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Algorithms vs. programs
Mechanical procedures for solving a given problem 

algorithm program
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Distributed Algorithm
A collection of autonomous computing entities 

collaborating for solving a task 

in absence of any coordinator

3



Parallel vs. Distributed

Performances

> petaFLOPS (1015 op./s)

Parallel computing

Coping with uncertainty

temporal and spatial

Distributed computing
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Sequential vs. Distributed

Alan Turing Alonzo Church

Communication Medium

Typical model for distributed computing
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Examples of 

Communication Media
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!Processing elements (PE)

Shared memory Network

PE
Memory



Limitations Faced by Distributed Computing:  
Undecidability        + Uncertainty

Sources of uncertainties: 

• Spatial: communication network


• Temporal: clock drifts (asynchrony, load, etc.)


• Failures (transient, crash, malicious, etc.)


• Selfish behavior (game theory)


• … 

Several Turing machines are weaker than one!  
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2.18.x Courses

• 2.18.1  Distributed algorithms on networks


✓ Spatial issues: locality


• 2.18.2	  Distributed algorithms on shared memory


✓ Temporal issues: asynchrony and failures
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Symmetry Breaking
• Leader election


• Consensus


• Coloring


• Graph problems


• Etc. 

Applications : 

Frequency assignments Distributed data-bases consistency
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2.18.1 Course (2023-24)

1. Pierre Fraigniaud (CNRS and Université Paris Cité)


2. Mikaël Rabie (Université Paris Cité)
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Learning objectives
• Models of distributed computing

• Algorithm design and analysis

• Computability and computational complexity



Distributed 
Algorithms
Identical computers in an unknown network, 
all running the same algorithm



Distributed 
Algorithms
Focus on graph problems: 
network topology = input graph



Prerequisites 

Basic knowledge in: 


• Graph theory


• (Sequential) algorithm design and analysis


• Elements of probability theory
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Warm Up
• Deterministic 3-coloring the -node cycle

• Randomized 3-coloring the -node cycle

n
n
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Basic Graph Problems
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Vertex coloring Independent set

Locally 
Checkable 
Labeling 

(LCL)



3-coloring the n-node cycle Cn
4

10

23

9

1 8

7

65
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Identifiers

 (IDs)



Color Reduction

(assuming IDs in ){1,…, n}

• MyColor ← MyID

• For  down to  do


- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor  then pick smallest color in 

 distinct from colors of neighbors


Complexity:  rounds

i = n 4

= i
{1,2,3}

O(n)
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Color Reduction

(assuming arbitrary IDs)

• MyColor ← MyID

• Repeat


- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor is locally maximum then 


‣ pick smallest color in  distinct from 
colors of neighbors


‣ send MyColor to neighbors and terminate


Complexity:  rounds 

{1,2,3}

O(n)
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Logarithms
• Unless specified otherwise, all logarithms in these 

lectures are in base 2


For every , 


• -bit binary strings encode integers between 0 and 
 (or between  and  for any )


• For every , encoding all integers in  uses 
 bits. 


• Encoding  values uses  bits. 

x > 0 log2 x =
ln x
ln 2

k
2k − 1 a a + 2k − 1 a ∈ ℤ

n > 0 [0,n − 1]
⌈log2 n⌉

n > 0 ⌈log2 n⌉
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A Super Fast Algorithms
Theorem (Cole and Vishkin, 1986) There exists a 
distributed algorithm for -coloring  performing in 

 rounds.


