Local Computing

e The LOCAL model
« Deterministic (A + 1)-coloring arbitrary
graphs with maximum degree A
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| OCAL Model

e Each process is located at a node of a network
modeled as an n-node graph (n = #processes) 7

« Each process has a unique IDin {1,...,n}

e Computation proceeds in synchronous rounds )
during which every process: 5

1. Sends a message to each neighbor

===
2. Recei f h neighb <\ g\\
eceives a message from each neighbor @L@L’”

3. Performs individual computation (same
algoritnm for all nodes)
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Complexity = #rounds

Lemma If a problem P can be solved in t rounds in
the LOCAL model by an algorithm A, then there is a
t-round algorithm B solving P in which every node

proceeds in two phases: (1) Gather all data in the t-
ball around it; (2) Simulate and compute the solution.

@
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(A+1)-coloring

A = maximum node degree of the graph

(A+1)-coloring = assign colors to nodes such that every pair
of adjacent nodes are assigned different colors.

Lemma Every graph is (A+1)-colorable /\/

Theorem (Brooks, 1941)
Every graph G is A-colorable, unless G is a complete graph,
or an odd cycle.

Lemma (A+1)-coloring can be sequentially computed by a
simple greedy algorithm treating each node individually.
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Remark

letk > A+ 1

f there exists a t-round k-coloring algorithm then
there exists a (A + 1)-coloring algorithm running in

r+ (k — (A + 1)) rounds.
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Coloring graphs of max degree A
with A’ colors in O(log* 1) rounds

Every node u maintains an array
c(u) = (ci(u), ...,cp(u)) of colors, ordered
according to the IDs of its neighbors.

- ® o

o Initially c(u) = (ID(u), ..., ID(u)) c(u) c(v)

 Repeat o — — —eo
- performs C&V with each neighbor o o

iIndependently, in parallel.
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Correctness

Claim: Proper coloring is preserved after each
iteration of C&V, transforming color c(u) of u into ¢'(u)

o o
» Letci(u) = (p,b) and ¢;(v) = (P, 0)  c(u)|; |c(v)
-— — —eo
« If p # p'then c'(u) # c'(v) o .l

 If p = p’then, as p is the first bit-position at which
c;(u) and c,(v) differ, we have b # b’, and thus

c'(u) # c'(v)
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Complexity

Colors are initially on A - [log, n| bits

Assuming colors on k bits

After one iteration: colors on f(k) = A(|log, k| + 1) bits

For k = a Alog A with a sufficiently large, we have f(k) < k
Thus, after O(log™ n) iterations, colors on O(A log A) bits

That is, 208 1088) — AOA) giors.
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3-Coloring Rooted Trees

root

* Apply C&V with parent for
O(log™ n) rounds, to 6-color
the tree

e Fori = 6downto4 do

- adopt color of parent

- recolor nodes colored 1
with a colorin {1,2,3}

children(u)

leaves
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1-Factors

e Let G = (V, E) beagraph

« Assume each node v € V selects one of its
Incident edges

« Let FF C E be the set of selected edges

Claim F'is a collection of « pseudo-trees » of the
form
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Pseudo-rorest
Decomposition




A Connected Component

Remark:
For port 1, one

Not a tree, but almost..
gets « real » trees

Hence the names
pseudo-tree and pseudo forest



Coloring with 32 colors in
O(log™ n) rounds

Every node u orders its incident links from 1 to
deg(u) according to the IDs of its neighbors

This results in A pseudo-forests Fy, ..., Fp

Color each pseudo tree in each pseudo forest in
parallel, in O(log* n) rounds

Each node gets a color c(u) = (¢{(u), ..., ca(u))
where c,(u) € {1,2,3}, hence 32 colors.
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(A + 1)-Coloring in
O(A? + log* n) rounds

. Nodes first compute a 32-coloring in O(log™ n) rounds
« Foreachu, c(u) = (ci(u), ...,cp(w)) with c(u) € {1,2,3}

. Iteratively compute a (A + 1)-coloring ¢; of U]l:: Fifori= I,....,A
- ¢} = ¢y is a 3-coloring of F
. Given ¢}, let us view (¢}, ¢;;1) as a 3(A + 1)-coloring of U]”__r% F;
- The coloring (¢}, ¢;,.1) can be transformed into a (A + 1)

-coloring ¢;, ; of UJ’:} F;in2(A + 1) rounds

. The coloring ¢} is a (A + 1)-coloring of Uf‘zl F; = G, obtained in
(A —1)(2(A + 1)) = O(A?) rounds.
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(A + 1)-Coloring in
O(A + log™ n) rounds
Four phases:

1. 3A-CO|Oring IN 0(10g* n) rounds (cf. previous slides)
2. Reducing to O(A%)-coloring in 1 round

3. Reducing number of colors to O(A?) in 1 round

4. Reducing number of colorsto A + 1 in O(A)
rounds
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Phase 2: From 3 to O(A”) colors
IN a single rouna

Lemma [Erdds, Frankl, Furedi, 1985]
Forany kK > A > 2, there exists a family & of k subsets of

{1,...,5 [Azlog k|} such that, for any A + 1 sets Fyy, ..., Fp in &,
we have Fy ¢ U2, F;

Algorithm:

. Range of colors [1,k] with k = 32

« Node u with color c¢(u) € {1,...,k} picks set F,,,y € F

By the lemma, dx & UseNw) F ()

Node u updates its color c(u) to x i.e. c(u) <« x
. Reduction of #colors: 32 — 0(A2 10g(3A)) = O(AY)
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Polynomials on Finite Fields

. For a prime integer g, let [Fq =Z/qZ i.e. I]:q IS
{0,...,q — 1} with arithmetic modulo g

. I]:q is a finite field
. A polynomial of degree d on |, is of the form
ag+a X+ ... +a,X?
Lemma A polynomial of degree d on |, has at most d roots
Corollary Two polynomials of degree d on [Fq may coincide

on at most d values.
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Phase 3: From O(A°) to O(A?)
colors In a single round

Say colors in [1,aA*] for some a > 0
Let g = O(A) prime with 3A < g and g* > aA’
There are q4 polynomials of degree 3 in [Fq

Node u with color c(u) = i € [1,aA?] picks set
Seay =8 = {06, p(x) 1 x € [Fq} Ck,xF,

For every i # j we have |S;NS;| <3

Thus |SC(M)\UV€N(M)SC(V) Z |SC(M)| — 3A > O

Node u updates its colors by picking one element in
Sc(u)\UveN(u)Sc(v)
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Phase 4: From O(A~) to
A + 1 colors in O(A) rounds

. Say colors in [1,8A?] for some > 0

. Letg = O(A) prime with 6A < g and g* > pA?

. Node u with color c(u) = i € [1,8A?] picks sequence
Ocu) = 0; = (pi(()),pi(l), .o PAg — 1))

Forx = 0 to q — 1 do ith polynomial
of degree 3 in [Fq

» if uncolored then propose color p;(x)
» if no conflicts, then adopt color p,(x) and terminate

* At most 3 conflicting iterations for each non-terminated neighbor
and at most 3 conflicting iterations for each terminated neighbor

« Reduce #colorsfromgto A+ 1ing—(A+ 1) = O(A) rounds
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State of the Art
and Open Problems

Best known algorithm performs (A + 1)-coloring in

. O(log*n ++/Alog A) rounds
. O(logn - log? A) < O(log> n) rounds
Can we improve this complexity?

s there a distributed algorithm running in O(log™ n)
rounds in LOCAL that properly colors every graph of
maximum degree A with o(A?) colors?
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End Lecture 2



