MPRI Course 2.18.1 Distributed algorithms on networks

Pierre Fraigniaud

INSTITUT DE RECHERCHE EN INFORMATIQUE FONDAMENTALE

https://www.irif.fr/~pierref

MPRI, Université Paris Cité, 2024-2025

Distributed Algorithms

A collection of autonomous computing entities collaborating for solving a task in absence of any coordinator

Sequential vs. Distributed

Alan Turing

Alonzo Church

Typical model for distributed computing

Examples of Communication Media

Limitations Faced by Distributed Computing: Undecidability + Uncertainty

Sources of uncertainties:

- Spatial: communication network
- Temporal: clock drifts (asynchrony, load, etc.)
- Failures (transient, crash, malicious, etc.)
- Selfish behavior (game theory)

. . .

Several Turing machines are weaker than one!

2.18.x Courses

✓ Spatial issues: locality

- 2.18.2 Distributed algorithms on shared memory
 - ✓ Temporal issues: asynchrony and failures

Symmetry Breaking

- Leader election
- Consensus
- Coloring
- Graph problems
- Etc.

Applications :

Distributed data-bases consistency

2.18.1 Course (2024-2025)

1. Pierre Fraigniaud (CNRS and Université Paris Cité)

2. Mikaël Rabie (Université Paris Cité)

firstname.lastname@irif.fr

Prerequisites

Basic knowledge in:

- Graph theory
- (Sequential) algorithm design and analysis
- Elements of probability theory

Roadmap Lecture 1

- 3-coloring the *n*-node cycle C_n
- $(\Delta + 1)$ -coloring *n*-node graphs of maximum degree Δ

3-coloring C_n

3-coloring the *n*-node cycle C_n

Color Reduction (assuming IDs in {1,...,n})

- MyColor ← MyID
- For i = n down to 4 do
 - Send MyColor to neighbors
 - Receive colors from neighbors
 - if Mycolor = i then pick smallest color in $\{1,2,3\}$ distinct from colors of neighbors

Complexity: O(n) rounds

Color Reduction (assuming arbitrary IDs)

- MyColor ← MyID
- Repeat
 - Send MyColor to neighbors
 - Receive colors from neighbors
 - if Mycolor is locally maximum then
 - pick smallest color in {1,2,3} distinct from colors of neighbors
 - send MyColor to neighbors and terminate

Complexity: *O*(*n*) rounds

Logarithms

• Unless specified otherwise, all logarithms in these lectures are in base 2

For every
$$x > 0$$
, $\log_2 x = \frac{\ln x}{\ln 2}$

- *k*-bit binary strings encode integers between 0 and $2^k 1$ (or between *a* and $a + 2^k 1$ for any $a \in \mathbb{Z}$)
- For every n > 0, encoding all integers in [0, n 1] uses $\lceil \log_2 n \rceil$ bits.
- Encoding n > 0 values uses $\lceil \log_2 n \rceil$ bits.

A Super Fast Algorithms

Theorem (Cole and Vishkin, 1986) There exists a distributed algorithm for 3-coloring C_n performing in $O(\log^* n)$ rounds.

Iterated logarithms:

- $\log^{(0)} \mathbf{X} = \mathbf{X}$ $\log^{(k+1)} \mathbf{X} = \log^{(k)} \mathbf{X}$
- $\log^* x = \text{smallest } k \text{ such that } \log^{(k)} x < 1$

$$oldsymbol{log}*10^{100} = 5$$

Cole-Vishkin Algorithm

Number of iterations

- *k*-bit colors \Rightarrow new colors on $\lceil \log_2 k \rceil + 1$ bits
- $\log^* n + O(1)$ rounds to reach colors on 3 bits
- 8 colors down to 3 colors in 5 rounds
- Total number of rounds = $\log^* n + O(1)$

In fact: 6 colors down to 3 colors in 3 rounds

- Every node can simulate 2 rounds in just 1 round
- left round + right round → implemented in 1 round

• Total number of rounds =
$$\frac{1}{2}\log^* n + O(1)$$

Question

Is there a distributed algorithm for 3-coloring the nnode ring performing in less that $\Omega(\log^* n)$ rounds?

Theorem (Linial, 1992) Any distributed algorithm for 3-coloring C_n has round-complexity at least $\frac{1}{2}\log^* n - O(1)$

Dijkstra Prize 2013

This will be established later in the course

$(\Delta + 1)$ -coloring arbitrary *n*-node graphs with maximum degree $\Delta = \max_{v \in V(G)} \deg(v)$

$(\Delta + 1)$ -coloring

 Δ = maximum node degree of the graph

 $(\Delta + 1)$ -coloring = assign colors to nodes such that every pair of adjacent nodes are assigned different colors.

Lemma Every graph is $(\Delta + 1)$ -colorable

Theorem (Brooks, 1941) Every graph G is Δ -colorable, unless G is a complete graph, or an odd cycle.

Lemma $(\Delta + 1)$ -coloring can be sequentially computed by a simple greedy algorithm treating each node individually.

Remark

Let $k \ge \Delta + 1$

If there exists a *t*-round *k*-coloring algorithm then there exists a $(\Delta + 1)$ -coloring algorithm running in $t + (k - (\Delta + 1))$ rounds.

3-Coloring Rooted Trees

- Apply C&V with parent for O(log* n) rounds, to 6-color the tree
- For i = 6 down to 4 do
 - adopt color of parent
 - recolor nodes colored *i* with a color in {1,2,3}

1-Factors

- Let G = (V, E) be a graph
- Assume each node $v \in V$ selects one of its incident edges
- Let $F \subseteq E$ be the set of selected edges **Claim** F is a collection of « pseudo-trees » of the

form

A Connected Component

Coloring with 3^{Δ} colors in $O(\log^* n)$ rounds

- Every node u orders its incident links from 1 to deg(u) according to the IDs of its neighbors
- This results in Δ pseudo-forests F_1, \ldots, F_Δ
- Color each pseudo tree in each pseudo forest in parallel, in $O(\log^* n)$ rounds
- Each node gets a color $c(u) = (c_1(u), ..., c_{\Delta}(u))$ where $c_i(u) \in \{1, 2, 3\}$, hence 3^{Δ} colors.

End Lecture 1