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Abstract
Runtime Verification (RV) is a lightweight method for monitoring the formal specification

of a system during its execution. It has recently been shown that a given state predicate can
be monitored consistently by a set of crash-prone asynchronous distributed monitors, only if
sufficiently many different verdicts can be emitted by each monitor. We revisit this impossibility
result in the context of Ltl semantics for RV. We show that employing the four-valued logic
Rv-Ltl will result in inconsistent distributed monitoring for some formulas. Our first main
contribution is a family of logics, called Ltl2k+4, that refines Rv-Ltl incorporating 2k+ 4 truth
values, for each k ≥ 0. The truth values of Ltl2k+4 can be effectively used by each monitor to
reach a consistent global set of verdicts for each given formula, provided k is sufficiently large.
Our second main contribution is an algorithm for monitor construction enabling fault-tolerant
distributed monitoring based on the aggregation of the individual verdicts by each monitor.
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1 Introduction

Runtime Verification (RV) is a technique where a monitor process determines whether or
not the current execution of a system under inspection complies with its formal specification.
The state-of-the-art RV methods for distributed systems exhibit the following shortcomings.
They (1) employ a central monitor, (2) employ several monitors but lack a systematic way
to monitor formally specified properties of a system (e.g., [10–12]), or (3) assume a fault-free
setting, where each individual monitor is resilient to failures [5,7,8,15–17,19]. Relaxing the
latter assumption, that is, handling monitors subject to failures, poses significant challenges
as individual monitors would become unable to agree on the same perspective of the ex-
ecution, due to the impossibility of consensus [9]. Thus, it is unavoidable that individual
monitors emit different local verdicts about the current execution, so that a consistent global
verdict with respect to a correctness property can be constructed from these verdicts.

The necessity of using more than just the two truth values of Boolean logic is a known
fact in the context of RV with a single monitor. For instance, Rv-Ltl [3] has four truth
values B4 = {>,⊥,>p,⊥p}. These values identify cases where a finite execution (1) per-
manently satisfies, (2) permanently violates, (3) presumably satisfies, or (4) presumably
violates an Ltl formula. For example, consider a request/acknowledge property, where a
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16:2 Decentralized Asynchronous Crash-Resilient Runtime Verification

request r1 is eventually responded by acknowledgement a1, and a1 should not occur before
r1; i.e., Ltl formula ϕ = G(¬a1 ∧¬r1) ∨ [(¬a1 U r1) ∧ Fa1]. In Rv-Ltl, a finite execution
containing r1 and ending in a1 (i.e., the request has been acknowledged) yields the truth
value ‘permanently satisfied’, whereas an execution containing only r1 (i.e., the request has
not yet been acknowledged) yields ‘presumably violated’.

Although Rv-Ltl can monitor ϕ (see Fig. 1 for its monitor automaton) in a centralized
setting, we show B4 is not sufficient to consistently monitor a conjunction of two such formu-
las in a framework of several asynchronous unreliable monitors. Namely, the set of verdicts
emitted by the monitors may not be sufficient to distinguish executions that satisfy the for-
mula from those that violate it. Intuitively, this is because each monitor has only a partial
view of the system under scrutiny, and after a finite number of rounds of communication
among monitors, still too many different perspectives about the global system state remain.
In fact, it was proved in [12] using algebraic topology techniques [13] that fault-tolerant
distributed monitoring requires that the individual verdicts are taken from a set whose size
depends on the formula being monitored.

Our results. In this paper, we propose a framework for distributed fault-tolerant RV.
To this end, we make a novel connection between RV and consensus in a failure-prone
distributed environment by proposing a multi-valued temporal logic. This new logic is a
refinement of Rv-Ltl. More specifically, we propose a family of (2k + 4)-valued logics,
denoted Ltl2k+4, for k ≥ 0. In particular, Ltl2k+4 coincides with Rv-Ltl when k = 0.
The syntax of Ltl2k+4 is identical to that of Ltl. Its semantics is based on Fltl [14] and
Ltl3 [4], two Ltl-based finite trace semantics for RV. For each k ≥ 0, the kth instance
of the family has 2k + 4 truth values, that intuitively represent a degree of certainty that
the formula is satisfied. We characterize the formulas that when verified at run time with
Ltl2k+4, no additional information is gained if they are verified with Ltl 2k′+4, for a larger
value k′. We present a monitor construction algorithm that generates a finite-state Moore
machine for any given Ltl formula and k ≥ 0.

For example, for formula ϕ = ϕ1 ∧ . . .∧ ϕt, where each ϕi is an independent request/ac-
knowledgement formula, Ltl2k+4 can be used to consistently monitor ϕ, whenever k ≥ t.
In particular, when t = 2, the set of truth values is B8 = {>0,⊥0,>1,⊥1,>2,⊥2,>,⊥}.
Moreover, formula ϕ evaluates to: >0 (presumably true with the lowest degree of certainty)
in a finite execution that does not contain neither r1 nor a1, then to ⊥1 in an extension
where r1 appears (presumably true with a higher degree of certainty), to >1 in an extension
that includes both r1 and a1, to ⊥2 if r2 appears, and finally to > (permanently true) in an
execution that contains r1, a1, r2, and a2.

