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Abstract. We study property testing in the context of distributed com-
puting, under the classical CONGEST model. It is known that testing
whether a graph is triangle-free can be done in a constant number of
rounds, where the constant depends on how far the input graph is from
being triangle-free. We show that, for every connected 4-node graph H,
testing whether a graph is H-free can be done in a constant number
of rounds too. The constant also depends on how far the input graph
is from being H-free, and the dependence is identical to the one in the
case of testing triangle-freeness. Hence, in particular, testing whether a
graph is K4-free, and testing whether a graph is C4-free can be done in
a constant number of rounds (where Kk denotes the k-node clique, and
Ck denotes the k-node cycle). On the other hand, we show that testing
Kk-freeness and Ck-freeness for k ≥ 5 appear to be much harder. Specif-
ically, we investigate two natural types of generic algorithms for testing
H-freeness, called DFS tester and BFS tester. The latter captures the
previously known algorithm to test the presence of triangles, while the
former captures our generic algorithm to test the presence of a 4-node
graph pattern H. We prove that both DFS and BFS testers fail to test
Kk-freeness and Ck-freeness in a constant number of rounds for k ≥ 5.

1 Introduction

Let P be a graph property, and let 0 < ε < 1 be a fixed parameter. According
to the usual definition from property testing [16], an n-node m-edge graph G
is ε-far from satisfying P if applying a sequence of at most εm edge-deletions
or edge-additions to G cannot result in a graph satisfying P. In the context of
property testing, graphs are usually assumed to be stored using an adjacency
list4, and a centralized algorithm has the ability to probe nodes, via queries of
the form (i, j) where i ∈ {1, . . . , n}, and j ≥ 0. The answer to a query (i, 0) is
the degree of node i, while the answer to a query (i, j) with j > 0 is the identity
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CYT via Basal in Applied Mathematics, Núcleo Milenio Información y Coordinación
en Redes ICM/FIC RC130003, Fondecyt 1130061 and Fondecyt 3150552.

4 Actually, property testing tackles graph problems in both the dense model (graphs
represented by adjacency matrices) and the sparse model (graphs represented by
adjacency lists). In this paper, we are interested in property testing in the sparse
model.



of the jth neighbor of node i. After a small number of queries, the algorithm
must output either accept or reject. An algorithm Seq is a testing algorithm for
P if and only if, for every input graph G,{

G satisfies P =⇒ Pr[Seq accepts G] ≥ 2
3 ;

G is ε-far from satisfying P =⇒ Pr[Seq rejects G] ≥ 2
3 .

(An algorithm is 1-sided if it systematically accepts every graph satisfying P).
The challenge in this context is to design testing algorithms performing as few
queries as possible.

In the context of distributed property testing [6], the challenge is not the
number of queries (as all nodes perform their own queries in parallel), but the
lack of global perspective on the input graph. The graph models a network. Every
node of the network is a processor, and every processor can exchange messages
with all processors corresponding to its neighboring nodes in the graph. After
a certain number of rounds of computation, every node must output accept or
reject. A distributed algorithm Dist is a distributed testing algorithm for P if
and only if, for any graph G modeling the actual network,{
G satisfies P =⇒ Pr[Dist accepts G in all nodes] ≥ 2

3 ;
G is ε-far from satisfying P =⇒ Pr[Dist rejects G in at least one node] ≥ 2

3 .

The challenge is to use as few resources of the network as possible. In par-
ticular, it is desirable that every processor could take its decision (accept or
reject) without requiring data from far away processors in the network, and that
processors exchange messages of size respecting the inherent bounds imposed
by the limited bandwidth of the links. These two constraints are well captured
by the CONGEST model. This model is a classical model for distributed com-
putation [27]. Processors are given distinct identities, that are supposed to have
values in [1, nc] in n-node networks, for some constant c ≥ 1. All processors start
at the same time, and then proceed in synchronous rounds. At each round, ev-
ery processor can send and receive messages to/from its neighbors, and perform
some individual computation. All messages must be of size at most O(log n)
bits. So, in particular, every message can include at most a constant number of
processor identities. As a consequence, while every node can gather the identities
of all its neighbors in just one round, a node with large degree that is aware of
all the identities of its neighbors may not be able to send them all simultane-
ously to a given neighbor. The latter observation enforces strong constraints on
distributed testing algorithms in the CONGEST model. For instance, while the
LOCAL model allows every node to gather its t-neighborhood in t rounds, even
just gathering the 2-neighborhood may require Ω(n) rounds in the CONGEST
model (e.g., in the Lollipop graph, which is the graph obtained by joining a
path to a clique). As a consequence, detecting the presence of even a small given
pattern in a graph efficiently is not necessarily an easy task.