Iterated logarithms: 

log(0) x = x       log(k+1) x = log log(k) x

log*x = smallest k such that log(k) x < 1

log*10100 = 5


3 Cn
O(log⋆ n)
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Cole-Vishkin Algorithm
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A

B
C00101111101

10110011101 1011011010110110011101

new = (position,bit) = (5,1) = 1011 

Initial color = ID

Express colors in binary

Assume: n is known, and

consistent sens of direction

(p’,b’) (p,b)
p ≠ p’ ⇒ proper coloring

p = p’ ⇒ b ≠ b’ ⇒ proper coloring



Number of iterations
• k-bit colors ⇒ new colors on  bits


•  rounds to reach colors on 3 bits


• 8 colors down to 3 colors in 5 rounds


• Total number of rounds =  

⌈log2 k⌉ + 1

log⋆ n + O(1)

log⋆ n + O(1)
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❏
In fact: 6 colors down to 3 colors in 3 rounds




Speeding up CV’s Algorithm

• Every node can simulate 2 rounds in just 1 round


• left round + right round ➡︎ implemented in 1 round


• Total number of rounds =  
1
2

log⋆ n + O(1)
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❏

A

B
C00101111101

10110011101 10110110101



Question
Is there a distributed algorithm for 3-coloring the n-
node ring performing in less that  rounds? 


Theorem (Linial, 1992) Any distributed algorithm for 

-coloring  performs in at least  

rounds. 

Ω(log⋆ n)

3 Cn
1
2

log⋆ n − O(1)
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Dijkstra Prize 2013

This will be established later in the course



Randomized Coloring of Cn
• MyFinalColor ← 

• Repeat


- MyProposedColor ← color in  uniformly at random

- Send MyProposedColor to neighbors

- Receive ProposedColors from neighbors

- if MyProposedColor is different from the FinalColors and 

ProposedColors of both neighbors then                   
MyFinalColor ← MyProposedColor


- Send MyFinalColor to neighbors

- Receive FinalColors from neighbors


• Until MyFinalColor 


Claim This (Las Vegas) algorithm runs in  rounds w.h.p.

⊥

{1,2,3}

≠ ⊥

O(log n)
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• A Las Vegas algorithm is a randomized algorithm 
that always gives the correct output but whose 
running time is a random variable.





• A Monte Carlo algorithm is a randomized 
algorithms whose running time is deterministic, but 
whose output may be incorrect with a certain, 
typically small, probability.


Pr[running time ≤ T] ≥ 1 − ϵ

Pr[error after time T] ≤ ϵ
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Definition A sequence (En)n≥1 of events holds with high 
probability (w.h.p.) whenever Pr[En] =  for some 
constant  (typically ). 


Elements of probability:


Recall: 


• Pr[A|B] = Pr[A∧B] / Pr[B] ⇒ Pr[A∧B] = Pr[A|B] · Pr[B]


• Pr[A] = Pr[A|B] · Pr[B] + Pr[A|¬B] · Pr[¬B]


• Union bound: Pr[A∨B] ≤ Pr[A] + Pr[B]


    Pr[∃ s ∈ S : s ⊨ P] = Pr[(s1 ⊨ P) ∨ (s2 ⊨ P) ∨…∨ (sm ⊨ P)]

1 − O(1/nc)
c > 0 c = 1
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« A given B holds » or

« A conditioned to B »

and

or

A and B independent

⇔ Pr[A∧B] = Pr[A] · Pr[B]



Claim This (Las Vegas) algorithm runs in  rounds w.h.p. 


Proof At every execution of the repeat loop, for every fixed node ,





Note: At first execution of the repeat loop: 





• 


• 


• 


•

O(log n)
u

Pr[u terminates] = Pr[X ∉ {X−1, X+1}] ≥
1
3

Pr[u terminates] = ∑
x∈{1,2,3}

Pr[(X−1 ≠ x) ∧ (X+1 ≠ x)] ⋅ Pr[X = x] ≥
4
9

Pr[u does not terminates after k rounds] ≤ ( 2
3 )

k

Pr[u does not terminates after c log3/2 n rounds] ≤
1
nc

Pr[some u does not terminate after c log3/2 n rounds ≤
1

nc−1

Pr[every node u terminates after c log3/2 n rounds ≥ 1 −
1

nc−1
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❏



End Lecture 1
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