Local Computing

The LOCAL model
Deterministic $(\Delta+1)$-coloring arbitrary graphs with maximum degree Δ

LOCAL Model

- Each process is located at a node of a network modeled as an n-node graph ($n=\#$ processes)
- Each process has a unique ID in $\{1, \ldots, n\}$
- Computation proceeds in synchronous rounds during which every process:

1. Sends a message to each neighbor
2. Receives a message from each neighbor
3. Performs individual computation (same algorithm for all nodes)

Complexity = \#rounds

Lemma If a problem P can be solved in t rounds in the LOCAL model by an algorithm A, then there is a t-round algorithm B solving P in which every node proceeds in two phases: (1) Gather all data in the tball around it; (2) Simulate and compute the solution.

($\Delta+1$)-coloring

$\Delta=$ maximum node degree of the graph
$(\Delta+1)$-coloring $=$ assign colors to nodes such that every pair of adjacent nodes are assigned different colors.

Lemma Every graph is $(\Delta+1)$-colorable
Theorem (Brooks, 1941)
 Every graph G is Δ-colorable, unless G is a complete graph, or an odd cycle.

Lemma ($\Delta+1$)-coloring can be sequentially computed by a simple greedy algorithm treating each node individually.

Remark

Let $k \geq \Delta+1$

If there exists a t-round k-coloring algorithm then there exists a $(\Delta+1)$-coloring algorithm running in $t+(k-(\Delta+1))$ rounds.

Coloring graphs of max degree Δ

 with $\Delta^{O(\Delta)}$ colors in $O\left(\log ^{\star} n\right)$ roundsEvery node u maintains an array
$c(u)=\left(c_{1}(u), \ldots, c_{\Delta}(u)\right)$ of colors, ordered according to the IDs of its neighbors.

- Initially $c(u)=(\operatorname{ID}(u), \ldots, \operatorname{ID}(u))$
- Repeat
- performs C\&V with each neighbor independently, in parallel.

Correctness

Claim: Proper coloring is preserved after each iteration of $\mathrm{C} \& \mathrm{~V}$, transforming color $c(u)$ of u into $c^{\prime}(u)$

- Let $c_{i}^{\prime}(u)=(p, b)$ and $c_{i}^{\prime}(v)=\left(p^{\prime}, b^{\prime}\right)$
- If $p \neq p^{\prime}$ then $c^{\prime}(u) \neq c^{\prime}(v)$
- If $p=p^{\prime}$ then, as p is the first bit-position at which $c_{i}(u)$ and $c_{i}(v)$ differ, we have $b \neq b^{\prime}$, and thus $c^{\prime}(u) \neq c^{\prime}(v)$

Complexity

- Colors are initially on $\Delta \cdot\left\lceil\log _{2} n\right\rceil$ bits
- Assuming colors on k bits
- After one iteration: colors on $f(k)=\Delta\left(\left\lceil\log _{2} k\right\rceil+1\right)$ bits
- For $k=\alpha \Delta \log \Delta$ with α sufficiently large, we have $f(k)<k$
- Thus, after $O\left(\log ^{\star} n\right)$ iterations, colors on $O(\Delta \log \Delta)$ bits
- That is, $2^{O(\Delta \log \Delta)}=\Delta^{O(\Delta)}$ colors.

3-Coloring Rooted Trees

- Apply C\&V with parent for $O\left(\log ^{\star} n\right)$ rounds, to 6-color the tree
- For $i=6$ down to 4 do
- adopt color of parent
- recolor nodes colored i children(u) with a color in $\{1,2,3\}$

1-Factors

- Let $G=(V, E)$ be a graph
- Assume each node $v \in V$ selects one of its incident edges
- Let $F \subseteq E$ be the set of selected edges

Claim F is a collection of «pseudo-trees» of the form

Pseudo-Forest Decomposition

A Connected Component

Remark:
Not a tree, but almost... Hence the names

For port 1, one gets «real » trees pseudo-tree and pseudo forest

Coloring with 3^{Δ} colors in $O\left(\log ^{\star} n\right)$ rounds

- Every node u orders its incident links from 1 to $\operatorname{deg}(u)$ according to the IDs of its neighbors
- This results in Δ pseudo-forests $F_{1}, \ldots, F_{\Delta}$
- Color each pseudo tree in each pseudo forest in parallel, in $O\left(\log ^{\star} n\right)$ rounds
- Each node gets a color $c(u)=\left(c_{1}(u), \ldots, c_{\Delta}(u)\right)$ where $c_{i}(u) \in\{1,2,3\}$, hence 3^{Δ} colors.

$(\Delta+1)$-Coloring in $O\left(\Delta^{2}+\log ^{\star} n\right)$ rounds

- Nodes first compute a 3^{Δ}-coloring in $O\left(\log ^{\star} n\right)$ rounds
- For each $u, c(u)=\left(c_{1}(u), \ldots, c_{\Delta}(u)\right)$ with $c_{i}(u) \in\{1,2,3\}$
- Iteratively compute a $(\Delta+1)$-coloring c_{i}^{\prime} of $\bigcup_{j=1}^{i} F_{j}$ for $i=1, \ldots, \Delta$
- $c_{1}^{\prime}=c_{1}$ is a 3-coloring of F_{1}
- Given c_{i}^{\prime}, let us view $\left(c_{i}^{\prime}, c_{i+1}\right)$ as a $3(\Delta+1)$-coloring of $\cup_{j=1}^{i+1} F_{j}$
- The coloring $\left(c_{i}^{\prime}, c_{i+1}\right)$ can be transformed into a $(\Delta+1)$ -coloring c_{i+1}^{\prime} of $\cup_{j=1}^{i+1} F_{j}$ in $2(\Delta+1)$ rounds
- The coloring c_{Δ}^{\prime} is a $(\Delta+1)$-coloring of $\cup_{j=1}^{\Delta} F_{j}=G$, obtained in $(\Delta-1)(2(\Delta+1))=O\left(\Delta^{2}\right)$ rounds.