The presence or absence of a certain given pattern (typically, paths, cycles
or cliques of a given size) as a subgraph, induced subgraph, or minor, has a
significant impact on graph properties, and/or on the ability to design efficient



algorithms for hard problems. This paper investigates the existence of efficient
distributed testing algorithms for the H-freeness property, depending on the
given graph H. Recall that, given a graph H, a graph G is H-free if and only if
H is not isomorphic to a subgraph of G, where H is a subgraph of a graph G if
V (H) ⊆ V (G), and E(H) ⊆ E(G). Recently, Censor-Hillel et al. [6] established
a series of results regarding distributed testing of different graph properties,
including bipartiteness and triangle-freeness. A triangle-free graph is a K3-free
graph or, equivalently, a C3-free graph, where Kk and Ck respectively denote the
clique and the cycle on k vertices. The algorithm in [6] for testing bipartiteness
(of bounded degree networks) requires O(log n) rounds in the CONGEST model,
and the authors conjecture that this is optimal. However, quite interestingly,
the algorithm for testing triangle-freeness requires only a constant number of
rounds, O(1/ε2), i.e., it depends only on the (fixed) parameter ε quantifying the
ε-far relaxation.

In this paper, we investigate the following question: what are the (connected)
graphs H for which testing H-freeness can be done in a constant number of
rounds in the CONGEST model?

1.1 Our results

We show that, for every connected 4-node graph H, testing whether a graph
is H-free can be done in O(1/ε2) rounds. Hence, in particular, testing whether
a graph is K4-free, and testing whether a graph is C4-free can be done in a
constant number of rounds. Our algorithm is generic in the sense that, for all
4-node graphs H, the global communication structure of the algorithm is the
same, with only a variant in the final decision for accepting or rejecting, which
of course depends on H.

In fact, we identify two different natural generic types of testing algorithms
forH-freeness. We call the first type DFS tester, and our algorithm for testing the
presence of 4-node patterns is actually the DFS tester. Such an algorithm applies
to Hamiltonian graphs H, i.e., graphs H containing a simple path spanning all its
vertices (the only non-hamiltonian connected graph on 4 vertices is the star K1,3,
for which the problem is trivial). The DFS tester performs in |H| − 1 rounds.
Recall that, for a node set A, G[A] denotes the subgraph of G induced by A. At
each round t of the DFS tester, at every node u, and for each of its incident edges
e, node u pushes a graph G[At] (where, initially, A0 is just the graph formed
by u alone). The graph G[At] is chosen u.a.r. among the sets of graphs received
from the neighbors at the previous round. More specifically, upon reception of
every graph G[At−1] at round t−1, node u forms a graph G[At−1∪{u}], and the
graph G[At] pushed by u along e at round t is chosen u.a.r. among the collection
of graphs G[At−1∪{u}] currently held by u. By repeating this algorithm O(1/ε2)
times we obtain the desired probability.

We call BFS tester the second type of generic testing algorithm for H-
freeness. The algorithm in [6] for triangle-freeness is a simplified variant of the
BFS tester, and we prove that the BFS tester can test K4-freeness in O(1/ε2)
rounds. Instead of guessing a path spanning H (which may actually not exist



for H large), the BFS tester aims at directly guessing all neighbors in H simul-
taneously. The algorithm performs in D− 1 rounds, where D is the diameter of
H. For the sake of simplicity, let us assume that H is d-regular. At each round,
every node u forms groups of d neighboring nodes. These groups may overlap,
but a neighbor should not participate to more than a constant number of groups.
Then for every edge e = {u, v} incident to u, node u pushes all partial graphs
of the form G[At−1 ∪ {v1, . . . , vt}] where v ∈ {v1, . . . , vt}, At−1 is chosen u.a.r.
among the graphs received at the previous round, and the vi’s will be in charge
of checking the presence of edges between them and the other vj ’s.

We prove that neither the DFS tester, nor the BFS tester can test Kk-freeness
in a constant number of rounds for k ≥ 5, and that the same holds for testing
Ck-freeness (with the exception of a finite number of small values of k). This
shows that testing Kk-freeness or Ck-freeness for k ≥ 5 in a constant number
of rounds requires, if at all possible, to design algorithms which explore G from
each node in a way far more intricate than just parallel DFSs or parallel BFSs.
Our impossibility results, although restricted to DFS and BFS testers, might
be hints that testing Kk-freeness and Ck-freeness for k ≥ 5 in n-node networks
does require to perform a number of rounds which grows with the size n of the
network.

