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Abstract. The notion of deciding a distributed language L is of grow-
ing interest in various distributed computing settings. Each process pi

is given an input value xi, and the processes should collectively decide
whether their set of input values x = (xi)i is a valid state of the system
w.r.t. to some specification, i.e., if x ∈ L. In non-deterministic distrib-
uted decision each process pi gets a local certificate ci in addition to its
input xi. If the input x ∈ L then there exists a certificate c = (ci)i such
that the processes collectively accept x, and if x �∈ L, then for every c, the
processes should collectively reject x. The collective decision is expressed
by the set of opinions emitted by the processes.

In this paper we study non-deterministic distributed decision in sys-
tems where asynchronous processes may crash. It is known that the num-
ber of opinions needed to deterministically decide a language can grow
with n, the number of processes in the system. We prove that every
distributed language L can be non-deterministically decided using only
three opinions, with certificates of size �logα(n)�+1 bits, where α grows
at least as slowly as the inverse of the Ackerman function. The result is
optimal, as we show that there are distributed languages that cannot be
decided using just two opinions, even with arbitrarily large certificates.

To prove our upper bound, we introduce the notion of distributed
encoding of the integers, that provides an explicit construction of a long
bad sequence in the well-quasi-ordering ({0, 1}∗, ≤∗) controlled by the
successor function. Thus, we provide a new class of applications for well-
quasi-orderings that lies outside logic and complexity theory. For the
lower bound we use combinatorial topology techniques.
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1 Introduction

In distributed decision each process has only a local perspective of the system,
and collectively the processes have to decide if some predicate about the global
system state is valid. Recent work in this area includes but is not limited to,
deciding locally whether the nodes of a network are properly colored, check-
ing the results obtained from the execution of a distributed program [11,14],
designing time lower bounds on the hardness of distributed approximation [7],
estimating the complexity of logics required for distributed run-time verifica-
tion [13], and elaborating a distributed computing complexity theory [10,15].

The predicate to be decided in a distributed decision problem is specified as
the set of all valid input vectors, called a distributed language L. Each process pi
is given an input value xi, and should produce an output value oi ∈ U , where U
is the set of possible opinions. The processes should collectively decide whether
their vector of input values x = (xi)i represents a valid state of the system w.r.t.
to the specification, i.e., if x ∈ L. The collective decision is expressed by the
vector of opinions o = (oi)i emitted by the processes.

In a distributed system where n processes are unable to agree on what the
global system state is (e.g. due to failures, communication delays, locality, etc.),
it is unavoidable that processes have different opinions about the validity of the
predicate at any given moment (a consequence of consensus impossibility [9]).
Often processes emit two possible opinions, U = {true, false}, and the collective
opinion is interpreted as the conjunction of the emitted values. Some languages
L may be decided by emitting only two opinions, but not all. In fact, it is known
that up to n different opinions may be necessary to decide some languages [13],
irrespectively of how the opinions are interpreted. For example, for the k-set
agreement language, specifying that at most k leaders are elected, a set U of
min{2k, n} + 1 opinions is necessary and sufficient in a system where n asyn-
chronous processes may crash [14]. A measure of the complexity of L is the
minimum number of opinions needed to decide it.

Non-deterministic Distributed Decision. In non-deterministic distributed
decision, each process pi gets a local certificate ci in addition to its input xi. If
the input vector x is in L then there exists a certificate c = (ci)i such that the
processes collectively accept x, and if x �∈ L, then for every c, the processes should
collectively reject x (i.e., the protocol cannot be fooled by “fake” certificates on
illegal instances). Notice that as for the input, the certificate is also distributed;
each process only knows its local part of the certificate. As in the deterministic
case, the collective decision is expressed by the opinions emitted by the processes.

This non-deterministic framework is inspired by classical complexity theory,
but it has been used before also in various distributed settings, e.g. in distributed
complexity [10], in silent self-stabilization [4] (as captured by the concept of
proof-labeling schemes [19]), as well as failure detectors [5] where an underlying
layer produces certificates giving information about process failures — the failure
detector should provide certificates giving sufficient information about process
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failures to solve e.g. consensus, but an incorrect certificate should not lead to an
invalid consensus solution.

