot discard sets and has no knowledge of ρmax. It holds
even in the case of unit penalties, demands and coverage.

Proof Let alg be a randomized algorithm. Suppose for the sake of deriving a con-
tradiction that there is an arbitrarily slow growing invertible function h such that alg
has competitive ratio at most ρmax/h(ρmax).

For every sufficiently large x , we shall construct an instance I with ρmax =
ρmax(I ) ≥ x for which the performance ratio of alg is at least 2ρmax/h(ρmax). This
contradicts the assumption of the competitive ratio of alg, implying the theorem.

Let x be value satisfying h(x) ≥ 4 and let f (x) = h(x)/4. The instance we
construct as follows has only one element with unit penalty. A set arrives with cost
1/x . If alg takes the set with probability less than 1

2 , we stop. Otherwise, we present
a second set with cost 1/ f −1(x).

In the former case, ρmax = x , the expected cost of alg is at least 1
2 , and opt pays

1/x , for a competitive ratio of

E[alg]
opt

≥ 1/2
1/x

= ρmax

2
≥ 2ρmax

h (ρmax)
.

In the latter case,ρmax = f −1(x),whichmeans that x = f (ρmax). The expected cost of
alg is at least 1/(2x) = 1/(2 f (ρmax)), while the cost of opt is 1/ f −1(x) = 1/ρmax.
The performance ratio is then at least ρmax/(2 f (ρmax)) ≥ 2ρmax/h(ρmax). In both
cases, we obtain a contradiction, implying the theorem. ⊓+

It follows thatwhenρmax is unknown, it will not be possible to obtain an O(
√

ρmax)-
competitive algorithm without the ability to discard sets.

5 Conclusion

Asmentioned in the introduction, the special case of opip in which the matrix is binary
(i.e., each set requires either one or zero copies of each item) was considered in [8],
where an upper bound and an almost tight lower bound on the competitive ratio of
randomized algorithmswhere presented.We have shown that a variant of the algorithm
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from [8] applies to general opip. We note that the above lower bound applies to the
unit capacities case. However, there is no lower bound for opip with non-unit uniform
capacities.

We have proven matching upper and lower bounds on the competitive ratio for
otf. We have shown that even randomized algorithms cannot have competitive ratio
better than "(

√
ρmax). The lower bound holds even if ρmax is known, and even if

one is allowed to drop previously selected sets. On the other hand, the upper bound is
obtained due to a simple deterministic algorithm that does not drop sets. Unfortunately,
our algorithm is based on the prior knowledge of ρmax. It remains an open question
whether there is an O(

√
ρmax)-competitive algorithm that has no knowledge of ρmax.

We have eliminated the possibility of an O(
√

ρmax) upper bound for an algorithm that
is not allowed to discard sets.
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