1.2 Related work

The CONGEST model has become a standard model in distributed computa-
tion [27]. Most of the lower bounds in the CONGEST model have been obtained
using reduction to communication complexity problems [8, 11, 23]. The so-called
congested clique model is the CONGEST model in the complete graph Kn [10,
22, 24, 26]. There are extremely fast protocols for solving different types of graph
problems in the congested clique, including finding ruling sets [20], constructing
minimum spanning trees [19], and, closely related to our work, detecting small
subgraphs [7, 9].

The distributed property testing framework in the CONGEST model was re-
cently introduced in the aforementioned paper [6], inspired from classical prop-
erty testing [16, 17]. Distributed property testing relaxes classical distributed
decision [12, 13, 18], typically designed for the LOCAL model, by ignoring ille-
gal instances which are less than ε-far from satisfying the considered property.
Without such a relaxation, distributed decision in the CONGEST model requires
non-constant number of rounds [8]. Other variants of local decision in the LOCAL
model have been studied in [2, 3], where each process can output an arbitrary
value (beyond just a single bit — accept or reject), and [4, 21], where nodes
are bounded to perform a single round before to output at most O(log n) bits.
Distributed decision has been also considered in other distributed environments,
such as shared memory [14], with application to runtime verification [15], and
networks of finite automata [28].



2 Detecting Small Graphs Using a DFS Approach

In this section, we establish our main positive result, which implies, in particular,
that testing C4-freeness and testing K4-freeness can be done in constant time in
the CONGEST model.

Theorem 1. Let H be a connected graph on four vertices. There is a 1-sided
error distributed property-testing algorithm for H-freeness, performing in a con-
stant number of rounds in the CONGEST model.

Proof. All 4-node connected graphs H contain a P4 (a path on four vertices) as
a subgraph, with the only exception of the star K1,3 (a.k.a. the claw). Neverthe-
less, testing whether a graph G is K1,3-free is trivial (every node rejects whenever
its degree is at least three). Therefore, we are going to show the theorem by ex-
hibiting a generic distributed testing protocol for testing H-freeness, that applies
to any graph H on four vertices containing a P4 as a subgraph. The core of this
algorithm is presented as Algorithm 1. Note that the test H ⊆ G[u, u′, v′, w′] at
step 4 of Algorithm 1 can be performed thanks to the bit b that tells about the
only edge that node u is not directly aware of. Algorithm 1 performs in just two
rounds (if we omit the round used to acquire the identities of the neighbors),
and that a single O(log n)-bit message is sent through every edge at each round.
Clearly, if G is H-free, then all nodes accept.

Algorithm 1: Testing H-freeness for 4-node Hamiltonian H. Instructions
for node u.

1 Send id(u) to all neighbors;
2 For every neighbor v, choose a received identity id(w) u.a.r., and send

(id(w), id(u)) to v;
3 For every neighbor v, choose a received pair (id(w′), id(u′)) u.a.r., and send

(id(w′), id(u′), id(u), b) to v, where b = 1 if w′ is a neighbor of u, and b = 0
otherwise;

4 For every received 4-tuple (id(w′), id(v′), id(u′), b), check whether
H ⊆ G[u, u′, v′, w′];

5 If H ⊆ G[u, u′, v′, w′] for one such 4-tuple then reject else accept.

In order to analyze the efficiency of Algorithm 1 in case G is ε-far from
being H-free, let us consider a subgraph G[{u1, u2, u3, u4}] of G containing H,
such that (u1, u2, u3, u4) is a P4 spanning H. Let E be the event “at step 2,
vertex u2 sends (id(u1), id(u2)) to its neighbor u3”. We have Pr[E ] = 1/d(u2).
Similarly, let E ′ be the event “at step 3, vertex u3 sends (id(u1), id(u2), id(u3)) to
its neighbor u4”. We have Pr[E ′|E ] = 1/d(u3). Since Pr[E ∧E ′] = Pr[E ′|E ] ·Pr[E ],
it follows that

Pr[H is detected by u4 while performing Algorithm 1] ≥ 1

d(u2)d(u3)
. (1)



Note that the events E and E ′ only depend on the choices made by u2 for the
edge {u2, u3} and by u3 for the edge {u3, u4}, in steps 3 and 4 of Algorithm 1,
respectively. Since these choices are performed independently at all nodes, it
follows that if H1 and H2 are edge-disjoint copies of H in G, then the events E1
and E2 associated to them are independent, as well as the events E ′1 and E ′2.

The following result will be used throughout the paper, so we state it as a
lemma for further references.

Lemma 1. Let G be ε-far from being H-free. Then G contains at least εm/|E(H)|
edge-disjoint copies of H.