In several of these contexts, it is natural to seek certificates that are as small
as possible, perhaps for information theoretic purposes, privacy purposes, or
because certificates have to be exchanged among processes [4,19]. As we shall
prove in this paper, it is possible to use small certificates to enable the num-
ber of opinions to be drastically reduced. We do so in the standard framework
of asynchronous crash-prone processes communicating by writing and reading
shared variables1.

Our Contribution. We show that, for every distributed language L, it is pos-
sible to design a non-deterministic protocol using very small certificates, while
using a small set U of opinions. Our solution is based on a combinatorial con-
struction called a distributed encoding.

We define a distributed encoding of the (natural) integers as a collection of
code-words providing every integer n with a code w = (wi)i=1,...,n in Σn, where
Σ is a (possibly infinite) alphabet, such that, for any k ∈ [1, n), no subwords2

w′ ∈ Σk of w is encoding k. Trivially, every integer n ≥ 1 can be (distributedly)
encoded by the word w = (bin(n), . . . ,bin(n)) ∈ Σn with Σ = {0, 1}∗, where
bin(n) is the binary representation of n. Hence, to encode the first n integers,
one can use words on an alphabet with n symbols, encoded on O(log n) bits.

Our first result is a constructive proof that there is a distributed encoding of
the integers which encodes the first n integers using words on an alphabet with
symbols of �log α(n)�+1 bits, where α is a function growing at least as slowly as
the inverse-Ackerman function. This first result is obtained by considering the
well-quasi-ordering (Λ,=) where Λ = {0, 1} is composed of two incomparable
elements 0 and 1, and by constructing long (so-called) bad sequences of words
over (Λ∗,≤∗) starting from any word a ∈ Λ∗, and controlled by the successor
function g(x) = x + 1. (See Sect. 2 for the formal definitions of these concepts,
and for the definition of the relation ≤∗ over Λ∗).

Our second result is an application of distributed encoding of the integers to
distributed computing. This is a novel use of well-quasi-orderings, that lies out-
side the traditional applications to logic and complexity theory. Specifically, we
prove that any distributed language L can be non-deterministically decided with
certificates of �log α(n)�+1 bits, and a set U of only three opinions. Each opinion
provides an estimation of the correctness of the execution from the perspective
of one process. Moreover, using arguments from combinatorial topology, we show
that the result is best possible. Namely, there are distributed languages for which
two opinions are insufficient, even with only three processes, and regardless of
the size of the certificates.

This motivates a new line of research in distributed computing, consisting
in designing distributed algorithms producing certified outputs, i.e., outputs

1 The theory of read/write wait-free computation is of considerable significance,
because results in this model can be transferred to other message-passing and
f -resilient models e.g. [2,17].

2 Such a subword is of the form w′ = (wij )j=1,...,k with ij < ij+1 for j ∈ [1, k).
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that can be verified afterward by another algorithm. This can be achieved in
the framework of asynchronous systems with transient failures [4]. Our results
demonstrate that, conceptually, this can also be achieved in asynchronous sys-
tems with crash failures, at low costs, in term of both certificate size and number
of opinions.

Due to space limitations, proofs and additional material can be found in a
companion technical report [12].

Related Work. The area of decentralized runtime verification is concerned with
a set of failure-free monitors observing the behavior of system executions with
respect to some correctness property, specified in some form of temporal logic.
It is known, for instance, that linear temporal logic (LTL) is not sufficient to
handle all system executions, some of them requiring multi-valued logics [3].
Further references to this area appear in the recent work [22], where 3-valued
semantics of LTL specifications are considered.

Deterministic distributed decision in the context of asynchronous, crash-
prone distributed computing was introduced in [11] with the name checking,
where a characterization of the tasks that are and-checkable is provided. The
results where later on extended in [14] to the set agreement task and in [13]
proving nearly tight bounds on the number of opinions required to check any
distributed language. In [10,15] the context of local distributed network comput-
ing is considered. It was shown that not all network decision tasks can be solved
locally by a non-deterministic algorithm. On the other hand, every languages
can be locally decided non-deterministically if one allows the verifier to err with
some probability.

