Local Computing

- The LOCAL model
- Deterministic (Δ + 1)-coloring arbitrary graphs with maximum degree Δ

LOCAL Model

- Each process is located at a node of a network modeled as an n-node graph (n =#processes)
- Each process has a unique ID in {1,...,n}
- Computation proceeds in synchronous rounds during which every process:
 - 1. Sends a message to each neighbor
 - 2. Receives a message from each neighbor
 - 3. Performs individual computation (same algorithm for all nodes)

Complexity = #rounds

Lemma If a problem P can be solved in t rounds in the LOCAL model by an algorithm A, then there is a t-round algorithm B solving P in which every node proceeds in two phases: (1) Gather all data in the tball around it; (2) Simulate and compute the solution.

$(\Delta + 1)$ -coloring

 Δ = maximum node degree of the graph

 $(\Delta + 1)$ -coloring = assign colors to nodes such that every pair of adjacent nodes are assigned different colors.

Lemma Every graph is $(\Delta + 1)$ -colorable

Theorem (Brooks, 1941) Every graph G is Δ -colorable, unless G is a complete graph, or an odd cycle.

Lemma $(\Delta + 1)$ -coloring can be sequentially computed by a simple greedy algorithm treating each node individually.

Remark

Let $k \ge \Delta + 1$

If there exists a *t*-round *k*-coloring algorithm then there exists a $(\Delta + 1)$ -coloring algorithm running in $t + (k - (\Delta + 1))$ rounds. Coloring graphs of max degree Δ with $\Delta^{O(\Delta)}$ colors in $O(\log^* n)$ rounds

Every node u maintains an array $c(u) = (c_1(u), \dots, c_{\Delta}(u))$ of colors, ordered according to the IDs of its neighbors.

- Initially c(u) = (ID(u), ..., ID(u))
- Repeat
 - performs C&V with each neighbor independently, in parallel.

Correctness

Claim: Proper coloring is preserved after each iteration of C&V, transforming color c(u) of u into c'(u)

c(u)

• Let
$$c'_i(u) = (p, b)$$
 and $c'_i(v) = (p', b')$

- If $p \neq p'$ then $c'(u) \neq c'(v)$
- If p = p' then, as p is the first bit-position at which $c_i(u)$ and $c_i(v)$ differ, we have $b \neq b'$, and thus $c'(u) \neq c'(v)$

Complexity

- Colors are initially on $\Delta \cdot \lceil \log_2 n \rceil$ bits
- Assuming colors on k bits
- After one iteration: colors on $f(k) = \Delta(\lceil \log_2 k \rceil + 1)$ bits
- For $k = \alpha \ \Delta \log \Delta$ with α sufficiently large, we have f(k) < k
- Thus, after $O(\log^* n)$ iterations, colors on $O(\Delta \log \Delta)$ bits
- That is, $2^{O(\Delta \log \Delta)} = \Delta^{O(\Delta)}$ colors.

3-Coloring Rooted Trees

- Apply C&V with parent for O(log* n) rounds, to 6-color the tree
- For i = 6 down to 4 do
 - adopt color of parent
 - recolor nodes colored *i* with a color in {1,2,3}

1-Factors

- Let G = (V, E) be a graph
- Assume each node $v \in V$ selects one of its incident edges
- Let $F \subseteq E$ be the set of selected edges

Claim F is a collection of « pseudo-trees » of the form

A Connected Component

Coloring with 3^{Δ} colors in $O(\log^* n)$ rounds

- Every node u orders its incident links from 1 to deg(u) according to the IDs of its neighbors
- This results in Δ pseudo-forests F_1, \ldots, F_Δ
- Color each pseudo tree in each pseudo forest in parallel, in $O(\log^* n)$ rounds
- Each node gets a color $c(u) = (c_1(u), \dots, c_{\Delta}(u))$ where $c_i(u) \in \{1, 2, 3\}$, hence 3^{Δ} colors.

$(\Delta + 1)$ -Coloring in $O(\Delta^2 + \log^* n)$ rounds

- Nodes first compute a 3^{Δ} -coloring in $O(\log^{\star} n)$ rounds
- For each $u,\,c(u)=(c_1(u),\,\ldots,\,c_\Delta(u))$ with $c_i(u)\in\{1,\!2,\!3\}$
- Iteratively compute a $(\Delta + 1)$ -coloring c'_i of $\cup_{j=1}^i F_j$ for $i = 1, ..., \Delta$
 - $c_1' = c_1$ is a 3-coloring of F_1
 - Given c'_i , let us view (c'_i, c_{i+1}) as a $3(\Delta + 1)$ -coloring of $\bigcup_{j=1}^{i+1} F_j$
 - The coloring (c'_i, c_{i+1}) can be transformed into a $(\Delta + 1)$ -coloring c'_{i+1} of $\cup_{j=1}^{i+1} F_j$ in $2(\Delta + 1)$ rounds
- The coloring c'_{Δ} is a $(\Delta + 1)$ -coloring of $\bigcup_{j=1}^{\Delta} F_j = G$, obtained in $(\Delta 1)(2(\Delta + 1)) = O(\Delta^2)$ rounds.