Proof of Lemma 1. Let S = {e1, . . . , ek} be a smallest set of edges whose removal
from G results in an H-free graph. We have k ≥ εm. Let us then remove these
edges from G according to the following process. The edges are removed in
arbitrary order. Each time an edge e is removed from S, we select an arbitrary
copy He of H containing e, we remove all the edges of He from G, and we reset
S as S \E(He). We proceed as such until we have exhausted all the edges of S.
Note that each time we pick an edge e ∈ S, there always exists a copy He of H
containing e. Indeed, otherwise, S \ {e} would also be a set whose removal from
G results in an H-free graph, contradicting the minimality of |S|. After at most
k such removals, we get a graph that is H-free, and, by construction, for every
two edges e, e′ ∈ S, we have that He and He′ are edge-disjoint. Every step of
this process removes at most |E(H)| edges from S, hence the process performs
at least εm/|E(H)| steps before exhausting all edges in S. Lemma 1 follows. ut

Let us now define an edge {u, v} as important if it is the middle-edge of a
P4 in one of the εm/|E(H)| edge-disjoint copies of H constructed in the proof
of Lemma 1. We denote by I(G) the set of all important edges. Let N0 be the
random variable counting the number of distinct copies of H that are detected
by Algorithm 1. As a direct consequence of Eq (1), we get that

E(N0) ≥
∑

{u,v}∈I(G)

1

d(u)d(v)
.

Define an edge {u, v} of G as good if d(u)d(v) ≤ 4m|E(H)|/ε, and let g(G)
denote the set of good edges. Note that if there exists a constant γ > 0 such
that |I(G) ∩ g(G)| ≥ γm, then the expected number of copies of H detected
during a phase is

E(N0) ≥
∑

{u,v}∈I(G)∩g(G)

1

d(u)d(v)
≥ γm 1

4m|E(H)|/ε
=

γε

4|E(H)|
. (2)

We now show that the number of edges that are both important and good is
indeed at least a fraction γ of the edges, for some constant γ > 0. We first show
that G has at least (1− 3

4|E(H)|ε)m good edges. Recall that
∑
u∈V (G) d(u) = 2m,

and define N(u) as the set of all neighbors of node u. We have∑
{u,v}∈E(G)

d(u)d(v) =
1

2

∑
u∈V (G)

d(u)
∑

v∈N(u)

d(v) ≤
∑

u∈V (G)

d(u) m ≤ 2m2.



Thus G must have at least (1− 3
4|E(H)|ε)m good edges, since otherwise

∑
{u,v}∈E(G)

d(u)d(v) ≥
∑

{u,v}∈E(G)\g(G)

d(u)d(v) >
3

4|E(H)|
εm

4m|E(H)|
ε

= 3m2,

contradicting the aforementioned 2m2 upper bound. Thus, G has at least (1 −
3

4|E(H)|ε)m good edges. On the other hand, since the number of important edges

is at least the number of edge-disjoint copies of H in G, there are at least
εm/|E(H)| important edges. It follows that the number of edges that are both
important and good is at least ε

4|E(H)|m. Therefore, by Eq. (2), we get that

E(N0) ≥
(

ε
4|E(H)|

)2
.

All the above calculations were made on the εm/|E(H)| edge-disjoint copies

of H constructed in the proof of Lemma 1. Therefore, if X
(0)
i denotes the ran-

dom variable satisfying X
(0)
i = 1 if the ith copy H is detected, and X

(0)
i = 0

otherwise, then we have N0 =
∑εm/|E(H)|
i=1 X

(0)
i , and the variables X

(0)
i , i =

1, . . . , εm/|E(H)|, are mutually independent. Let T = 8 ln 3
(

4|E(H)|
ε

)2
.

By repeating the algorithm T times, and defining N =
∑T−1
t=0 Nt where Nt

denotes the number of copies of H detected at the tth independent repetition,

we get E(N) ≥ 8 ln 3. In fact, we also have N =
∑T−1
t=0

∑εm/|E(H)|
i=1 X

(t)
i where

X
(t)
i = 1 if the ith copy H is detected at the tth iteration of the algorithm,

and X
(t)
i = 0 otherwise. All these variables are mutually independent, as there

is mutual independence within each iteration, and all iterations are performed
independently. Therefore, Chernoff bound applies (see Theorem 4.5 in [25]), and

so, for every 0 < δ < 1, we have Pr[N ≤ (1− δ)E[N ]] ≤ e−δ2E[N ]/2.

By taking δ = 1
2 we get Pr[N ≤ 4 ln 3] ≤ 1

3 . Therefore, a copy of H is detected
with probability at least 2

3 , which completes the proof of Theorem 1. ut

3 Limits of the DFS Approach

Algorithm 1 can be extended in a natural way to any k-node graph H containing
a Hamiltonian path, as depicted in Algorithm 2. At the first round, every vertex
u sends its identifier to its neighbors, and composes the d(u) graphs formed by
the edge {u, v}, one for every neighbor v. Then, during the k−2 following rounds,
every node u forwards through each of its edges one of the graphs formed a the
previous round.