Our second contribution is an algorithm for fault-tolerant distributed RV, where the mon-
itors are asynchronous wait-free processes that communicate with each other via a read/write
shared-memory, and any of them can fail by crashing. (For simplicity we use this abstract
model, which is well-understood [2,13], and is known to be equivalent, with respect to task
computability, to a message-passing model where less than half the processes can crash.)
Each monitor gets a partial view of the system’s global state, communicates with the other
monitors a fixed number of rounds, and then emits a verdict from B2k+4. We show how,
given any Ltl formula and a large enough k, the truth values of Ltl2k+4 can be effectively
used such that a set of verdicts collectively provided by the monitors can be mapped to the
verdict computed by a centralized monitor that has full view of the system under inspection.
It follows from the general lower bound result in [12] that our algorithm is optimal, meaning
that for any k ≥ 0, there exists an Ltl formula that cannot be monitored consistently in
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Ltl2k+4, if k is not sufficiently large. Finally, we prove that the value of k is solely a function
of the structure of the Ltl formula.

Related Work. While there has been significant progress in sequential monitoring in the
past decade, there has been less work devoted to distributed monitoring. Lattice-theoretic
centralized and decentralized online predicate detection in distributed systems has been
studied in [7, 15]. This line of work does not address monitoring properties with temporal
requirements. This shortcoming is partially addressed in [17], but for offline monitoring.
In [19], the authors design a method for monitoring safety properties in distributed systems
using the past-time linear temporal logic (PLTL). In such a work, however, the valuation of
some predicates and properties may be overlooked. This is because monitors gain knowledge
about the state of the system by piggybacking on the existing communication among pro-
cesses. That is, if processes rarely communicate, then monitors exchange little information
and, hence, some violations of properties may remain undetected. Runtime verification of
LTL for synchronous distributed systems where processes share a single global clock has
been studied in [5, 8]. In [6], the authors introduce parallel algorithms for runtime verifica-
tion of sequential programs. As already mentioned, our work is inspired by the research line
of [10–12], the first one to study the effects of monitor failures in distributed RV. Distrib-
uted applications that can be runtime monitored with three opinions were studied in [11],
and the number of opinions needed to runtime monitor set agreement was analyzed in [10].
More generally, [12] proves a tight lower bound on the number of opinions needed to mon-
itor a property based on its alternation number. The goal of this paper is to give a formal
semantics to the opinions studied in [10–12], and derive a framework in the actual formal
context of runtime verification.

2 Background: Linear Temporal Logics for RV

Let AP be a set of atomic propositions and Σ = 2AP be the set of all possible states. A
trace is a sequence s0s1 · · · , where si ∈ Σ for every i ≥ 0. We denote by Σ∗ (resp., Σω) the
set of all finite (resp., infinite) traces. Throughout the paper, we denote infinite traces by
the letter σ, and finite traces by the letter α. We denote the empty trace by ε. For a finite
trace α = s0s1 · · · sn, |α| denotes its length, i.e., its number of states n + 1. Finally, by αi,
we mean trace sisi+1 · · · sn of α. We assume that the syntax and semantics of standard Ltl
is common knowledge.

Example. We use the following request/acknowledgement Ltl formula throughout the pa-
per to explain the concepts:

ϕra = G(¬a ∧ ¬r) ∨ [(¬aU r) ∧ Fa]

That is (1) if a request is emitted (i.e., r = true), then it should eventually be acknowledged
(i.e., a = true), and (2) an acknowledgement happens only in response to a request.

Finite LTL (FLTL). In the context of runtime verification, the semantics of Ltl is not
fully appropriate as it is defined over infinite traces. Finite Ltl (Fltl, see [14]) allows us
to reason about finite traces for verifying properties at run time. The syntax of Fltl is
identical to that of Ltl and the semantics is based on the truth values B2 = {>,⊥}. The
semantics of Fltl for atomic propositions and Boolean operators are identical to those of
Ltl. We now recall the semantics of Fltl for the temporal operators. Let ϕ, ϕ1, and ϕ2
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be Ltl formulas, α = s0s1 · · · sn be a non-empty finite trace, and |=F denote satisfaction
in Fltl. We have

[α |=F Xϕ] =
{

[α1 |=F ϕ] if α1 6= ε

⊥ otherwise

and

[α |=F ϕ1 Uϕ2] =
{
> if ∃k ∈ [0, n] : ([αk |=F ϕ2] = >) ∧ (∀` ∈ [0, k), [α` |=F ϕ1] = >)
⊥ otherwise

To illustrate the difference between Ltl and Fltl, let ϕ = Fp and α = s0s1 · · · sn. If
p ∈ si for some i ∈ [0, n], then we have [α |=F ϕ] = >. Otherwise, [α |=F ϕ] = ⊥, and
this holds even if the program under inspection extends α in the future to a state where p
becomes true.