$(\Delta + 1)$ -Coloring in $O(\Delta + \log^* n)$ rounds

Four phases:

- 1. 3^{Δ} -coloring in $O(\log^{\star} n)$ rounds (cf. previous slides)
- 2. Reducing to $O(\Delta^3)$ -coloring in 1 round
- 3. Reducing number of colors to $O(\Delta^2)$ in 1 round
- 4. Reducing number of colors to $\Delta + 1$ in $O(\Delta)$ rounds

Phase 2: From 3^{Δ} to $O(\Delta^3)$ colors in a single round

Lemma [Erdös, Frankl, Füredi, 1985] For any $k > \Delta \ge 2$, there exists a family \mathscr{F} of k subsets of $\{1, \ldots, 5 \lceil \Delta^2 \log k \rceil\}$ such that, for any $\Delta + 1$ sets F_0, \ldots, F_{Δ} in \mathscr{F} , we have $F_0 \nsubseteq \bigcup_{i=1}^{\Delta} F_i$

Algorithm:

- Range of colors [1,k] with $k = 3^{\Delta}$
- Node u with color $c(u) \in \{1, \ldots, k\}$ picks set $F_{c(u)} \in \mathcal{F}$
- By the lemma, $\exists x \notin \bigcup_{v \in N(u)} F_{c(v)}$
- Node *u* updates its color c(u) to *x* i.e. $c(u) \leftarrow x$
- Reduction of #colors: $3^{\Delta} \rightarrow O(\Delta^2 \log(3^{\Delta})) = O(\Delta^3)$

Polynomials on Finite Fields

- For a prime integer q, let $\mathbb{F}_q=\mathbb{Z}/q\mathbb{Z}$ i.e., \mathbb{F}_q is $\{0,\ldots,q-1\}$ with arithmetic modulo q
- \mathbb{F}_q is a finite field
- A polynomial of degree d on \mathbb{F}_q is of the form

$$a_0 + a_1 X + \ldots + a_d X^d$$

Lemma A polynomial of degree d on \mathbb{F}_q has at most d roots

Corollary Two polynomials of degree d on \mathbb{F}_q may coincide on at most d values.

Phase 3: From $O(\Delta^3)$ to $O(\Delta^2)$ colors in a single round

- Say colors in $[1, \alpha \Delta^3]$ for some $\alpha > 0$
- Let $q = O(\Delta)$ prime with $3\Delta < q$ and $q^4 \geq \alpha \Delta^3$
- There are q^4 polynomials of degree 3 in \mathbb{F}_q
- Node u with color $c(u) = i \in [1, \alpha \Delta^3]$ picks set

 $S_{c(u)} = S_i = \{(x, p_i(x)) : x \in \mathbb{F}_q\} \subseteq \mathbb{F}_q \times \mathbb{F}_q$

- For every $i \neq j$ we have $|S_i \cap S_j| \leq 3$
- Thus $|S_{c(u)} \setminus \bigcup_{v \in N(u)} S_{c(v)}| \ge |S_{c(u)}| 3\Delta > 0$
- Node u updates its colors by picking one element in $S_{c(u)} \backslash \cup_{v \in N(u)} S_{c(v)}$

Phase 4: From $O(\Delta^2)$ to $\Delta + 1$ colors in $O(\Delta)$ rounds

- Say colors in $[1{,}\beta\Delta^2]$ for some $\beta>0$
- Let $q = O(\Delta)$ prime with $6\Delta < q$ and $q^4 \geq \beta \Delta^2$
- Node u with color $c(u) = i \in [1, \beta \Delta^2]$ picks sequence

$$\sigma_{c(u)} = \sigma_i = (p_i(0), p_i(1), \dots, p_i(q-1))$$

For x = 0 to q - 1 do ith polynomial of degree 3 in \mathbb{F}_q if uncolored then propose color $p_i(x)$

- if no conflicts, then adopt color $p_i(x)$ and terminate
- At most 3 conflicting iterations for each non-terminated neighbor and at most 3 conflicting iterations for each terminated neighbor
- Reduce #colors from q to $\Delta + 1$ in $q (\Delta + 1) = O(\Delta)$ rounds

State of the Art and Open Problems

Best known algorithm performs $(\Delta + 1)$ -coloring in

- $O(\log^* n + \sqrt{\Delta \log \Delta})$ rounds
- $O(\log n \cdot \log^2 \Delta) \le O(\log^3 n)$ rounds

Can we improve this complexity?

Is there a distributed algorithm running in $O(\log^* n)$ rounds in LOCAL that properly colors every graph of maximum degree Δ with $O(\Delta^2)$ colors?

End Lecture 2