Let (u1, u2, . . . , uk) be a simple path inG, and assume thatG[{u1, u2, . . . , uk}]
contains H. If, at each round i, 2 ≤ i < k, vertex ui sends to ui+1 the graph
G[{u1, . . . , ui}], then, when the repeat-loop completes, vertex uk will test pre-
cisely the graph G[{u1, u2, . . . , uk}], and thus H will be detected by the algo-
rithm. Theorem 1 states that Algorithm 2 works fine for 4-node graphs H. We



Algorithm 2: Testing H-freeness: Hamiltonian H, |V (H)| = k. Instruc-
tions for node u.

1 send the 1-node graph G[u] to every neighbor v;
2 form the graph G[{u, v}] for every neighbor v;
3 repeat k − 2 times
4 for every neighbor v do
5 choose a graph G[A] u.a.r. among those formed during the previous

round;
6 send G[A] to v;
7 receive the graph G[A′] from v;
8 form the graph G[A′ ∪ {u}];

9 if H ⊆ G[A] for one of the graphs formed at the last round then reject else
accept.

show that, k = 4 is precisely the limit of detection for graphs that are ε-far from
being H-free, even for the cliques and the cycles.

Theorem 2. Let H = Kk for arbitrary k ≥ 5, or H = Ck for arbitrary odd
k ≥ 5. There exists a graph G that is ε-far from being H-free in which any
constant number of repetitions of Algorithm 2 fails to detect H, with probability
at least 1− o(1).

For the purpose of proving Theorem 2, we use the following combinatorial
result, which extends Lemma 7 of [1], where the corresponding claim was proved
for k = 3, with a similar proof. The bound on p′ is not even nearly optimal in
Lemma 2 below, but it is good enough for our purpose5.

Lemma 2. Let k be a constant. For any sufficiently large p, there exists a set

X ⊂ {0, . . . , p − 1} of size p′ ≥ p1−
log log log p+4

log log p such that, for any k elements

x1, x2, . . . , xk of X,
∑k−1
i=1 xi ≡ (k−1)xk (mod p) =⇒ x1 = · · · = xk−1 = xk.

Proof. Let b = blog pc and a =
⌊

log p
log log p

⌋
. Take p sufficiently large so that a < b/k

is satisfied. X is a set of integers encoded in base b, on a b-ary digits, such that
the digits of each x ∈ X are a permutation of {0, 1, . . . , a − 1}. More formally,

for any permutation π over {0, . . . , a−1}, let Nπ =
∑a−1
i=0 π(i)bi. Then, let us set

X = {Nπ | π is a permutation of {0, . . . , a− 1}}. Observe that different permu-
tations π and π′ yield different numbers Nπ and Nπ′ because these numbers have
different digits in base b. Hence X has p′ = a! elements. Using the inequality

z! > (z/e)z as in [1] (Lemma 7), we get that a! ≥ p1−
log log log p+4

log log p , as desired.
Now, for any x ∈ X, we have x ≤ p/k. Indeed, x < a · ba−1 ≤ 1

k b
a,

and ba ≤ (log p)
log p

log log p = p. Consequently, the modulo in the statement of

5 The interested reader can consult [29] for the state-of-the-art on such combinato-

rial constructions, in particular constructions for p′ ≥ p1−c/
√
log p, for a constant c

depending on k.



the Lemma becomes irrelevant, and we will simply consider integer sums. Let
x1, . . . , xk−1, xk in X, such that

∑k−1
l=1 xi = (k − 1)xk. Viewing the xi’s as in-

tegers in base b, and having in mind that all digits are smaller than b/k, we
get that the equality must hold coordinate-wise. For every 1 ≤ l ≤ k, let πl
be the permutation such that xl = Nπl

. For every i ∈ 0, . . . , a− 1, we have∑k−1
l=1 πl(i) = (k − 1)πk(i). By the Cauchy-Schwarz inequality applied to vec-

tors (π1(i), . . . , πk−1(i)) and (1, . . . , 1), for every i ∈ {0, . . . , a − 1}, we also

have
∑k−1
l=1 (πl(i))

2 ≥ (k − 1) (πk(i))
2
. Moreover equality holds if and only if

π1(i) = · · · = πk−1(i) = πk(i). By summing up the a inequalities induced by the

a coordinates, observe that both sides sum to exactly (k − 1)
∑a−1
i=0 i

2. There-
fore, for every i, the Cauchy-Schwarz inequality is actually an equality, implying
that the ith digit is identical in all the k integers x1, . . . , xk. As a consequence,
x1 = · · · = xk−1 = xk, which completes the proof. ut