Multi-valued LTLs. As illustrated above, for a finite trace α, Fltl ignores the possible
future extensions of α, when evaluating a formula. 3-valued Ltl (Ltl3, see [4]) evaluates
Ltl formulas for finite traces with an eye on possible future extensions. In Ltl3, the set of
truth values is B3 = {>,⊥, ?}, where ‘>’ (resp., ‘⊥’) denotes that the formula is permanently
satisfied (resp., violated), no matter how the current execution extends, and ‘?’ denotes an
unknown verdict; i.e., there exist an extension that can falsify the formula, and another
extension that can truthify the formula.

Now, let α ∈ Σ∗ be a non-empty finite trace. The truth value of an Ltl3 formula ϕ with
respect to α, denoted by [α |=3 ϕ], is defined as follows:

[α |=3 ϕ] =


> if ∀σ ∈ Σω : ασ |= ϕ

⊥ if ∀σ ∈ Σω : ασ 6|= ϕ

? otherwise.

Rv-Ltl [3], which we will denote in this paper Ltl4, refines the truth value ? into ⊥p
and >p. That is, B4 = {>,>p,⊥p,⊥}. More specifically, evaluation of a formula in Ltl4
agrees with Ltl3 if the verdict is ⊥ or >. Otherwise, (i.e., when the verdict in Ltl3 is ?),
Ltl4 utilizes Fltl to compute a more refined truth value.

Now, let α ∈ Σ∗ be a finite trace. The truth value of an Ltl4 formula ϕ with respect to
α, denoted by [α |=4 ϕ], is defined as follows:

[α |=4 ϕ] =


> if [α |=3 ϕ] = >
⊥ if [α |=3 ϕ] = ⊥
>p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = >
⊥p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥

>p⊥p

> ⊥

¬a ∧ r

a ∧ ¬r

¬a ∧ ¬r

a ∧ r

¬a ∧ r

a

truetrue

Figure 1 Ltl4 mon-
itor of ϕra.

The Ltl4 monitor of a formula ϕ is the unique deterministic
finite state machineMϕ

4 = (Σ, Q, q0, δ, λ), whereQ is a set of states,
q0 is the initial state, δ : Q×Σ→ Q is the transition function, and
λ : Q→ B4, is a function such that:

λ(δ(q0, α)) = [α |=4 ϕ]

for every finite trace α ∈ Σ∗. In [4], the authors introduce an algorithm that takes as input
an Ltl formula and constructs as output an Ltl4 monitor. For example, Fig. 1 shows the
Ltl4 monitor for the request/acknowledgement formula ϕra = G(¬a∧¬r) ∨ [(¬aU r)∧Fa].
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3 Distributed Runtime Monitoring and Insufficiency of LTL4

In this section, we present a general computation model for asynchronous distributed wait-
free monitoring. Throughout the rest of the paper, the system under inspection produces
a finite trace α = s0s1 · · · sk, and is inspected with respect to an Ltl formula ϕ by a set
M = {M1,M2, . . . ,Mn} of asynchronous distributed wait-free monitors.

Algorithm sketch: For every j ∈ [0, k − 1], between each sj and sj+1, each monitor, in a
wait-free manner:

1. reads the value of propositions in sj , which may result in a partial observation of sj ;
2. repeatedly communicates its partial observation with other monitors through a single-

writer/multi-reader shared memory;
3. updates its knowledge resulting from the aforementioned communication, and
4. evaluates ϕ and emits a verdict from B4.
Since each monitor observes and maintains only a partial view of sj , and since the monitors
run asynchronously, different read/write interleavings are possible, where each interleaving
may lead to a different collective set of verdicts emitted by the monitors in M for sj . In
Subsection 3.1, we formally introduce our notion of wait-free distributed monitoring.

To ensure consistent distributed monitoring, one has to be able to map a collective set
of verdicts of monitors (for any execution interleaving) to one and only one verdict of a
centralized monitor that has the full view sj . A necessary condition for this mapping is
that, for every two finite traces α, α′ ∈ Σ∗, if [α |=F ϕ] 6= [α′ |=F ϕ], then the monitors
in M should compute different collective sets of verdicts for α and α′, no matter what
their initial partial observation and subsequent read/write interleavings are. We call this
condition global consistency, described in detail in Subsection 3.2.

3.1 Wait-Free Distributed Monitoring
We consider a set M = {M1,M2, . . . ,Mn} of monitors, each observing a system under
inspection. We assume that each monitor inM has only a partial view of the system under
inspection.

