Roadmap

- Deterministic Q(log™ n) lower bound for 3-coloring C,

- Randomized algorithms for:
» 3-coloring C,

> (A + 1)-coloring arbitrary graph of max degree A

Lower Bound 3-Coloring C,

e Theorem [Linial 1992] Any deterministic algorithm for
computing a 3-coloring of the n-node cycle C, with IDs
in [1,n] takes at least 1/2 - log™ n — 1 rounds.

configuration graph

e Linial’s original proof: /
» C, can be c-colored in rounds = y(G,) < ¢

» C, can be c-colored in f rounds
—> C, can be 2° -colored in ¢ — 1 rounds

* \We present a direct proof by Laurinharju & Suomela
(2014)

Proof

Definition & is a k-ary c-coloring function if

y Foralll <x;<x, <...<x,<n,
A(xy,...x) € 11,...,c}

y Foralll <xy<x < ... <x<x,.15n
Axpy .. x) F A (X, ooy Xppq)

Claim 1: #-tound algorithm & for 3-coloring C,
w o/ is (2t + 1)-ary 3-coloring function

Claim 2. If & is a 1-ary c-coloring function then ¢ > n.

Claim 3. If & is a k-ary c-coloring function, then there
is a (k — 1)-ary 2°-colouring function 3.

Proof: The following function is a 2“-colouring function:
B(X(s oo Xp) =D (Xs oo s X5 X) 2 X, > Xy }

For contradiction, let 1 < x{k <...< x]f < n with

B(x*F, ...,x]:k_l) = B(x*F, ...,xlf)
Letd = 9/ (xF, ...,xlzk).
w d € B(xF, ...,x]f_l) —d € B(x*F, ..., xF)
2 % .] — & s
- Elxk+1 > X - d = I (xF, ...,ka)
w of is not proper. _

48

Let 4# be a t-tound algorithm for 3-coloring C,
= A#is a (2t + 1)-ary 3-coloring function (by Claim 1)

= 3 a (21)-ary 23-coloring function (by Claim 3)

= da (2t — 1)-ary 223—Coloring function (by Claim 3)

3
= da (2t —2)-ary 22 -coloring function (by Claim 3)

3
2t—1 2

= d a 1-ary 122" -coloring function (by Claim 3)

23

= 2% > n (by Claim 2)
=1t>1%log*n - 1. .

49

Randomized
Algorithms

Elementary Randomized 3-
Coloring of C,

« MyFinalColor « L

e Repeat
- MyProposedColor « color in {1,2,3} uniformly at random
- Send MyProposedColor to neighbors
- Receive ProposedColors from neighbors

- if MyProposedColor is different from the FinalColors and
ProposedColors of both neighbors then
MyFinalColor « MyProposedColor

- Send MyFinalColor to neighbors
- Receive FinalColors from neighbors
« Until MyFinalColor # L

Claim This (Las Vegas) algorithm runs in O(log n) rounds w.h.p.

51

A Las Vegas algorithm is a randomized algorithm
that always gives the correct output but whose
running time is a random variable.

Pr[runningtme <7T]>1—-—¢
* A Monte Carlo algorithm is a randomized
algorithms whose running time is deterministic, but
whose output may be incorrect with a certain,

typically small, probabillity.

Pr|error aftertime T] < €

52

Definition A sequence (&n)n=1 Of events holds with high
orobability (w.h.p.) whenever Pr[g.] = 1 — O(1/n°) for some
constant ¢ > 0 (typically ¢ = 1).

Elements of probability:

Recal |: « A given B holds » or

« A conditioned to B »

« PI[AB] = Pr| A/\B] / Pr[B] = Pr[AAB] = Pr[A|B] - Pr[B]

A and B independent }
j; Pr[A/\B] Pr[A] Pr[B] j

« Pr[A] = Pr[AB] - Pr[B] + Pr[A|~B] - Pr[B]

e Union bound Pr[AvB] < Pr[A] + Pr[B]

_[Elses sw] Pr[(S1|=CP) (Sg|=CP)vv(S|=CP)]

53

Claim The elementary (Las Vegas) algorithm runs in O(log n) rounds w.h.p.