Proof of Theorem 2. Assume that G[{u1, u2, . . . , uk}] contains H, where the
sequence (u1, u2, . . . , uk) is a path of G. For 2 ≤ i ≤ k − 1, let us consider the
event “at round i, vertex ui sends the graph G[u1, . . . , ui}] to ui+1”. Observe
that this event happens with probability 1

d(ui)
because ui choses which subgraph

to send uniformly at random among the d(ui) constructed subgraphs. With the
same arguments as the ones used to establish Eq. (1), we get

Pr[H is detected along the path (u1, . . . , uk)] =
1

d(u2)d(u3) . . . d(uk−1)
. (3)

We construct families of graphs which will allow us to show, based on that latter
equality, that the probability to detect a copy of H vanishes with the size of the
input graph G. We actually use a variant of the so-called Behrend graphs (see,
e.g., [1, 5]), and we construct graph families indexed by k, and by a parameter
p, that we denote by BC(k, p) for the case of cycles, and by BK(k, p) for the
case of cliques. We prove that these graphs are ε-far from being H-free, while
the probability that Algorithm 2 detects a copy of H in these graphs goes to 0.

Let us begin with the case of testing cycles. Let p be a large prime number,

and let X be a subset of {0, . . . , p− 1} of size p′ ≥ p1−
log log log p+4

log log p , where p′ is as
defined in Lemma 2. Graph BC(k, p) is then constructed as follows. The vertex
set V is the disjoint union of an odd number k of sets, V 0, V 1, . . . V k−1, of p
elements each. For every l, 0 ≤ l ≤ k− 1, let uli, i = 0, . . . , p− 1 be the nodes in
V l so that V l = {uli | i ∈ {0, . . . , p− 1}}. For every i ∈ {0, . . . , p− 1} and every
x ∈ X, edges in BC(k, p) form a cycle

Ci,x = (u0i , . . . , u
l
i+lx, u

l+1
i+(l+1)x, . . . , u

k−1
i+(k−1)x),

where the indices are taken modulo p. The cycles Ci,x form a set of pp′ edge-
disjoint copies of Ck in BC(k, p). Indeed, for any two distinct pairs (i, x) 6=
(i′, x′), the cycles Ci,x and Ci′,x′ are edge-disjoint. Otherwise there exists a com-
mon edge e between the two cycles. It can be either between two consecutive lay-
ers V l and V l+1, or between V 0 and V k−1. There are two cases. If e = {uly, ul+1

z }



we must have y = i+lx = i′+lx′ and z = i+(l+1)x = i′+(l+1)x′, where equali-
ties are taken modulo p, and, as a consequence, (i, x) = (i′, x′). If e = {u0y, uk−1z }
then we have y = i = i′ and z = i + (k − 1)x′ = i′ + (k − 1)x′, and, since p is
prime, we also conclude that (i, x) = (i′, x′).

We now show that any k-cycle has exactly one vertex in each set V l, for
0 ≤ l < k − 1. For this purpose, we focus on the parity of the layers formed by
consecutive vertices of a cycle. The “short” edges (i.e., ones between consecutive
layers) change the parity of the layer, and hence every cycle must include “long”
edges (i.e., ones between layers 0 and k− 1). However, long edges do not change
the parity of the layer. Therefore, every cycle contains an odd number of long
edges, and an even number of short edges. For this to occur, the only possibility
is that the cycle contains a vertex from each layer.

Next, we show that any cycle of k vertices in BC(k, p) must be of the form
Ci,x for some pair (i, x). Let C = (u0y0 , . . . u

l
yl
, ul+1
yl+1

, . . . , uk−1yk−1
) be a cycle in

BC(k, p). For every l = 1, . . . , k − 1, let xl = yl − yl−1 mod p. We have xl ∈ X
because the edge {ul−1yl−1

, ulyl} is in some cycle Ci,xl
. Also set xk ∈ X such that the

edge {u0y0 , u
k−1
yk−1
} is in the cycle Cy0,xk

. In particular we must have that yk−1 =
y0 + (k− 1)xk. It follows that yk−1 = y0 + (k− 1)xk = y0 +x1 +x2 + · · ·+xk−1.
By Lemma 2, we must have x1 = · · · = xk−1 = xk, so C is of the form Ci,x.

It follows from the above that BC(k, p) has exactly pp′ edge-disjoint cycles
of k vertices. Since BC(k, p) has n = kp vertices, and m = kpp′ edges, BC(k, p)
is ε-far from being Ck-free, for ε = 1

k . Also, each vertex of BC(k, p) is of degree
2p′ because each vertex belongs to p′ edge-disjoint cycles.