Our construction of distributed encoding of the integers relies very much
on the notion of well-quasi-ordering (wqo) [20]. This important tool in logic
and computability has a wide variety of applications — see [21] for a survey.
One important application is providing termination arguments in decidability
results [6]. Indeed, thirteen years after publishing his undecidability result, Tur-
ing [27] proposed the now classic method of proving program termination using
so-called bad sequences, with respect to a wqo. In this setting, the problem of
bounding the length of bad sequences is of utmost interest as it yields upper
bounds on terminating program executions. Hence, the interest in algorithmic
aspects of wqos has grown recently [8,23], as witnessed by the amount of work
collected in [24]. Our paper is tackling the study of wqos, from a distributed algo-
rithm perspective. Also, lower bounds showing Ackermanian termination growth
have been identified in several applications, including lossy counter machines
and reset Petri nets [24,26]. For more applications and related work on wqos,
including rewriting systems, tree embeddings, lossy channel systems, and graph
minors, see recent work [16,24].

2 Distributed Encoding of the Integers

Given a finite or infinite alphabet Σ, a word of size n on Σ is an ordered sequence
w = w1, w2, . . . , wn of symbols wi ∈ Σ. The set of all finite words over Σ
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is Σ∗, and the set of all words of size n is Σn. A sub-word of w is a word
w′ ∈ Σ∗, which is sub-sequence of w, w′ = wi1 , wi2 , . . . , wik with k < n and
1 ≤ i1 < i2 < · · · < ik ≤ n.

Definition 1. A distributed encoding of the positive integers is a pair (Σ, f)
where Σ is a (possibly infinite) alphabet, and f : Σ∗ → {true, false} satisfying
that, for every integer n ≥ 1, there exists a word w ∈ Σn with f(w) = true,
such that for every sub-word w′ of w, f(w′) = false. The word w is called the
distributed code of n.

A trivial distributed encoding of the integers can be obtained using the infi-
nite alphabet Σ = {0, 1}∗ (each symbol is a sequence of 0’s and 1’s). The dis-
tributed code of n consists in repeating n times the binary encoding of n, for
each positive integer n, w = bin(n), . . . ,bin(n). For every integer n ≥ 1 and
every word w ∈ Σn, we set f(w) = true if and only if wi = bin(n) for every
i ∈ {1, . . . , n}. However, this encoding is quite redundant, and consumes an
alphabet of n symbols to encode the first n positive integers (i.e., O(log n) bits
per symbol).

A far more compact distributed encoding of the integers can be obtained,
using a variant of the Ackermann function. Given a function f : N → N, we
denote by f (n) the nth iterate of f , with f (0) the identity function. Let Ak :
N → N, k ≥ 1 be the family of functions defined recursively as follows:

Ak(n) =
{

2n + 2 if k = 1
Ak−1(. . . Ak−1(0)) = A

(n+1)
k−1 (0) otherwise.

(1)

Hence Ak(0) = 2 for every k ≥ 1, and, for n ≥ 0, A2(n) = 2n+2 − 2, and

A3(n) = 22
···2 − 2, where the tower is of height n + 2. (Many versions of the

Ackerman function exist, and a possible definition [25] is Ack(n) = An(1)). Let
F : N → N be the function: F (k) = A1(A2(. . . (Ak−1(Ak(0))))) + 1. Finally, let
α : N → N be the function:

α(k) = min{i ≥ 1 : F (i)(1) > k}. (2)

Hence, α grows extremely slowly. In addition, note that F (n)(1) > n for every
n ≥ 1. Hence, a crude lower bound of F (n)(1) is F (n)(1) ≥ Ack(n−1). Therefore
the function α grows at least as slowly as the inverse-Ackerman function.

