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Algorithms vs. programs

Mechanical procedures for solving a given problem
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Distributed Algorithm

A collection of autonomous computing entities
collaborating for solving a task
INn albbsence of any coordinator
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Parallel vs. Distributed

Parallel computing Distributed computing
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Performances Coping with uncertainty
> petaFLOPS (1015 op./s) temporal and spatial



Sequential vs. Distributed

Alan Turing

Alonzo Church

Typical model for distributed computing

Communication Medium



Examples of
Communication Media

PEL]\
Memory

ing elements \\)../\\\

Shared memory
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Limitations Faced by Distributed Computing:
Undecidability ‘ + Uncertainty Y

Sources of uncertainties:

e Spatial: communication network

e Temporal: clock drifts (asynchrony, load, etc.)
 Failures (transient, crash, malicious, etc.)

 Selfish behavior (game theory)

Several Turing machines are weaker than one!



2.18.x Courses

 2.18.1 Distributed algorithms on networks
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e 2.18.2 Distributed algorithms on shared memory

v Temporal issues: asynchrony and failures




Symmetry Breaking

| eader election

Consensus

Coloring

Graph problems

 Etc.

Applications :

Frequency assigng\ents Distributed data-bases consistency



2.18.1 Course (2023-24)

1. Pierre Fraigniaud (CNRS and Université Paris Cité)

2. Mikaél Rabie (Université Paris Cité)
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Learning objectives

* Models of distributed computing
» Algorithm design and analysis

- Computability and computational complexity



Distributed
Algorithms

Identical computers in an unknown network,
all running the same algorithm
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Distributed
Algorithms

Focus on graph problems:
network topology = input graph
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Prerequisites

Basic knowledge in:
e Graph theory
* (Sequential) algorithm design and analysis

* Elements of probability theory

14



Warm Up

« Deterministic 3-coloring the n-node cycle
« Randomized 3-coloring the n-node cycle
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Basic Graph Problems

Vertex coloring Independent set




3-coloring the n-node cycle Cn
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Color Reduction

(assuming |
» MyColor « MyID

Dsin {1,...,n})

e Fori = n downto4 do

- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor = 1 then pick smallest color in
{1,2,3} distinct from colors of neighbors

Complexity: O(n) rounds
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Color Reduction

(assuming arbitrary |Ds)
 MyColor « MyID
* Repeat
- Send MyColor to neighbors
- Receive colors from neighbors
- If Mycolor is locally maximum then

» pick smallest color in {1,2,3} distinct from
colors of neighbors

» send MyColor to neighbors and terminate

Complexity: O(n) rounds
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Logarithms

Unless specified otherwise, all logarithms in these

lectures are Iin base 2

Inx
Forevery x > 0, log, x = —
In2

k-bit binary strings encode integers between 0 and
2% — 1 (or between a and a + 2K — 1 for any a € Z)

For every n > 0, encoding all integers in [0,n — 1] uses
[log, n] bits.

Encoding n > 0 values uses |log, n] bits.
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A Super Fast Algorithms

Theorem (Cole and Vishkin, 1986) There exists a
distributed algorithm for 3-coloring C,, performing in
O(log™ n) rounds.

lterated logarithms:
> log@ x = x logk+1) x = log logk) x

- log*™x = smallest k such that logk x < 1
» log*10100 = 5
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Cole-Vishkin Algorithm

Initial color = ID Assume: n IS known, and
Express colors in binary consistent sens of direction

00101111101

10110011101
10110011101 10110110101
new = (position,bit) = (5,1) = 1011
(p’,b’) (p,b)

0 # P = proper coloring

o =p = Db=Db = proper coloring
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Number of iterations

k-bit colors = new colors on [log, k| + 1 bits

log* n + O(1) rounds to reach colors on 3 bits

8 colors down to 3 colors in 5 rounds

Total number of rounds = log™ n + O(1)

In fact: 6 colors down to 3 colors in 3 rounds
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Speeding up CV's Algorithm

00101111101
10110011101 10110110101

* Every node can simulate 2 rounds in just 1 round

e left round + right round = implemented in 1 round

1
. Total number of rounds = 5 log*n + O(1) 1
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Question

Is there a distributed algorithm for 3-coloring the n-
node ring performing in less that Q(log™ n) rounds?

Theorem (Linial, 1992) Any distributed algorithm for
3-coloring C, performs in at least 5 log*n — O(1)

rounds.
ounds Dijkstra Prize 2013

This will be established later in the course
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Randomized Coloring of C,

« MyFinalColor « L

e Repeat
- MyProposedColor « colorin {1,2,3} uniformly at random
- Send MyProposedColor to neighbors
- Receive ProposedColors from neighbors

- if MyProposedColor is different from the FinalColors and
ProposedColors of both neighbors then
MyFinalColor « MyProposedColor

- Send MyFinalColor to neighbors
- Receive FinalColors from neighbors
 Until MyFinalColor # L

Claim This (Las Vegas) algorithm runs in O(log n) rounds w.h.p.

26



A Las Vegas algorithm is a randomized algorithm
that always gives the correct output but whose
running time is a random variable.

Pr[runningtme <7T]>1—-—¢
* A Monte Carlo algorithm is a randomized
algorithms whose running time is deterministic, but
whose output may be incorrect with a certain,

typically small, probabillity.

Pr|error aftertime T] < €
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Definition A sequence (&n)n=1 Of events holds with high
orobability (w.h.p.) whenever Pr[g.] = 1 — O(1/n°) for some
constant ¢ > 0 (typically ¢ = 1).

Elements of probability:

Recal |: « A given B holds » or

« A conditioned to B »

« PI[AB] = Pr| A/\B] / Pr[B] = Pr[AAB] = Pr[A|B] - Pr[B]

A and B independent  }
j; Pr[A/\B] Pr[A] Pr[B] j

« Pr[A] = Pr[AB] - Pr[B] + Pr[A|~B] - Pr[B]

e Union bound Pr[AvB] < Pr[A] + Pr[B]

_[Elses sw] Pr[(S1|=CP) (Sg|=CP)vv(S|=CP)]
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Claim This (Las Vegas) algorithm runs in O(log n) rounds w.h.p.

Proof At every execution of the repeat loop, for every fixed node u,
1
Pr[u terminates] = Pr[X & {X_,, X, }] > 3
Note: At first execution of the repeat loop:

Pr[u terminates] = Z PriX_; #x) AX,; #x)] -Pr[X =x] > g
xe{l1,2,3}

k
2
Pr[u does not terminates after k rounds] < <§>

1
Pr[u does not terminates after c¢logs,, n rounds] < —
n

1

nC—l

Pr[some u does not terminate after c¢logs,, n rounds <

Pr[every node u terminates after clogs,, n rounds > 1 —

nc—l
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End Lecture 1