I Definition 1. A partial state is a mapping S from the set AP of atomic propositions to
the set {true, false, \}, where \ denotes an unknown value.

When a state s is reached in a finite trace, each monitor Mi ∈ M, for 1 ≤ i ≤ n, takes
a sample from s, which results in obtaining a partial state. More formally:

I Definition 2. A sample of a state s ∈ Σ by monitor Mi is a partial state Ssi such that,
for all ap ∈ AP, we have: (Ssi (ap) = true → ap ∈ s) ∧ (Ssi (ap) = false → ap 6∈ s).

Definition 2 entails that, in a sample, if the value of an atomic proposition is not unknown,
then the sampled value is consistent with state s. Thus, two monitorsMi andMj cannot take
inconsistent samples. That is, for any state s and samples Ssi , Ssj , and for every ap ∈ AP,
we have: (Ssi (ap) 6= Ssj (ap)) → (Ssi (ap) = \ ∨ Ssj (ap) = \).

We say that a set of monitors cover a state if the collection of partial views of these
monitors covers the value of the all atomic propositions. Formally:

I Definition 3. A set M = {M1,M2, . . . ,Mn} satisfies state coverage for a state s if and
only if for every ap ∈ AP, there exists Mi ∈M such that Ssi (ap) 6= \.
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16:6 Decentralized Asynchronous Crash-Resilient Runtime Verification

Data: Ltl formula ϕ and state sj

Result: a verdict from B4

1 initialize all elements of LS i[j] with \;
2 LS i

i[j]← Ssj

i ; /* take sample from state sj */
3 for some fixed number of rounds do
4 SM i[j]← p(LS i[j]); /* write (i.e., project) current knowledge in shared memory */
5 LS i[j]← SM [j]; /* take a snapshot of the shared memory */
6 emit [x(LS i[0]) . . . x(LS i[j]) |=4 ϕ]; /* evaluate ϕ using extrapolation function */

Algorithm 1: Behavior of Monitor Mi, for i ∈ [1, n]

Each monitor Mi inM is a process, and the monitors run in the standard asynchronous
wait-free read/write shared memory model [2]. Each monitor (1) runs at its own speed, that
may vary along with time and (2) may fail by crashing (i.e., halt and never recover). We
assume that up to n− 1 monitors can crash, and thus a monitor never “waits” for another
monitor (since this may cause a livelock). Every monitor that does not fail is required to
output; i.e., to emit a verdict. Hence, a distributed algorithm in this settings consists for
each monitor in a bounded sequence of read/write accesses to the shared memory at the end
of which a verdict is emitted. If the number of possible inputs is bounded, the lengths of
such sequences are globally bounded. We thus assume without loss of generality that each
monitor accesses the shared memory a fixed number of times before emitting a verdict [13].

More specifically, for every state sj in α = s0s1 · · · sk, each monitor Mi maintains a
so-called local snapshot LS i[j] consisting of n registers, one per monitor inM (i.e., the local
snapshot is organized as an array of registers). We denote by LS li[j] the local register of
monitor Mi associated with monitor Ml for state sj . Each register has |AP| elements, one
for each atomic proposition in AP. The monitors in M communicate by means of shared
memory. The structure of the shared memory SM is similar to monitor local snapshots: for
each state sj , SM [j] consists of n atomic registers, one per monitor, and each register has
|AP| elements one for each atomic proposition (i.e, single-writer/multiple-reader (SWMR)
registers). Thus, for state sj , each monitor Mi can read the entire content of SM [j], but
can only write into register SM i[j]1.

The distributed monitoring algorithm. Each monitorMi ∈M, i ∈ [1, n], runs Algorithm 1
that we shall now describe in detail. For any given new state sj , Monitor Mi first initializes
all registers of its local snapshot to \ (cf. Line 1). Then, Mi takes a sample from state
sj (cf. Line 2). Recall from Def. 2 that the value of an atomic proposition in a sample is
either true, false, or \. The set of values in the sample is copied in local register LS ii[j].
After sampling, each monitor Mi executes a sequence of write/snapshot actions (cf. Lines 4
and 5) for some a priori known number of times, that we detail next2.

In Line 4, Mi computes its knowledge about each proposition ap, given its content of
LS i[j], and atomically writes it into its associated register SM i[j] in the shared memory.
Function p = (pap)ap∈AP where pap : {true, false, \}n → {true, false, \} is the projection

1 We assume that each monitor is aware of the change of state of the system under inspection. Thus,
for a state sj , a monitor Mi reads and writes in the associated local and shared memory locations, i.e.,
LSi[j] and SM [j].