Theorem 1. There is a distributed encoding (Σ, f) of the positive integers
which encodes the first n integers using words on an alphabet with symbols on
�log α(n)� + 1 bits, where α is defined in Eq. (2).

The proof of Theorem 1 heavily relies on the notion of well-quasi-ordering.
Recall that a well-quasi-ordering (wqo) is a quasi-ordering that is well-founded
and has finite antichains. That is, a wqo is a pair (A,≤), where ≤ is a reflexive
and transitive relation over a set A, such that every infinite sequence of elements
a(0), a(1), a(2), · · · from A contains an increasing pair, i.e., a pair (a(i), a(j)) with
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i < j and a(i) ≤ a(j). Sequences (finite or infinite) with an increasing pair of
elements are called good sequences. Instead, sequences where no such increasing
pair can be found are called bad. Therefore, every infinite sequence over a wqo
A is good, and, as a consequence, bad sequences over a wqo A are finite. Often,
a ∈ A is a finite word over some domain Λ, i.e., a ∈ Λ∗. Assuming (Λ,≤) itself
is a wqo, then Higman’s Lemma says that (Λ∗,≤∗) is a wqo, where ≤∗ is the
subword ordering defined as follows. For any a = a1, a2, . . . , an ∈ Λ∗, and any
b = b1, b2, . . . , bm ∈ Λ∗,

a ≤∗ b ⇐⇒ ∃ 1 ≤ i1 < i2 < · · · < in ≤ m : (a1 ≤ bi1) ∧ · · · ∧ (an ≤ bin).

As said before, the longest bad sequence starting on any a ∈ Λ∗ is of interest for
practical applications (e.g., to obtain upper bounds on the termination time of
a program). This length is strongly related to the growth of the words’ length in
Λ∗. More generally, let |·| be a norm on a wqo A that defines the size |a| of each
a ∈ A. For any a ∈ A, there is a longest bad sequence a(0), a(1), a(2), . . . , a(k)

starting on a(0) = a, provided that, for every i ≥ 0, the size of a(i+1) does not
grow unboundedly with respect to the size of the previous element a(i). Given
an increasing function g, the length function Lg(n) is defined as the length of
the longest sequence over all sequences controlled by g, starting in an element a
with |a| ≤ n. The function g controls the sequence in the sense that it bounds
the growth of elements as we iterate through the sequence. That is, Lg(n) is
the length of the longest sequence a(0), a(1), . . . such that |a(0)| ≤ n, and, for
any i ≥ 0, |a(i+1)| ≤ g(|a(i)|). The Length Function Theorem of [23] provides an
upper bound on bad sequences parametrized by a control function g and by the
size p = |Λ| of the alphabet.

Proof (Theorem 1). Consider the well-quasi-ordering (Λ,=) where Λ = {0, 1} is
composed of two incomparable elements 0 and 1. We construct a bad sequence
B(a) of words over (Λ∗,≤∗) starting from any words a ∈ Λ∗, and controlled by
the successor function g(x) = x + 1. That is, the difference between the length
of two consecutive words in the bad sequence B(a) must be at most 1. We
obtain an infinite sequence S = S(1),S(2), . . . of words over Λ∗ by concatenating
bad sequences. See Fig. 1. More specifically, S = B(S(0))|B(S(t1))|B(S(t2))| . . .
where “|” denotes the concatenation of sequences, S(0) = 0, and, for k ≥ 1,
S(tk) = (0, . . . , 0), where the number of 0 s is equal to the length of the last word
of the bad sequence B(S(tk−1)), plus 1. For further references, we call these long
bad multi-diagonal sequences. An example is in Fig. 2.