Let us now consider an execution of Algorithm 2 for input BC(k, p). As
BC(k, p) is regular of degree d = 2p′, this execution has probability at most
2k
dk−2 to detect any given cycle C of k vertices. Indeed, C must be detected along
one of the paths formed by its vertices in graph BC(k, p), there are at most
2k such paths in C (because all Ck’s in BC(k, p) are induced subgraphs, and
paths are oriented), and, by Eq. (3), the probability of detecting the cycle along
one of its paths is 1

dk−2 . Therefore, applying the union bound, the probability of

detecting a given cycle C is at most 2k
dk−2 .

Since there are pp′ edge-disjoint cycles, the expected number of cycles de-

tected in one execution of Algorithm 2 is at most 2kpp′

(2p′)k−2 . It follows that the

expected number of cycles detected by repeating the algorithm T times is at
most 2kpT

2(2p′)k−3 . Consequently, the probability that the algorithm detects a cycle

is at most 2kpT
2(2p′)k−3 . Plugging in the fact that, by Lemma 2, p′ = p1−o(1), we con-

clude that, for any constant T , the probability that T repetitions of Algorithm 2
detect a cycle goes to 0 when p goes to ∞, as claimed.

The case of the complete graph is treated similarly. Graphs BK(k, p) are
constructed in a way similar to BC(k, p), as k-partite graphs with p vertices in
each partition (in particular, BK(k, p) also has n = kp vertices). The difference
with BC(k, p) is that, for each pair (i, x) ∈ {0, . . . , p− 1} ×X, we do not add a
cycle, but a complete graph Ki,x on the vertex set {u0i , . . . , uli+lx, u

l+1
i+(l+1)x, . . . ,

uk−1i+(k−1)x}. By the same arguments as for BC(k, p), BK(k, p) contains contains



exactly pp′ edge-disjoint copies of Kk (namely Ki,x, for each pair (i, x)). This fact
holds even for even values of k, because any k-clique must have a vertex in each
layer, no matter the parity of k. Thus, in particular BK(k, p) has m =

(
k
2

)
pp′

edges, and every vertex is of degree d = (k − 1)p′. The graph BK(k, p) is ε-far
from being Kk-free, for ε = 2

k(k−1) . The probability that Algorithm 2 detects a

given copy of Kk is at most k!
dk−2 . Indeed, a given Kk has k! (oriented) paths of

length k, and, by Eq. (3), the probability that the algorithm detects this copy
along a given path is 1

dk−2 . The expected number E[N ] of Kk’s detected in T runs

of Algorithm 2 is, as for BC(k, p), at most k!Tpp′

dk−2 = k! pT
(k−1)k−2(p′)k−3 . Therefore,

since Pr[N 6= 0] ≤ E[N ], we get that the probability that the algorithm detects
some Kk goes to 0 as p goes to ∞. It follows that the algorithm fails to detect
Kk, as claimed. ut

Remark. The proof that Algorithm 2 fails to detect Ck for odd k ≥ 5, can be
extended to all (odd or even) k ≥ 13, as well as to k = 10. The cases of C6,
C8, are C12 are open, although we strongly believe that Algorithm 2 also fails
to detect these cycles in some graphs.

4 Detecting Small Graphs Using a BFS Approach

We discuss here another very natural approach, extending the algorithm pro-
posed by Censor-Hillel et al. [6] for testing triangle-freeness. In the protocol of [6],
each node u samples two neighbors v1 and v2 uniformly at random, and asks
them to check the presence of an edge between them. We generalize this protocol
as follows. Assume that the objective is to test H-freeness, for a graph H contain-
ing a universal vertex (a vertex adjacent to every other). Each node u samples
d(u) sets S1, . . . , Sd(u), of |V (H)| − 1 neighbors each. For each i = 1, . . . , d(u),
node u sends Si to all its neighbors in Si, asking them to check the presence
of edges between them, and collecting their answers. Based on these answers,
node u can tell whether G[Si ∪ {u}] contains H. We show that this very simple
algorithm can be used for testing K4-freeness.

Theorem 3. There is a 1-sided error distributed property-testing algorithm for
K4-freeness, performing in a constant number of rounds in the CONGEST model.

Again, we show the theorem by exhibiting a generic distributed testing pro-
tocol for testing H-freeness, that applies to any graph H on four vertices with a
universal vertex. The core of this algorithm is presented as Algorithm 3 where all
calculations on indices are performed modulo d = d(u) at node u. This algorithm
is presented for a graph H with k nodes.