2 Algorithm 1 uses snapshot operations for the sake of simplifying the presentation. We emphasize that
atomic snapshots can be implemented using atomic read/write operations in a wait-free manner [1].
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function defined by

pap(v1, . . . , vn) =


true if ∃i ∈ [1, n] : vi = true
false if ∃i ∈ [1, n] : vi = false
\ otherwise

Given a local snapshot LS i, p(LS i) denotes the partial state obtained by applying pap to n
values of each atomic proposition ap in LS i. Notice that, based on Definition 2, p cannot
receive contradicting values for an atomic proposition.

In Line 5, Mi reads of all the registers in SM [j], and copies them into LS i[j], in a
single atomic step. Finally, after a certain number of iterations, the for-loop ends, and Mi

evaluates ϕ and emits a verdict based on the content of its local snapshots LS i[0] · · ·LS i[j]
(cf. Line 6). To evaluate ϕ on s0s1 · · · sj , monitor Mi needs to compute one and only one
Boolean value for each atomic proposition. To this end, we assume that for each atomic
proposition ap ∈ AP, all monitors are provided with the same extrapolation function xap
allowing them to associate a Boolean value to each atomic proposition, even if its truth value
is unknown at some monitors. Such an extrapolation function must satisfy the following
consistency condition.

I Definition 4. Given ap ∈ AP, a function xap : {true, false, \}n → {true, false} is an ex-
trapolation function if and only if pap(v1, . . . , vn) 6= \ → xap(v1, . . . , vn) = pap(v1, . . . , vn).

Given a local snapshot array LS , x(LS) denotes the state obtained by applying xap to
n values of each atomic proposition ap in LS . Also given a state sj , by JLS i[j]K, we mean
the local snapshot of monitor Mi obtained after termination of the for loop in Algorithm 1.

Example. LetM = {M1,M2} and consider the formula for two requests and acknowledge-
ments:

ϕra2 =
(

G(¬a1 ∧ ¬r1) ∨ [(¬a1 U r1) ∧ Fa1]
)
∧
(

G(¬a2 ∧ ¬r2) ∨ [(¬a2 U r2) ∧ Fa2]
)

Fig. 2 shows different execution interleavings of monitors M1 and M2 when running Al-
gorithm 1 from states s0 = {r1, a1} and s′0 = {r1, a1, r2}. Based on the order of monitor
write-snapshot actions: M1,M2 (resp., M2,M1) denotes the case where monitor M1 (resp.,
M2) executes a write-snapshot before monitorM2 (resp.,M1) does, andM1||M2 denotes the
case where monitors M1 and M2 execute their write-snapshot actions concurrently. In case
of s0, after executing Line 2 of Algorithm 1, monitor M1’s sample, i.e., the local snapshot
LS1

1[0], consists of Ss0
1 (r1) = true, Ss0

1 (a1) = \, and Ss0
1 (r2) = Ss0

1 (a2) = false. Moreover,
initially, M1 has no knowledge of M2’s sample. Monitor M2’s sample from s0, i.e., the local
snapshot LS2

2[0], consists of Ss0
2 (r1) = Ss0

2 (a1) = true, Ss0
2 (r2) = \, and Ss0

2 (a2) = false
while it initially has no knowledge of M1’s sample. Likewise, for state s′0, Fig. 2 shows dif-
ferent local snapshots by M1 and M2. Given two values v1 and v2, we define (an arbitrary)
extrapolation function as follows:

xap(v1, v2) =
{

true if (v1 = true) ∨ (v2 = true)
false otherwise

where ap ∈ {a1, r1, a2, r2}. Finally, starting from s0, if (1) the for loop of Algorithm 1 ter-
minates after 1 communication round, and (2) the interleaving isM1,M2, then x(JLS2[0]K) =
{r1, a1}, and evaluation of ϕra2 by M2 in Ltl4 results in [x(JLS2[0]K) |=4 ϕra2 ] = >p.
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Figure 2 Example: Monitors M1 and M2 monitoring formula ϕra2 from two different states s0

and s′
0.

3.2 Global Consistency
For any state sj , when a set of monitors execute Algorithm 1, different interleavings, and
hence different sets of verdicts, are possible. Global consistency is the property enabling to
map the set of verdicts of the distributed monitors to the verdict of a centralized monitor
that has the full view of states.

I Definition 5. A monitor trace in Ltl4 for α is a sequence m = m0m1 · · ·mk, where,
for every j ∈ [0, k], mj ⊆ B4, and each element of each mj is the verdict of some monitor
Mi ∈ M by evaluating [x(JLS i[0]K)x(JLS i[1]K) · · ·x(JLS i[j]K) |=4 ϕ]. For example, Fig. 3,
shows a concrete finite trace α and its corresponding monitor trace.

I Definition 6. Let ϕ be an Ltl formula, α be a finite trace in Σ∗, and m be any of its
monitor traces. We say that m satisfies global consistency in Ltl4 iff there exists a function
µ : 2B4 → {>,⊥} such that µ(m|α|−1) = [α |=F ϕ].