Given the infinite sequence S, we construct our distributed encoding (Σ, f)
of the integers as follows. We set Σ = {0, 1}∗ × Λ, and the distributed code of
n ≥ 1 is w = w1w2 . . . wn ∈ Σn with wi = (bin(k),S(n)

i ) where k ≥ 1 is such that
the nth word S(n) in the sequence S belongs to the kth multi-diagonal sequence
B(S(tk)), and S(n)

i ∈ Λ is the ith bit of S(n), i = 1, . . . , n. For each integer n ≥ 1
and every word w ∈ Σn, we set:

f(w) = true ⇐⇒ ∀i ∈ {1, . . . , n}, wi = (bin(k),S(n)
i ) with S(n) ∈ B(S(tk)).
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S(1) = 0 (1st bad sequence starts)

S(2) = 11 (1st bad sequence ends)

S(3) = 000 (2nd bad sequence starts)

S(4) = 0110

S(5) = 11010

S(6) = 101011

S(7) = 0101111

S(8) = 11111100

S(9) = 111110011

S(10) = 1111001111

S(11) = 11100111111

S(12) = 110011111111

S(13) = 1001111111111

S(14) = 00111111111111

S(15) = 111111111111110

S(16) = 1111111111111011

S(17) = 11111111111101111

S(18) = 111111111110111111
...

...
...

S(29) = 01111111111111111111111111111

S(30) = 111111111111111111111111111111 (2nd bad sequence ends)

S(31) = 0000000000000000000000000000000 (3rd bad sequence starts)

S(32) = 00000000000000000000000000000110

S(33) = 000000000000000000000000000011010

S(34) = 0000000000000000000000000001101010
...
...

...

Fig. 1. The beginning of the infinite sequence S.

This is a correct distributed encoding since, for every integer n ≥ 1, there
exists a word w ∈ Σn such that f(w) = true, and, for every subword w′ of
w, f(w′) = false. The latter holds because every subword w′ must be of the
form w′ = (wij )j=1,...,m with ij < ij+1 for j ∈ [1,m), and if the mth element
S(m) in the sequence S satisfies S(m) ≤∗ S(n), then it cannot be the case that
S(m) ∈ B(S(tk)) too. Indeed, by construction, B(S(tk)) is a bad sequence. See
[12] for a complete proof and more details on the construction of S.
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(x(i)), µi

M (1) = 0000 (0, 0, 0, 0), 0

M (2) = 00110 (0, 0, 2), 0

M (3) = 011010 (0, 2, 1), 0

M (4) = 1101010 (2, 1, 1), 0

M (5) = 10101011 (1, 1, 1), 2

M (6) = 010101111 (0, 1, 1), 4

M (7) = 1111110010 (6, 0, 1), 0

M (8) = 11111001011 (5, 0, 1), 2

M (9) = 111100101111 (4, 0, 1), 4

M (10) = 1110010111111 (3, 0, 1), 6

M (11) = 11001011111111 (2, 0, 1), 8

M (12) = 100101111111111 (1, 0, 1), 10

M (13) = 0010111111111111 (0, 0, 1), 12

M (14) = 01111111111111100 (0, 14, 0), 0

M (15) = 110111111111111100 (2, 13, 0), 0
...

...
...

...

M (24) = 011111111111100111111111111 (0, 12, 0), 12

M (25) = 1111111111111101111111111100 (14, 11, 0), 0
...

...
...

...
(0, 0, 0), A3(2) − 2
(0, A3(2)), 0

...
...

...
...

(0, 0), A2(A3(2)) − 2
(A2(A3(2))), 0

...
...

...
...

M (F (4)−5) = 01111111111 . . . . . . . . . 111111111111111111 (0), A1(A2(A3(2))) − 2

M (F (4)−4) = 11111111111 . . . . . . . . . 1111111111111111111 (), A1(A2(A3(2)))

Fig. 2. The beginning of a long bad (multi-diagonal) sequence starting at 0000. Note
that A4(0) = 2, and thus A1(A2(A3(2))) = F (4) − 1.

3 Distributed Decision

In this section, we present the application of distributed encoding of the integers
to distributed decision. First, we describe the computational model (more details
can be found in e.g. [2,17]), and then we formally define the notions of distributed
languages and decision (based on the framework of [10,11,13]).

