Roadmap

e |ast lecture(s):

- Cole and Vishkin algorithm for 3-coloring the n-node
cycle C,

- Generalization to (A + 1)-coloring arbitrary graphs of
maximum degree A in O(A? + log* 1) rounds

e | ecture today:
- (A + 1)-coloring algorithm in O(A + log* n) rounds

- Lower bound for 2-coloring C,



(A + 1)-Coloring in
O(A + log™ n) rounds
Four phases:

1. 3A'CO|Oriﬂg N 0(10g* n) rounds (cf. previous lecture)
2. Reducing to O(A>)-coloring in 1 round

3. Reducing number of colors to O(A?) in 1 round

4. Reducing number of colorsto A + 1 in O(A)
rounds
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Phase 2: From 3% to O(A”) colors
INn a single round

Lemma [Erdds, Frankl, Flredi, 1985]
Forany k > A > 2, there exists a family & of k subsets of

{1,....5[A?log k] } such that, for any A + 1 (distinct) sets
Fy,....Fxin F, we have Fy ¢ UL | F,

Algorithm:

. Range of colors [1,k] with k = 32

Node u with color c¢(u) € {1,...,k} picks set F ) € F

By the lemma, dx & UveN(u) F, c(v)

Node u updates its color c(u) to x i.e. c(u) « x
Reduction of #colors: 3% — 0(A2 10g(3A)) = O(AY)
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Polynomials on Finite Flelds

. For a prime integer g, let [Fq =ZlqZ ie. [Fq IS
{0,...,qg — 1} with arithmetic modulo g

o [Fq is a finite field
. A polynomial of degree d on |, is of the form
ag+a X + ... +a,X*
Lemma A polynomial of degree d on [Fq has at most d roots
Corollary Two polynomials of degree d on [Fq may coincide

on at most d values.
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Phase 3: From O(A%) to O(A?)
colors in a single round

Say colors in [1,aA%] for some a > 0
Let g = O(A) prime with 3A < g and g* > aA’
There are q4 polynomials of degree 3 in [Fq

Node u with color c(u) = i € [1,aA%] picks set
Seay =8 =1 px) tx e} CF XEF,

For every i # jwe have |S;NS;| <3

ThUS |SC(M)\UV€N(M)SC(V) Z |SC(M)| - 3A > O

Node u updates its colors by picking one element in
Sc(u)\UvEN(u)Sc(v)
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Phase 4: From O(A?) to
A + 1 colors in O(A) rounds

. Say colors in [1,8A?] for some > 0

. Let g = O(A) prime with 6A < g and g* > SA?

. Node u with color c(u) = i € [1,8A?] picks sequence
6oy = 0; = (p0), pi(1), ..., pi(g — 1))

Forx = 0 to q — 1 do ith polynomial
of degree 3 in [Fq

» if uncolored then propose color p;(x)
» if no conflicts, then adopt color p,(x) and terminate

* At most 3 conflicting iterations for each non-terminated neighbor
and at most 3 conflicting iterations for each terminated neighbor

« Reduce #colors fromgto A+ 1ing— (A + 1) = O(A) rounds
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State of the Art
and Open Problems

Best known algorithm performs (A + 1)-coloring in

. O(log™ n + \/A log A) rounds

. O(logn - log? A) < O(log’ n) rounds
. O(log” n) rounds

Can we improve these complexities?

s there a distributed algorithm running in O(log™ 1) rounds in
LOCAL that properly colors every graph of maximum degree A

with 0(A?) colors?
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L ower Bounds for
(A + 1)-coloring

Ramsey lower bounds
2-coloring C,, is hard
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Simple Lower Bounds

Theorem For all t > 0, every f-round algorithm fails to
3-color some cycle.

In other words, 3-coloring the cycles cannot be done
in O(1) rounds, i.e., it requires w(1) rounds.

The proof is based on Ramsey’s theory.
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Ramsey [heorem

Theorem [Ramsey, 1920s] For every positive integers
r and s there exists R = R(r, s) such that every

edge-coloring of the complete graph on R vertices
with two colors blue and red contains a blue cliqgue

on r vertices or a red clique on s vertices.

Example: R(3,3) = 6
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Extension to Rypergraphs

For k > 2, a k-hypergraph is a hypergraph whose
hyperedges are sets of k vertices

Theorem [Ramsey, 1920s] For any integers k and c,

and any integers ny, ..., n., there is an integer
R = R(n,, ...,n_; k) such that:

. if the hyperedges of a complete k-hypergraph of R
vertices are colored with ¢ different colors,

« then there exists i € [c] such that the hypergraph
contain a complete sub-k-hypergraph of order n;
whose hyperedges are all colored 1.
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Theorem For all £ > 0, every f-round algorithm fails to 3-
color some cycle.

Proof: Let > O and let A be a 7-round algorithm.
Ax_, ..., xg, .-, X) € 11,2,3} withx;, € {1,...,n}
k=2t+1, c=3,and ny=n,=ny;=2t+2
Cycles C, with n = R(n,, n,, ns; 2t + 1) nodes

Color hyperedge {x_,, ..., Xy, ..., X,} where
X_, < ...<xy<...<x withcolorA(x_,, ..., Xy, ---5X,)

Ramsey — dx_, < ... <x5 < ... <X, <X, such
that A(x_,, ..., X, oo os X) = AX_jqs oo Xs oes Xy ) O



A-coloring is hard

Theorem 2-coloring the 2n-node cycle requires at least n
rounds.

Proof: Let A be a f-round algorithm, forf < n — 1
Ax_, ...sXp, ..., x) € { 1,2} withx; € {1,...,2n}

AX, X, X)) = 1
A(Xy, X35 ooy Xy 1, Y) = 2
A, Xge ey X015 Y,2) = 1
AXgy ooy Xy 15V, 2, X) =2

A(y, Ty X1s ...,X2t_1) =2
A(Z,xl, ...,X2t) =1 J



End Lecture 2