We now show that Ltl4 is unable to consistently monitor all Ltl formulas. To see this,
observe that in Fig. 2, the shaded collective verdicts m0 and m′0 are both equal to {⊥p,>p},
but [s0 |=4 ϕ] 6= [s′0 |=4 ϕ]. This clearly does not meet global consistency (see the proof of
Lemma 7 for details).
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Figure 3 A monitor trace.

I Lemma 7. Not all Ltl formulas can be consistently monitored by a 1-round distributed
monitor with traces in Ltl4, even if monitors satisfy state coverage, and even if no monitors
crash during the execution of the monitor.

Lemma 7 holds for an arbitrary number of communication rounds as well. Indeed,
additional rounds of communication will not result into reaching global consistency. This
impossibility result is a direct consequence of the main lower bound in [12], which can be
rephrased as follows.

I Theorem 8. Not all Ltl formulas can be consistently monitored by a distributed monitor
with traces in Ltl4, even if monitors satisfy state coverage, even if no monitors crash during
the execution of the monitor, and even if the monitors perform an arbitrarily large number
of communication rounds.

In the next section, we revisit the notion of alternation number introduced in [12] in order
to identify formulas that can be monitored by Ltl4, and to design a multi-valued logic to
monitor Ltl formulas that cannot be monitored in Ltl4.

4 Alternation Number

We now define the notion of alternation number [12] in the context of Ltl. In the next
section, we shall show that the alternation number essentially determines an upper bound
on the number of truth values needed to ensure consistency in distributed monitoring.

Let α ∈ Σ∗ be a finite trace, α′ be the longest proper prefix of α, and ϕ be an Ltl
formula. We set the alternation number of ϕ with respect to α as follows:

AN (ϕ, α) =


0 if |α| = 1
AN (ϕ, α′) + 1 if (|α| ≥ 2) ∧ ([α′ |=F ϕ] 6= [α |=F ϕ])
AN (ϕ, α′) otherwise

The alternation number with respect to infinite traces is defined as follows. Let σ ∈ Σω be an
infinite trace. If for any prefix α of σ, there exists a finite extension α′, such that AN (ϕ, α) <
AN (ϕ, α′), then we set AN (ϕ, σ) =∞. Otherwise, we set AN (ϕ, σ) = AN (ϕ, α) where α is
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such that there does not exist a finite extension α′ of α such that AN (ϕ, α) < AN (ϕ, α′).
Finally, the alternation number of ϕ with respect to a (possibly infinite) set A of traces is

AN (ϕ,A) = max
{

AN (ϕ, α) | α ∈ A
}

I Definition 9. The alternation number of an Ltl formula ϕ is AN (ϕ) = AN (ϕ,Σ∗).

Examples. We have AN (G p) = 1 because, in any finite trace α, if the valuation of G p

in Fltl changes from > to ⊥, then, in no extension of α this value can change back to >.
We have AN (G(r → Fa)) = ∞, because any occurrence of r ∧ ¬a evaluates the formula
to ⊥, and a subsequent occurrence of a evaluates the formula to > in Fltl. We have
AN (ϕra) = AN (G(¬a ∧ ¬r) ∨ [(¬aU r) ∧ Fa]) = 2. Indeed, as long as ¬r ∧ ¬a is true
throughout a trace α, we have [α |=F ϕra] = >. When r ∧ ¬a becomes true, the valuation
of ϕra changes to ⊥. If a becomes true subsequently, then ϕra evaluates to >. By the same
type of arguments, we show AN (ϕra2) = 4.

Interestingly, the alternation number of an Ltl formula ϕ can be determined from the
structure of its Ltl4 monitor automaton Mϕ

4 .

I Theorem 10. Let ϕ be an Ltl formula. The alternation number of ϕ, AN (ϕ), is equal
to the length of the longest alternating walk in its Ltl4 monitor Mϕ

4 .

Example. Let ϕra = G(¬a∧¬r) ∨ [(¬aU r) ∧ Fa]). We have AN (ϕra) = 2, and one can
check on Fig. 1 that indeed the length of the longest alternating walk in Mϕra

4 is 2.

5 Multi-Valued LTL for Consistent Distributed Monitoring

In this section, we introduce a family of multi-valued logics (called Ltl2k+4), for every k ≥ 0,
and relate it to the notion of alternation number. For every k ≥ 0, the syntax of Ltl2k+4 is
identical to that of Ltl. We present the semantics, monitor synthesis, and proof of global
consistency of Ltl2k+4 in Subsections 5.1, 5.2, and 5.3, respectively.

5.1 Semantics of LTL2k+4

Truth values. The semantics of Ltl2k+4 refines Ltl4. Ltl2k+4 employs the following set
of 2k + 4 truth values:

B2k+4 = {⊥,>,⊥0, . . . ,⊥k,>0, . . . ,>k}.

