
Pierre Fraigniaud

MPRI Course 2.18.1
Distributed algorithms on networks

https://www.irif.fr/~pierref

MPRI, Université Paris Cité, 2023-2024

Algorithms vs. programs
Mechanical procedures for solving a given problem

algorithm program

2

Distributed Algorithm
A collection of autonomous computing entities

collaborating for solving a task

in absence of any coordinator

3

Parallel vs. Distributed

Performances

> petaFLOPS (1015 op./s)

Parallel computing

Coping with uncertainty

temporal and spatial

Distributed computing

4

Sequential vs. Distributed

Alan Turing Alonzo Church

Communication Medium

Typical model for distributed computing

5

Examples of

Communication Media

6

!Processing elements (PE)

Shared memory Network

PE
Memory

Limitations Faced by Distributed Computing:
Undecidability + Uncertainty

Sources of uncertainties:

• Spatial: communication network

• Temporal: clock drifts (asynchrony, load, etc.)

• Failures (transient, crash, malicious, etc.)

• Selfish behavior (game theory)

• …

Several Turing machines are weaker than one!

7

2.18.x Courses

• 2.18.1 Distributed algorithms on networks

✓ Spatial issues: locality

• 2.18.2	 Distributed algorithms on shared memory

✓ Temporal issues: asynchrony and failures

8

Symmetry Breaking
• Leader election

• Consensus

• Coloring

• Graph problems

• Etc.

Applications :

Frequency assignments Distributed data-bases consistency
9

2.18.1 Course (2023-24)

1. Pierre Fraigniaud (CNRS and Université Paris Cité)

2. Mikaël Rabie (Université Paris Cité)

10

Learning objectives
• Models of distributed computing

• Algorithm design and analysis

• Computability and computational complexity

Distributed
Algorithms
Identical computers in an unknown network, 
all running the same algorithm

Distributed
Algorithms
Focus on graph problems: 
network topology = input graph

Prerequisites

Basic knowledge in:

• Graph theory

• (Sequential) algorithm design and analysis

• Elements of probability theory

14

Warm Up
• Deterministic 3-coloring the -node cycle

• Randomized 3-coloring the -node cycle

n
n

15

Basic Graph Problems

16

Vertex coloring Independent set

Locally
Checkable
Labeling

(LCL)

3-coloring the n-node cycle Cn
4

10

23

9

1 8

7

65

17

Identifiers

 (IDs)

Color Reduction

(assuming IDs in){1,…, n}

• MyColor ← MyID

• For down to do

- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor then pick smallest color in

 distinct from colors of neighbors

Complexity: rounds

i = n 4

= i
{1,2,3}

O(n)

18

Color Reduction

(assuming arbitrary IDs)

• MyColor ← MyID

• Repeat

- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor is locally maximum then

‣ pick smallest color in distinct from
colors of neighbors

‣ send MyColor to neighbors and terminate

Complexity: rounds

{1,2,3}

O(n)
19

Logarithms
• Unless specified otherwise, all logarithms in these

lectures are in base 2

For every ,

• -bit binary strings encode integers between 0 and
 (or between and for any)

• For every , encoding all integers in uses
 bits.

• Encoding values uses bits.

x > 0 log2 x =
ln x
ln 2

k
2k − 1 a a + 2k − 1 a ∈ ℤ

n > 0 [0,n − 1]
⌈log2 n⌉

n > 0 ⌈log2 n⌉

20

A Super Fast Algorithms
Theorem (Cole and Vishkin, 1986) There exists a
distributed algorithm for -coloring performing in

 rounds.