$(\Delta+1)$-Coloring in $O\left(\Delta+\log ^{\star} n\right)$ rounds

Four phases:

1. 3^{Δ}-coloring in $O\left(\log ^{\star} n\right)$ rounds (cf. previous sides)
2. Reducing to $O\left(\Delta^{3}\right)$-coloring in 1 round
3. Reducing number of colors to $O\left(\Delta^{2}\right)$ in 1 round
4. Reducing number of colors to $\Delta+1$ in $O(\Delta)$ rounds

Phase 2: From 3^{Δ} to $O\left(\Delta^{3}\right)$ colors in a single round

Lemma [Erdös, Frankl, Füredi, 1985]
For any $k>\Delta \geq 2$, there exists a family \mathscr{F} of k subsets of $\left\{1, \ldots, 5\left\lceil\Delta^{2} \log k\right\rceil\right\}$ such that, for any $\Delta+1$ sets $F_{0}, \ldots, F_{\Delta}$ in \mathscr{F}, we have $F_{0} \nsubseteq \cup_{i=1}^{\Delta} F_{i}$

Algorithm:

- Range of colors $[1, k]$ with $k=3^{\Delta}$
- Node u with color $c(u) \in\{1, \ldots, k\}$ picks set $F_{c(u)} \in \mathscr{F}$
- By the lemma, $\exists x \notin \cup_{v \in N(u)} F_{c(v)}$
- Node u updates its color $c(u)$ to x i.e. $c(u) \leftarrow x$
- Reduction of \#colors: $3^{\Delta} \rightarrow O\left(\Delta^{2} \log \left(3^{\Delta}\right)\right)=O\left(\Delta^{3}\right)$

Polynomials on Finite Fields

- For a prime integer q, let $\mathbb{F}_{q}=\mathbb{Z} / q \mathbb{Z}$ i.e., \mathbb{F}_{q} is $\{0, \ldots, q-1\}$ with arithmetic modulo q
- \mathbb{F}_{q} is a finite field
- A polynomial of degree d on \mathbb{F}_{q} is of the form

$$
a_{0}+a_{1} X+\ldots+a_{d} X^{d}
$$

Lemma A polynomial of degree d on \mathbb{F}_{q} has at most d roots
Corollary Two polynomials of degree d on \mathbb{F}_{q} may coincide on at most d values.

Phase 3: From $O\left(\Delta^{3}\right)$ to $O\left(\Delta^{2}\right)$ colors in a single round

- Say colors in $\left[1, \alpha \Delta^{3}\right]$ for some $\alpha>0$
- Let $q=O(\Delta)$ prime with $3 \Delta<q$ and $q^{4} \geq \alpha \Delta^{3}$
- There are q^{4} polynomials of degree 3 in \mathbb{F}_{q}
- Node u with color $c(u)=i \in\left[1, \alpha \Delta^{3}\right]$ picks set

$$
S_{c(u)}=S_{i}=\left\{\left(x, p_{i}(x)\right): x \in \mathbb{F}_{q}\right\} \subseteq \mathbb{F}_{q} \times \mathbb{F}_{q}
$$

- For every $i \neq j$ we have $\left|S_{i} \cap S_{j}\right| \leq 3$
- Thus $\left|S_{c(u)} \backslash \cup_{v \in N(u)} S_{c(v)}\right| \geq\left|S_{c(u)}\right|-3 \Delta>0$
- Node u updates its colors by picking one element in $S_{c(u)} \backslash \cup_{v \in N(u)} S_{c(v)}$

Phase 4: From $O\left(\Delta^{2}\right)$ to $\Delta+1$ colors in $O(\Delta)$ rounds

- Say colors in $\left[1, \beta \Delta^{2}\right]$ for some $\beta>0$
- Let $q=O(\Delta)$ prime with $6 \Delta<q$ and $q^{4} \geq \beta \Delta^{2}$
- Node u with color $c(u)=i \in\left[1, \beta \Delta^{2}\right]$ picks sequence

For $x=0$ to $q-1$ do

$$
\begin{aligned}
& \sigma_{c(u)}=\sigma_{i}= \\
& \text { to } q-1 \text { do }
\end{aligned}
$$

- if uncolored then propose color $p_{i}(x)$
- if no conflicts, then adopt color $p_{i}(x)$ and terminate
- At most 3 conflicting iterations for each non-terminated neighbor and at most 3 conflicting iterations for each terminated neighbor
- Reduce \#colors from q to $\Delta+1$ in $q-(\Delta+1)=O(\Delta)$ rounds

State of the Art and Open Problems

Best known algorithm performs $(\Delta+1)$-coloring in

- $O\left(\log ^{\star} n+\sqrt{\Delta \log \Delta}\right)$ rounds
- $O\left(\log n \cdot \log ^{2} \Delta\right) \leq O\left(\log ^{3} n\right)$ rounds

Can we improve this complexity?
Is there a distributed algorithm running in $O\left(\log ^{\star} n\right)$ rounds in LOCAL that properly colors every graph of maximum degree Δ with $o\left(\Delta^{2}\right)$ colors?

$$
\text { End Lecture } 2
$$

