
• Last lecture(s): 


- Cole and Vishkin algorithm for 3-coloring the -node 
cycle 


- Generalization to -coloring arbitrary graphs of 
maximum degree   in  rounds


• Lecture today: 


- -coloring algorithm in  rounds


- Lower bound for 2-coloring 
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(Δ + 1)
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-Coloring in 
 rounds

(Δ + 1)
O(Δ + log⋆ n)

Four phases:  

1. -coloring in  rounds (cf. previous lecture) 

2. Reducing to -coloring in  round 

3. Reducing number of colors to  in  round 

4. Reducing number of colors to  in  
rounds

3Δ O(log⋆ n)

O(Δ3) 1

O(Δ2) 1

Δ + 1 O(Δ)
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Phase 2: From  to  colors  
in a single round

3Δ O(Δ3)

Lemma [Erdös, Frankl, Füredi, 1985]  
For any , there exists a family  of  subsets of 

 such that, for any  (distinct) sets 
 in , we have  

Algorithm:  

• Range of colors  with  

• Node  with color  picks set  

• By the lemma,   

• Node  updates its color  to  i.e.  

• Reduction of #colors: 

k > Δ ≥ 2 ℱ k
{1,…,5⌈Δ2 log k⌉} Δ + 1
F0, …, FΔ ℱ F0 ⊈ ∪Δ

i=1 Fi

[1,k] k = 3Δ

u c(u) ∈ {1,…, k} Fc(u) ∈ ℱ
∃x ∉ ∪v∈N(u) Fc(v)

u c(u) x c(u) ← x
3Δ → O(Δ2 log(3Δ)) = O(Δ3)
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Polynomials on Finite Fields
• For a prime integer , let  i.e.,  is 

 with arithmetic modulo  

•  is a finite field 

• A polynomial of degree  on  is of the form 

 

Lemma A polynomial of degree  on  has at most  roots 

Corollary Two polynomials of degree  on  may coincide 
on at most  values. 

q 𝔽q = ℤ/qℤ 𝔽q
{0,…, q − 1} q
𝔽q

d 𝔽q

a0 + a1X + … + adXd

d 𝔽q d
d 𝔽q

d
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Phase 3: From  to  
colors in a single round

O(Δ3) O(Δ2)

• Say colors in  for some  

• Let  prime with  and   

• There are  polynomials of degree 3 in  

• Node  with color  picks set  
 

• For every  we have  

• Thus  

• Node  updates its colors by picking one element in 

[1,αΔ3] α > 0
q = O(Δ) 3Δ < q q4 ≥ αΔ3

q4 𝔽q

u c(u) = i ∈ [1,αΔ3]
Sc(u) = Si = {(x, pi(x)) : x ∈ 𝔽q} ⊆ 𝔽q × 𝔽q

i ≠ j |Si ∩ Sj | ≤ 3
|Sc(u)∖∪v∈N(u)Sc(v) | ≥ |Sc(u) | − 3Δ > 0
u

Sc(u)∖∪v∈N(u)Sc(v)
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Phase 4: From  to 
 colors in  rounds

O(Δ2)
Δ + 1 O(Δ)

• Say colors in  for some  

• Let  prime with  and   

• Node  with color  picks sequence  

 

For  to  do 

‣ if uncolored then propose color  

‣ if no conflicts, then adopt color  and terminate 
• At most 3 conflicting iterations for each non-terminated neighbor 

and at most 3 conflicting iterations for each terminated neighbor 
• Reduce #colors from  to  in  rounds

[1,βΔ2] β > 0
q = O(Δ) 6Δ < q q4 ≥ βΔ2

u c(u) = i ∈ [1,βΔ2]
σc(u) = σi = (pi(0), pi(1), …, pi(q − 1))

x = 0 q − 1
pi(x)
pi(x)

q Δ + 1 q − (Δ + 1) = O(Δ)
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State of the Art  
and Open Problems

Best known algorithm performs -coloring in  

•  rounds 

•  rounds 

•  rounds  

Can we improve these complexities?  

Is there a distributed algorithm running in  rounds in 
LOCAL that properly colors every graph of maximum degree  
with  colors? 

(Δ + 1)

O(log⋆ n + Δ log Δ)

O(log n ⋅ log2 Δ) ≤ O(log3 n)

O(log2 n)

O(log⋆ n)
Δ

o(Δ2)
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Lower Bounds for  
-coloring 

• Ramsey lower bounds 
• 2-coloring  is hard

(Δ + 1)

C2n
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Simple Lower Bounds

Theorem For all , every -round algorithm fails to 
3-color some cycle.  

In other words, 3-coloring the cycles cannot be done 
in  rounds, i.e., it requires  rounds.  

The proof is based on Ramsey’s theory. 

t ≥ 0 t

O(1) ω(1)

39



Ramsey Theorem

Theorem [Ramsey, 1920s] For every positive integers 
 and  there exists  such that every 

edge-coloring of the complete graph on  vertices 
with two colors blue and red contains a blue clique 
on  vertices or a red clique on  vertices.


Example: 

r s R = R(r, s)
R

r s

R(3,3) = 6
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Extension to Hypergraphs
For , a -hypergraph is a hypergraph whose 
hyperedges are sets of  vertices 
Theorem [Ramsey, 1920s] For any integers  and , 
and any integers , there is an integer 

 such that: 
• if the hyperedges of a complete -hypergraph of  

vertices are colored with  different colors,  
• then there exists  such that the hypergraph 

contain a complete sub- -hypergraph of order  
whose hyperedges are all colored . 

k ≥ 2 k
k

k c
n1, …, nc

R = R(n1, …, nc; k)
k R

c
i ∈ [c]

k ni
i
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Theorem For all , every -round algorithm fails to 3-
color some cycle. 


Proof: Let  and let  be a -round algorithm. 


 with 


,  , and   


Cycles  with  nodes


Color hyperedge  where 
 with color 


Ramsey  such 
that    ❒

t ≥ 0 t

t ≥ 0 A t

A(x−t, …, x0, …, xt) ∈ {1,2,3} xi ∈ {1,…, n}

k = 2t + 1 c = 3 n1 = n2 = n3 = 2t + 2

Cn n = R(n1, n2, n3; 2t + 1)

{x−t, …, x0, …, xt}
x−t < … < x0 < … < xt A(x−t, …, x0, …, xt)

⟹ ∃x−t < … < x0 < … < xt < xt+1
A(x−t, …, x0, …, xt) = A(x−t+1, …, x1, …, xt+1)



-coloring is hard

Theorem 2-coloring the -node cycle requires at least  
rounds.


Proof: Let  be a -round algorithm, for 


 with 











        




                                                     ❒

Δ
2n n

A t t < n − 1
A(x−t, …, x0, …, xt) ∈ {1,2} xi ∈ {1,…,2n}

A(x1, x2, …, x2t+1) = 1
A(x2, x3, …, x2t+1, y) = 2
A(x3, x4…, x2t+1, y, z) = 1
A(x4, …, x2t+1, y, z, x1) = 2

⋮
A(y, z, x1, …, x2t−1) = 2
A(z, x1, …, x2t) = 1



End Lecture 2
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