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Distributed Algorithms
A collection of autonomous computing entities  
collaborating for solving a task  
in absence of any coordinator
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Sequential vs. Distributed

Alan Turing Alonzo Church

Communication Medium

Typical model for distributed computing
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Examples of  
Communication Media
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!Processing elements (PE)

Shared memory Network

PE
Memory



Limitations Faced by Distributed Computing:  
Undecidability        + Uncertainty

Sources of uncertainties: 

• Spatial: communication network 

• Temporal: clock drifts (asynchrony, load, etc.) 

• Failures (transient, crash, malicious, etc.) 

• Selfish behavior (game theory) 

• … 

Several Turing machines are weaker than one!  
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2.18.x Courses

• 2.18.1  Distributed algorithms on networks 

✓ Spatial issues: locality 

• 2.18.2	  Distributed algorithms on shared memory 

✓ Temporal issues: asynchrony and failures
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Symmetry Breaking
• Leader election 

• Consensus 

• Coloring 

• Graph problems 

• Etc. 

Applications : 

Frequency assignments Distributed data-bases consistency
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2.18.1 Course (2024-2025)

1. Pierre Fraigniaud (CNRS and Université Paris Cité) 

2. Mikaël Rabie (Université Paris Cité) 

firstname.lastname@irif.fr
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Prerequisites 

Basic knowledge in:  

• Graph theory 

• (Sequential) algorithm design and analysis 

• Elements of probability theory
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Roadmap Lecture 1

• 3-coloring the -node cycle  

• -coloring -node graphs of maximum degree 

n Cn

(Δ + 1) n Δ

10



3-coloring Cn
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3-coloring the -node cycle n Cn
4

10

23
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1 8

7

65
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Identifiers 
 (IDs)

We assume synchronous rounds,  
and no failures



Color Reduction 
(assuming IDs in ){1,…, n}

• MyColor ← MyID 
• For  down to  do 

- Send MyColor to neighbors 
- Receive colors from neighbors 
- if Mycolor  then pick smallest color in 

 distinct from colors of neighbors 

Complexity:  rounds

i = n 4

= i
{1,2,3}

O(n)
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Color Reduction 
(assuming arbitrary IDs)

• MyColor ← MyID 
• Repeat 

- Send MyColor to neighbors 
- Receive colors from neighbors 
- if Mycolor is locally maximum then  

‣ pick smallest color in  distinct from 
colors of neighbors 

‣ send MyColor to neighbors and terminate 

Complexity:  rounds 

{1,2,3}

O(n)
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Logarithms
• Unless specified otherwise, all logarithms in these 

lectures are in base 2 

For every ,  

• -bit binary strings encode integers between 0 and 
 (or between  and  for any ) 

• For every , encoding all integers in  uses 
 bits.  

• Encoding  values uses  bits. 

x > 0 log2 x =
ln x
ln 2

k
2k − 1 a a + 2k − 1 a ∈ ℤ

n > 0 [0,n − 1]
⌈log2 n⌉

n > 0 ⌈log2 n⌉
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A Super Fast Algorithms
Theorem (Cole and Vishkin, 1986) There exists a 
distributed algorithm for -coloring  performing in 

 rounds. 

Iterated logarithms:  
log(0) x = x       log(k+1) x = log log(k) x 
log*x = smallest k such that log(k) x < 1 
log*10100 = 5 

3 Cn
O(log⋆ n)
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Cole-Vishkin Algorithm
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A

B
C00101111101

10110011101 1011011010110110011101

new = (position,bit) = (5,1) = 1011 

Initial color = ID 
Express colors in binary

Assume: n is known, and 
consistent sens of direction

(p’,b’) (p,b)
p ≠ p’ ⇒ proper coloring 
p = p’ ⇒ b ≠ b’ ⇒ proper coloring



Number of iterations
• -bit colors ⇒ new colors on  bits 

•  rounds to reach colors on 3 bits 

• 8 colors down to 3 colors in 5 rounds 

• Total number of rounds =  

k ⌈log2 k⌉ + 1

log⋆ n + O(1)

log⋆ n + O(1)
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❏
In fact: 6 colors down to 3 colors in 3 rounds 



Speeding up CV’s Algorithm

• Every node can simulate 2 rounds in just 1 round 

• left round + right round ➡︎ implemented in 1 round 

• Total number of rounds =  
1
2

log⋆ n + O(1)
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❏

A

B
C00101111101

10110011101 10110110101



Question
Is there a distributed algorithm for 3-coloring the n-
node ring performing in less that  rounds?  

Theorem (Linial, 1992) Any distributed algorithm for  
-coloring  has round-complexity at least   

 

Ω(log⋆ n)

3 Cn
1
2

log⋆ n − O(1)
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Dijkstra Prize 2013

This will be established later in the course



-coloring arbitrary -node 
graphs with maximum degree 

(Δ + 1) n

Δ = max
v∈V(G)

deg(v)
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(∆+1)-coloring
∆ = maximum node degree of the graph 

(∆+1)-coloring = assign colors to nodes such that every pair 
of adjacent nodes are assigned different colors.  

Lemma Every graph is (∆+1)-colorable 

Theorem (Brooks, 1941) 
Every graph G is ∆-colorable, unless G is a complete graph, 
or an odd cycle.  

Lemma (∆+1)-coloring can be sequentially computed by a 
simple greedy algorithm treating each node individually. 
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Remark

Let  

If there exists a -round -coloring algorithm then 
there exists a -coloring algorithm running in 

 rounds.

k ≥ Δ + 1

t k
(Δ + 1)

t + (k − (Δ + 1))

23



3-Coloring Rooted Trees

• Apply C&V with parent for 
 rounds, to 6-color 

the tree 

• For  down to  do 
- adopt color of parent 
- recolor nodes colored  

with a color in 

O(log⋆ n)

i = 6 4

i
{1,2,3}
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u

parent(u)

children(u)

root

leaves

leaf



1-Factors
• Let  be a graph 

• Assume each node  selects one of its 
incident edges 

• Let  be the set of selected edges 

Claim  is a collection of « pseudo-trees » of the 
form

G = (V, E)
v ∈ V

F ⊆ E
F
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Pseudo-Forest 
Decomposition
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A Connected Component
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Not a tree, but almost… 
Hence the names 
pseudo-tree and pseudo forest

Remark: 
For port 1, one  
gets « real » trees



Coloring with  colors in 
 rounds
3Δ

O(log⋆ n)
• Every node  orders its incident links from 1 to 

 according to the IDs of its neighbors 

• This results in  pseudo-forests  

• Color each pseudo tree in each pseudo forest in 
parallel, in  rounds  

• Each node gets a color  
where , hence  colors. 

u
deg(u)

Δ F1, …, FΔ

O(log⋆ n)

c(u) = (c1(u), …, cΔ(u))
ci(u) ∈ {1,2,3} 3Δ
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End Lecture 1
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