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Distributed Algorithms

A collection of autonomous computing entities
collaborating for solving a task
IN absence of any coordinator




Sequential vs. Distributed

Alan Turing

Alonzo Church

Typical model for distributed computing
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Limitations Faced by Distributed Computing:
Undecidability ‘. + Uncertainty 7

[ &
Sources of uncertainties:

e Spatial: communication network

e Temporal: clock drifts (asynchrony, load, etc.)

 Failures (transient, crash, malicious, etc.)

» Selfish behavior (game theory)

Several Turing machines are weaker than one!



?2.18.x Courses

 2.18.1 Distributed algorithms on networks

v Spatial issues: locality | ./~ = /
AN .

e 2.18.2 Distributed algorithms on shared memory

v Temporal issues: asynchrony and failures




Symmetry Breaking

|eader election

Consensus

Coloring

Graph problems

e Etc.

Applications :

Frequency assignlyents Distributed data-bases consistency
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Prerequisites

Basic knowledge in:
* Graph theory
* (Sequential) algorithm design and analysis

* Elements of probability theory



Roadmap Lecture 1

«  3-coloring the n-node cycle C,

e« (A + 1)-coloring n-node graphs of maximum degree A
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3-coloring C,



3-coloring the n-node cycle C,
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We assume synchronous rounds,
and no failures
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Color Reduction

(assuming |
 MyColor « MylD

Dsin {1,...,n})

e Fori = n downto4 do

- Send MyColor to neighbors

- Receive colors from neighbors

- if Mycolor = 1 then pick smallest color in
{1,2,3} distinct from colors of neighbors

Complexity: O(n) rounds
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Color Reduction

(assuming arbitrary |
* MyColor « MylD
* Repeat
- Send MyColor to neighbors
- Receive colors from neighbors

- if Mycolor is locally maximum then

DS)

» pick smallest color in {1,2,3} distinct from

colors of neighbors

» send MyColor to neighbors and terminate

Complexity: O(n) rounds
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L ogarithms

Unless specified otherwise, all logarithms in these

lectures are in base 2

In x
For every x > 0, log, x = —
In2

k-bit binary strings encode integers between 0 and
2K — 1 (or between a and a + 2K — 1 for any a € Z)

For every n > 0, encoding all integers in [0,n — 1] uses
|log, n| bits.

Encoding n > 0 values uses |log, n] bits.
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A Super Fast Algorithms

Theorem (Cole and Vishkin, 1986) There exists a
distributed algorithm for 3-coloring C,, performing in
O(log™ n) rounds.

lterated logarithms:
- log©@ x = x logk+1) x = log logk) x

» log*™x = smallest k such that log x < 1
> log*101%0 = 5
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Cole-Vishkin Algorithm

Initial color = ID Assume: n is known, and
Express colors in binary consistent sens of direction

00101111101

1011001110
10110011101 10110110101
new = (position,bit) = (5,1) = 1011

(p’,b’) (p,b)

0 = P = proper coloring

0 =p = b=+Db = proper coloring
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Number of iterations

k-bit colors = new colors on [log, k| + 1 bits

log* n + O(1) rounds to reach colors on 3 bits
8 colors down to 3 colors In 5 rounds

Total number of rounds = log* n + O(1)

In fact: 6 colors down to 3 colors in 3 rounds
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Speeding up CV's Algorithm

00101111101
10110011101 10110110101

* Every node can simulate 2 rounds in just 1 round

e left round + right round = implemented in 1 round

|
. Total number of rounds = 5 log*n + O(1) 1
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Question

|s there a distributed algorithm for 3-coloring the n-
node ring performing in less that Q(log™ n) rounds?

Theorem (Linial, 1992) Any distributed algorithm for
3-coloring C,, has round-complexity at least

1
Elog*n — O(1)

Dijkstra Prize 2013
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(A + 1)-coloring arbitrary n-node
graphs with maximum degree

A = max deg(v)
veV(G)




(A+1)-coloring

A = maximum node degree of the graph

(A+1)-coloring = assign colors to nodes such that every pair
of adjacent nodes are assigned different colors.

Lemma Every graph is (A+1)-colorable /\f

Theorem (Brooks, 1941)
Every graph G is A-colorable, unless G is a complete graph,
or an odd cycle.

Lemma (A+1)-coloring can be sequentially computed by a
simple greedy algorithm treating each node individually.
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Remark

letk > A+1

f there exists a f-round k-coloring algorithm then
there exists a (A + 1)-coloring algorithm running in

r+ (k — (A + 1)) rounds.
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3-Coloring Rooted Trees

root

* Apply C&V with parent for
O(log™ n) rounds, to 6-color
the tree

e« Fori = 6 downto4 do

- adopt color of parent

- recolor nodes colored 1
with a colorin {1,2,3}

children(u)

leaves
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1-Factors

e LetG = (V, E) be a graph

« Assume each node v € V selects one of its
iIncident edges

o Let ' C E be the set of selected edges

Claim F'is a collection of « pseudo-trees » of the
form
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Pseudo-rorest
Decomposition




A Connected Component

%f

Remark:
For port 1, one
gets « real » trees

Not a tree, but almost...
Hence the names
pseudo-tree and pseudo forest
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Coloring with 32 colors in
O(log™ n) rounds

Every node u orders its incident links from 1 to
deg(u) according to the IDs of its neighbors

This results in A pseudo-forests Fy, ..., Fx

Color each pseudo tree in each pseudo forest in
parallel, in O(log™ n) rounds

Each node gets a color c(u) = (c(u), ..., cx(u))
where c,(u) € {1,2,3}, hence 32 colors.
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End Lecture