Computational Model. We consider the standard asynchronous wait-free
read/write shared memory model. Each process runs at its own speed, that
may vary along with time, and the processes may fail by crashing (i.e., halt
and never recover). We consider the wait-free model [2] in which any number
of processes may crash in an execution. The processes communicate through a
shared memory composed of atomic registers. We associate each process p to a
positive integer, its identity id(p), and the registers are organized as an array
of single-writer/multiple-reader (SWMR) registers, one per process. A register
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i supports two operations: read() that returns the value stored in the register,
and can be executed by any process, and write(x) that writes the value x in the
register, and can be executed only by process with ID i. For simplicity, we use a
snapshot operation by which a process can read all registers, in such a way that
a snapshot returns a copy of all the values that were simultaneously present in
the shared memory at some point during the execution of the operation. We may
assume snapshots are available because they can be implemented by a wait-free
algorithm using only the array of SWMR registers [1].

Distributed Languages. A correctness specification that is to be moni-
tored is stated in terms of a distributed language. Suppose a set of processes
{id1, . . . , idk} ⊆ [n] observe the system, and get samples {a1, . . . , ak}, respec-
tively, over a domain A. A distributed language L specifies whether s =
{(id1, a1), . . . , (idk, ak)} corresponds to a legal or an illegal system behavior.
Such a set s consisting of pairs of processes and samples is called an instance,
and a distributed language L is simply the set of all legal instances of the under-
lying system, over a domain A of possible samples. Given a language L, we say
that an instance s is legal if s ∈ L and illegal otherwise. Given an instance
s = {(id1, a1), . . . , (idk, ak)} let ID(s) = {id1, . . . , idk} the set of identities in s
and val(s) the multiset of values in s.

Each process i ∈ [n] has a read-only variable, inputi, initially equal to a
symbol ⊥ (not in A), and where the process sample ai is deposited. We consider
only the simplest scenario, where these variables change only once, from the
value ⊥, to a value in A, and this is the first thing that happens when the
process starts running. The goal is for the processes to decide that, collectively,
the values deposited in these variables are correct: after communicating with
each other, processes output opinions. Each process i eventually deposits its
opinion in its write-once variable outputi. Due to failures, it may be the case
that only a subset of processes P ⊆ [n] participate. The instance of such an
execution is s = {(idi, ai) | idi ∈ P} and we consider only all executions where
all processes in P run to completion (the others do not take any steps), and each
one produces an opinion ui ∈ U , where U is a set of possible opinions.

Deciding a Distributed Language. Deciding a language L involves two com-
ponents: an opinion-maker M , and an interpretation μ. The opinion-maker is
the distributed algorithm executed by the processes. Each process produces an
individual opinion in U about the legality of the global instance. The inter-
pretation μ specifies the way one should interpret the collection of individual
opinions produced by the processes. It guarantees the minimal requirement that
the opinions of the processes should be able to distinguish legal instances from
illegal ones according to L. Consider the set of all multi-sets over U , each one
with at most n elements. Then μ = (Y,N) is a partition of this set. Y is called
the “yes” set, and N is called the “no” set.

For instance, when U = {0, 1}, process may produce as an opinion either 0
or 1. Together, the monitors produce a multi-set of at most n boolean values.
We do not consider which process produce which opinion, but we do consider
how many processes produce a given opinion. The partition produced by the
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and-operator [11] is as follows. For every multi-set of opinions S, set S ∈ Y if
every opinion in S is 1, otherwise, S ∈ N.

Given a language L over an alphabet A, a distributed monitor for L is a pair
(M,μ), an opinion maker M and an interpretation μ, satisfying the following, for
every execution E of M starting with instance s = {(idi, ai) | idi ∈ P}, P ⊆ [n].

Definition 2. The pair (M,μ) decides L with opinions U if every execution E
on instance s = {(idi, ai) | idi ∈ P, ai ∈ A} satisfies

– The input of process i is ai, and the opinion-maker M outputs on execution
E an opinion ui ∈ U .

– The instance s ∈ L if and only if the processes produce a multiset of opinions
S ∈ Y. Given that (Y,N) is a partition of the multisets over U , s �∈ L if and
only S �∈ Y.