Intuitively, for i ∈ [0, k], truth value ⊥i means possibly false with degree of certainty i, and
truth value >i means possibly true with degree of certainty i, while > and ⊥ have the same
meaning as their Ltl3 counterparts. Thus, Ltl2k+4 coincides with Ltl4 for k = 0. Consider
a non-empty finite trace α = s0s1 · · · sn in Σ∗. We denote the valuation of a formula ϕ with
respect to α in Ltl2k+4 by [α |=2k+4 ϕ]. Since, for any i ∈ [0, k], ⊥i implies ‘?’ in Ltl3, we
require that [α |=2k+4 ϕ] = ⊥i → [α |=3 ϕ] = ? ∧ [α |=F ϕ] = ⊥. The latter conjunct is
to relate ⊥i with the valuation of α in Fltl. Likewise, we require that, for any i ∈ [0, k]:
[α |=2k+4 ϕ] = >i → [α |=3 ϕ] = ? ∧ [α |=F ϕ] = >. We determine the degree of certainty
of [α |=2k+4 ϕ] inductively according to the judgement rules below, where α′ = s0s1 · · · sn−1.

Observe that the degree of certainty does not change if the Fltl valuation does not
change in α′ and α, or change from ⊥ to >. On the contrary, the degree of certainty does
change if the Fltl valuation changes in α′ and α from > to ⊥, respectively.
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[α |=2k+4 ϕ] =



⊥ if [α |=3 ϕ] = ⊥
> if [α |=3 ϕ] = >
⊥0 if |α| = 1 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥
>0 if |α| = 1 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = >
>i with i ∈ [0, k] if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = > ∧

[α′ |=2k+4 ϕ] ∈ {>i,⊥i}
⊥i with i ∈ [0, k) if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥ ∧

[α′ |=2k+4 ϕ] ∈ {⊥i,>i−1}
⊥k if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥ ∧

[α′ |=2k+4 ϕ] ∈ {⊥k,>k,>k−1}

5.2 Monitorability and Monitor Synthesis for LTL2k+4

Pnueli and Zaks [18] characterize an Ltl formula ϕ as monitorable for a finite trace α, if α
can be extended to one that can be evaluated with respect to ϕ at run time. That is, an
Ltl formula ϕ is monitorable in Ltl3 if and only if: ∀α ∈ Σ∗ : ∃α′ ∈ Σ∗ : [αα′ |=3 ϕ] 6= ?.
We stick to the same definition for Ltl2k+4.

I Definition 11. Let ϕ be an Ltl formula. The Ltl2k+4 monitor of ϕ is the unique
deterministic finite state machineMϕ

2k+4 = (Σ, Q, q0, δ, λ), where Q is a set of states, q0 is
the initial state, δ : Q × Σ → Q is the transition function, and λ : Q → B2k+4, such that,
for every non-empty finite trace α ∈ Σ∗, we have [α |=2k+4 ϕ] = λ(δ(q0, α)).

Input: Alphabet Σ, Ltl formula ϕ, k ≥ 0
Output: Ltl2k+4 monitor Mϕ

2k+4 = (Σ, Q, q0, δ, λ)

1 (Q, q0, δ, λ)← ConstructMonitor(Σ, ϕ, 0);
2 for i← 1 to k do
3 (Q̄, q̄0, δ̄, λ̄)← ConstructMonitor(Σ, ϕ, i);
4 Q← Q ∪ Q̄; δ ← δ ∪ δ̄; λ← λ ∪ λ̄;
5 forall the q ∈ Q, q̄ ∈ Q̄ do
6 if (λ(q) = >i−1 ∧ λ(q̄) = ⊥i) then
7 forall the q′ ∈ Q, a ∈ Σ do
8 if λ(q′) = ⊥i−1 ∧ δ(q, a) = q′

then
9 δ = δ − {(q, a, q′)};

10 δ = δ ∪ {(q, a, q̄)};

11 return Mϕ
2k+4 = (Σ, Q, q0, δ, λ);

12 Function ConstructMonitor(alphabet Σ, Ltl
formula ϕ, i ≥ 0)

13 Let Mϕ
4 = (Σ, Q, q0, δ, λ);

14 forall the q ∈ Q do
15 if (λ(q) = >p) then
16 λ(q)← >i;
17 if (λ(q) = ⊥p) then
18 λ(q)← ⊥i;

19 return (Q, q0, δ, λ);

Algorithm 2: Monitor construction for
Ltl2k+4

Algorithm 2 constructs Ltl2k+4 monitors.
Intuitively, our algorithm creates k+1 cop-
ies of Ltl4 [3] monitors by invoking Func-
tion ConstructMonitor, and cascades them in
such a way that incrementing the degree of
certainty is implemented as prescribed by
our definition of Ltl2k+4. Observe that for
a given value i ∈ [0, k], Function Construct-
Monitor renames truth value >p (respect-
ively, ⊥p) in Ltl4 to >i (respectively, ⊥i)
(see Lines 14-18). Cascading the monit-
ors in Algorithm 2 is as follows. Initially,
we generate an Ltl4 monitor for k = 0
(Line 1). Then, in each step i ∈ [1, k] of
the for-loop, we generate a new Ltl4 mon-
itor (cf. Line 3). We ensure incrementing
the degree of certainty by removing mon-
itor transitions (q, a, q′), where q is annot-
ated by >i−1 and q′ is annotated by ⊥i−1,
and adding transitions (q, a, q̄), where q̄ is
annotated by ⊥i (Lines 5-10).