Iterated logarithms:

log(0) x = x log(k+1) x = log log(k) x

log*x = smallest k such that log(k) x < 1

log*10100 = 5

3 Cn
O(log⋆ n)

21

Cole-Vishkin Algorithm

22

A

B
C00101111101

10110011101 1011011010110110011101

new = (position,bit) = (5,1) = 1011

Initial color = ID

Express colors in binary

Assume: n is known, and

consistent sens of direction

(p’,b’) (p,b)
p ≠ p’ ⇒ proper coloring

p = p’ ⇒ b ≠ b’ ⇒ proper coloring

Number of iterations
• k-bit colors ⇒ new colors on bits

• rounds to reach colors on 3 bits

• 8 colors down to 3 colors in 5 rounds

• Total number of rounds =

⌈log2 k⌉ + 1

log⋆ n + O(1)

log⋆ n + O(1)

23

❏
In fact: 6 colors down to 3 colors in 3 rounds

Speeding up CV’s Algorithm

• Every node can simulate 2 rounds in just 1 round

• left round + right round ➡︎ implemented in 1 round

• Total number of rounds =
1
2

log⋆ n + O(1)

24

❏

A

B
C00101111101

10110011101 10110110101

Question
Is there a distributed algorithm for 3-coloring the n-
node ring performing in less that rounds?

Theorem (Linial, 1992) Any distributed algorithm for

-coloring performs in at least

rounds.

Ω(log⋆ n)

3 Cn
1
2

log⋆ n − O(1)

25

Dijkstra Prize 2013

This will be established later in the course

Randomized Coloring of Cn
• MyFinalColor ←

• Repeat

- MyProposedColor ← color in uniformly at random

- Send MyProposedColor to neighbors

- Receive ProposedColors from neighbors

- if MyProposedColor is different from the FinalColors and

ProposedColors of both neighbors then
MyFinalColor ← MyProposedColor

- Send MyFinalColor to neighbors

- Receive FinalColors from neighbors

• Until MyFinalColor

Claim This (Las Vegas) algorithm runs in rounds w.h.p.

⊥

{1,2,3}

≠ ⊥

O(log n)

26

• A Las Vegas algorithm is a randomized algorithm
that always gives the correct output but whose
running time is a random variable.

• A Monte Carlo algorithm is a randomized
algorithms whose running time is deterministic, but
whose output may be incorrect with a certain,
typically small, probability.

Pr[running time ≤ T] ≥ 1 − ϵ

Pr[error after time T] ≤ ϵ

27

Definition A sequence (En)n≥1 of events holds with high
probability (w.h.p.) whenever Pr[En] = for some
constant (typically).

Elements of probability:

Recall:

• Pr[A|B] = Pr[A∧B] / Pr[B] ⇒ Pr[A∧B] = Pr[A|B] · Pr[B]

• Pr[A] = Pr[A|B] · Pr[B] + Pr[A|¬B] · Pr[¬B]

• Union bound: Pr[A∨B] ≤ Pr[A] + Pr[B]

 Pr[∃ s ∈ S : s ⊨ P] = Pr[(s1 ⊨ P) ∨ (s2 ⊨ P) ∨…∨ (sm ⊨ P)]

1 − O(1/nc)
c > 0 c = 1

28

« A given B holds » or

« A conditioned to B »

and

or

A and B independent

⇔ Pr[A∧B] = Pr[A] · Pr[B]

Claim This (Las Vegas) algorithm runs in rounds w.h.p.

Proof At every execution of the repeat loop, for every fixed node ,

Note: At first execution of the repeat loop:

•

•

•

•

O(log n)
u

Pr[u terminates] = Pr[X ∉ {X−1, X+1}] ≥
1
3

Pr[u terminates] = ∑
x∈{1,2,3}

Pr[(X−1 ≠ x) ∧ (X+1 ≠ x)] ⋅ Pr[X = x] ≥
4
9

Pr[u does not terminates after k rounds] ≤ (2
3)

k

Pr[u does not terminates after c log3/2 n rounds] ≤
1
nc

Pr[some u does not terminate after c log3/2 n rounds ≤
1

nc−1

Pr[every node u terminates after c log3/2 n rounds ≥ 1 −
1

nc−1

29

❏

End Lecture 1

30