Non-deterministic Distributed Decision. Similarly to the way NP extends
P, we extend the notion of distributed decision to distributed verification. In
addition to its input xi, process idi receives a string ci ∈ {0, 1}∗. The set c =
{(idi, ci) | idi ∈ P} is called a distributed certificate for processes P . The pair
(M,μ) is a distributed verifier for L with opinions U if for any s = {(idi, ai) | idi ∈
P, ai ∈ A}, the following hold

1. For any certificate c = {(idi, ci) | idi ∈ P}, the input of process i is the pair
(ai, ci), and the opinion-maker M outputs on every execution E an opinion
ui ∈ U .

2. (a) If instance s ∈ L then there exists a certificate c such that in every
execution the processes produce a multiset of opinions S ∈ Y.
(b) If instance s �∈ L then for any certificate c the processes produce a multiset

of opinions S ∈ N.

Note that we do not enforce any constraints on the running time of the
opinion maker M . Nevertheless, M must be wait-free, and must not be fooled
by any “fake” certificate c for an instance s /∈ L.

4 Efficient Non-deterministic Decision

We show that it is possible to verify every distributed language using three
opinions, with small size certificates. Then we show that with constant size
certificates, almost constant size number of opinions are sufficient.

Verification with a Constant Number of Opinions. Ideally, we would like
to deal with opinion-makers using very few opinions (e.g., just true or false), and
with simple interpreters (e.g., the boolean and operator). However, the following
result shows that even very classical languages like consensus cannot be verified
with such simple verifiers.

Theorem 2. There are languages that cannot be verified using only two opin-
ions, even restricted to instances of dimension at most 2 (i.e., 3 processes), and
regardless of the size of the certificates.
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The proof of Theorem 2 uses arguments from combinatorial topology. Indeed,
it is known (see e.g., [17]) that, roughly, a task is wait-free solvable if and only
if there is a simplicial map from a subdivision of its input complex to its output
complex. For instance, consensus is not wait-free solvable because any subdivision
preserves the connectivity of the consensus input complex, while the consensus
output complex is disconnected, from which it follows that a simplicial map
between the two complexes cannot exist. We use a similar style argument to
show that binary consensus among three processes is not wait-free verifiable
with only two opinions.

On the other hand, it was proved in [18] that every distributed language can
be verified using only three opinions (true, false, undetermined). However, the
verifier in [18] exhibited to establish this result uses certificates of size O(log n)
bits for n-dimensional instances. The following shows how to improve this bound
using distributed encodings and function α (Eq. (2)).

Theorem 3. Every distributed language can be verified using three opinions,
with certificates of size �log α(n)� + 1 bits for n-process instances.

Verification with Constant-Size Certificates. We can reduce the size of the
certificates even further, at the cost of slightly increasing the number of opinions.

Theorem 4. Every language can be verified with 1-bit certificates, using
2 α(n) + 1 opinions for n-dimensional instances.
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15. Göös, M., Suomela, J.: Locally checkable proofs. In: Proceedings of 30th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)

16. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 319–333. Springer, Heidelberg (2013)

17. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann (2013)

18. Jeanmougin, M.: Checkability in Asynchronous Error-Prone Distributed Comput-
ing Using Few Values. Master Thesis Report, University Paris Diderot (2013)

19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

20. Kruskal, J.: The theory of well-quasi-ordering: a frequently discovered concept. J.
Comb. Theor. A 13(3), 297–305 (1972)

21. Milner, E.: Basic WQO- and BQO-theory. In: Rival, I. (ed.) The Role of Graphs
in the Theory of Ordered Sets and Its Applications. NATO ASI Series, vol. 147,
pp. 487–502. Springer, Netherlands (1985)

22. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL speci-
fications in distributed systems. In: Proceedings of IEEE Parallel and Distributed
Processing Symposium (IPDPS), pp. 494–503 (2015)

23. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

24. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory. Technical
report Hal#cel-00727025 (2013). https://cel.archives-ouvertes.fr/cel-00727025v2

25. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett. 83(5), 251–261 (2002)

26. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and
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