I Theorem 12. Let ϕ be an Ltl formula,
and letMϕ

2k+4 = (Σ, Q, q0, δ, λ) be its Ltl2k+4 monitor such as constructed by Algorithm 2.
Then, for any non-empty finite trace α ∈ Σ∗, we have λ(δ(q0, α)) = [α |=2k+4 ϕ].
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5.3 Monitoring Algorithm and Global Consistency in LTL2k+4

Monitoring Algorithm Let α = s0s1 · · · sk be a finite trace in Σ∗. As discussed in Section 3,
for any state sj , where j ∈ [0, k], each monitor runs Algorithm 1 and emits a verdict. In
order to employ Ltl2k+4 and ensure consistency, each monitor has to compute the highest
possible degree of certainty by considering all possible monitor communication interleavings
that result in state sj . Formally, the set of all interleavings that reach a state s ∈ Σ is the
set of sequences of partial states defined as follows:

Is =
{
S0S1 · · · Sl | (∀ap ∈ AP : S0(ap) = \) ∧ (Sl = s)∧

[∀i ∈ [0, l) : ∀ap ∈ AP : (Si(ap) 6= \) → (∀m ∈ (i, l] : Si(ap) = Sm(ap))]
}

Now, for state sj in α and formula ϕ, a monitor Mi computes AN (ϕ, Ix(JLSi[j]K)). This
can be done by running each trace in Ix(JLSi[j]K) on the Ltl2k+4 monitor of ϕ. This is indeed
the key idea to ensure global consistency.

I Observation 13. For any state s ∈ Σ and Ltl formula ϕ, we have AN (ϕ, Is) ≤ AN (ϕ).

Example. Fig. 4 shows how monitors M1 and M2 evaluate formula ϕra2 in Ltl2k+4 with
k = 2. Observe that the two sets of verdicts that were not distinguishable in Fig. 2 (i.e.,
m0 = m′0 = {⊥p,>p}) are now distinguishable (i.e., m0 = {⊥1,>1}, while m′0 = {>1,⊥2}),
as we are now using 8 truth values instead of just 4. The ability of monitoring a formula in
Ltl2k+4 for a given k ≥ 0 is strongly related to the alternation number of the formula.

Main Results. The following identifies an upper-bound on the number of truth values
needed to monitor any Ltl formula.

I Theorem 14. An Ltl formula ϕ can consistently be monitored by a wait-free distributed
monitor in Ltl2k+4, if

k ≥ d12(min(AN (ϕ), n)− 1)e

where n is the number of monitors.

An immediate consequence of Theorem 14 is for computing µ (Definition 6) for Ltl2k+4.
For a set m ∈ B2k+4, one can compute µ(m) by identifying the supremum of m, for the total
order ⊥0 < >0 < ⊥1 < >1 < . . . < ⊥k < >k. It is straightforward to observe that such a µ
results in global consistency for Ltl2k+4. Also, notice that Theorem 14 is best possible. It
matches the following generalization of Theorem 8. The proof is similar to the lower bound
of [12].

I Theorem 15. For each k ≥ 0, there is an Ltl formula ϕ that cannot be consistently
monitored by a wait-free distributed monitor in Ltl2k+4, if

k < d12(min(AN (ϕ), n)− 1)e

where n is the number of monitors.

6 Conclusion and Future Work

In this paper, we proposed a family of multi-valued logics Ltl2k+4, each one with 2k + 4
truth values, for fault-tolerant distributed RV, refining existing finite Ltl semantics. We
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Figure 4 Global consistency of Ltl2k+4 monitors M1 and M2 for formula ϕra2 , where k = 2.

presented an idealized setting where a set of unreliable monitors emit consistent verdicts in
Ltl2k+4 about the correctness of the system under inspection, if k is sufficiently large.

We note that wait-free computing is a powerful and simple abstraction to model and
reason about distributed algorithms. All results in this paper can theoretically be trans-
formed to more practical refinements such as message passing frameworks. Of course, further
research is needed to develop such transformations. From a more practical perspective, it
would be interesting to relax the timing model enabling monitors to observe, communicate,
and emit verdicts between any two global states; to study frameworks for message passing
systems, and to address more severe, even Byzantine failures.
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