At Step 3, node u picks a permutation π u.a.r., in order to compose the d(u)
sets S1, . . . , Sd(u), which are sent in parallel at Steps 4-5. At Step 8, every node
u considers separately each of the k − 1 tuples of size k − 1 received from each
of its neighbors, checks the presence of edges between u and each of the nodes
in that tuple, and sends back the result to the neighbor from which it received



Algorithm 3: Testing H-freeness for H with a universal vertex. Instruc-
tions for node u of degree d. We let k = |V (H)|.
1 send id(u) to all neighbors;
2 index the d neighbors v0, . . . , vd−1 in increasing order of their IDs;
3 pick a permutation π ∈ Σd of {0, 1, . . . , d− 1}, u.a.r.;
4 for each i ∈ {0, . . . , d− 1} do
5 Send (id(vπ(i)), id(vπ(i+1)), . . . , id(vπ(i+k−2))) to vπ(i), vπ(i+1), . . . , vπ(i+k−2);

6 for each i ∈ {0, . . . , d− 1} do
7 for each of the k − 1 tuples (id(w(1)), . . . , id(w(k−1))) received from vi do

8 Send (b(1), . . . , b(k−1)) to vi where b(j) = 1 iff u = w(j) or {u,w(j)} ∈ E;

9 If ∃i ∈ {0, . . . , d− 1} s.t. H ⊆ G[u, vπ(i), . . . , vπ(i+k−2)] then reject else accept.

the tuple. Finally, the tests H ⊆ G[u, vπ(i), vπ(i+1), . . . , vπ(i+k−2)] performed at
the last step is achieved thanks to the (k− 1)-tuple of bits received from each of
the neighbors vπ(i), vπ(i+1), . . . , vπ(i+k−2), indicating the presence or absence of
all the edges between these nodes. Note that exactly 2k−5 IDs are actually sent
through each edges at Steps 4-5, because of the permutation shifts. Similarly,
2k−5 bits are sent through each edge at Steps 6-8. Therefore Algorithm 3 runs in
a constant number of rounds in the CONGEST model. The proof of the following
result will appear in a full version of this paper. Among others, it relies on the
observation that two disjoint copies of K4 share at most one vertex (which does
not hold for other graphs H).

Lemma 3. Let G be ε-far from being K4-free. Algorithm 3 for H = K4 rejects
G with constant probability.

5 Limits of the BFS Approach

As it happened with the DFS-based approach, the BFS-based approach fails to
generalize to large graphs H. Actually, it already fails for K5.

Theorem 4. Let k ≥ 5. There exists a graph G that is ε-far from being Kk-free
in which any constant number of repetitions of Algorithm 3 fails to detect any
copy of Kk, with probability at least 1− o(1).

Proof. The family of graphs BK(k, p) constructed in the proof of Theorem 2
for defeating Algorithm 2 can also be used to defeat Algorithm 3. Recall that
those graphs have n = kp vertices, m =

(
k
2

)
pp′ edges, and every vertex is of

degree d = (k − 1)p′, for p′ = p1−o(1). Moreover, they have exactly pp′ copies of
Kk, which are pairwise edge-disjoint. BK(k, p) is ε-far from being Kk-free with
ε = 1/

(
k
2

)
. For each copy K of Kk, and for every u ∈ K, the probability that u

detects K is d/
(
d
k−1
)
≤ α

dk−2 for some constant α > 0. Therefore, when running
the algorithm T times, it follows from the union bound that the expected number



of detected copies of Kk is at most αkTpp′

dk−2 , which tends to 0 when p → ∞, for
any k ≥ 5. Consequently, the probability of detects at least one copy of Kk also
tends to 0. ut

6 Conclusion and Further Work

The lower bound techniques for the CONGEST model are essentially based on
reductions to communication complexity problems. Such an approach does not
seem to apply easily in the context of distributed testing. The question of whether
the presence of large cliques (or cycles) can be tested in O(1) rounds in the
CONGEST model is an intriguing open problem.

It is worth mentioning that our algorithms generalize to testing the pres-
ence of induced subgraphs. Indeed, if the input graph G contains at least εm
edge-disjoint induced copies of H, for a graph H on four vertices containing a
Hamiltonian path, then Algorithm 1 detects an induced subgraph H with con-
stant probability (the only difference is that, in the last line of the algorithm, we
check for an induced subgraph instead of just a subgraph). Moreover, if the in-
put contains εm edge-disjoint induced claws (i.e., induced subgraphs K1,3), then
Algorithm 3 detects one of them with constant probability. Thus, for any con-
nected graph H on four vertices, distinguishing between graphs that do not have
H as induced subgraph, and those who have εm edge-disjoint induced copies of
H can be done in O(1) rounds in the CONGEST model. However, we point out
that, unlike in the case of subgraphs, a graph that is ε-far from having H as
induced subgraph may not have many edge-disjoint induced copies of H.
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