Proof At every execution of the repeat loop, for every fixed node u,
1
Pr[u terminates] = Pr[X & {X_,, X, }] > 3
Note: At first execution of the repeat loop:

Pr[u terminates] = Z PriX_; #x) AX,; #x)] -Pr[X =x] > g
xe{l1,2,3}

k
2
—> Pr[u does not terminates after k rounds] < <§>

1
— Pr[u does not terminates after clogs,, n rounds] < —
n

1

nC—l

— Pr[some u does not terminate after clogs,, n rounds <

= Prlevery node u terminates after clogz, n rounds > 1 — ——
e

54

Randomized (A+1)-coloring

Assume each node picks colorsin {1,..., A+ 1} u.a.r.

For every neighbor v of u we have
Prlc(u) =c(v)]=1/(A+ 1)

Thus Pr[3v € N(w) : c(u) = c(v)] < A/(A + 1)

If A = O(1) then each node terminates with constant
probability, but not if A = w(1) (i.e., depends on n)

There is however a simple trick resolving this issue

55

Randomized (A + 1)-coloring
in O(log n) rounds

Algorithm (Barenboim and Elkin, 2013) for node u

while uncolored do
€ = {colors previously adopted by neighbors}
pick Z(u) at random in {0,1,...,A+1} - €
* 0 is picked w/ probability 7>
e Z(U) € {1,....A+1} - B is picket w/ proba 1/(2(A+1-€]))
if #(u) = 0 and Z(u) ¢ {colors picked by neighbors}
then adopt #(u) as my color T . ound

else remain uncolored
iInform neighbors of status <

— 1 round

56

Theorem (Barenboim and Elkin, 2013) The (A+1)-coloring
algorithm takes, w.h.p., O(log n) rounds.

Claim For every node u, at any round, Pr[u terminates] > "4

Pr[u termine] = Pr[l(u) # 0 et aucun v € N(u) satisfait £(v) = £(u)]
= Pr[Vv € N(u),£(v) # l(u) | £(u) # 0] - Pr[f(u) # O]
_ % Prlve € N(u), £(v) £ £(u) | £(u) % 0]

Prl((v) = €(u) | (u) £ 0] = Prlf(v) = £(u) | €(u) # 0 A £(v) = 0] Pr{E(v) = 0]
+ Prlf(v) = £(u) | () # 0 A £v) # 0] Pr{e(v) # 0]
Lot e = Prll(v) = f(w) | £(w) # 0 A E(v) # 0] Prlt(v) # 0]
oV oyt qoa ® 1
e o e 5 Prlb(v) = 6u) | €(u) £ 0 A £(v) £ 0]
\MWX \/’ @ 1
2 A+1—|C(u)|

PrfE € N(u) : £(v) = £(u) | £(u) # 0] < (A = 1C0)) 3576 < -

O(log n) rounds w.h.p.

Pr[u does not terminate in k In(xn) rounds]
< (3/4)KIn0) = ,=kIn(73)

Pr[Ju that does not terminate in k In(n) rounds] < n!=*In#3)

1 +c
Let ¢ > 1, by choosing k = . we get:
In(4/3)
l+c
Pr[all nodes terminates after In(n) rounds] > 1 —1/n¢
In(4/3

J

58

. OCAL Model & LCL Problems

| OCAL Model

e Each process is located at a node of a network
modeled as an n-node graph (n = #processes) 7

« Each process has a unique IDin {1,...,n}

e Computation proceeds in synchronous rounds)
during which every process: 5

1. Sends a message to each neighbor

===
2. Recei f h neighb <\ g\\
eceives a message from each neighbor @L@L’”

3. Performs individual computation (same
algoritnm for all nodes)

60

Complexity = #rounds

Lemma If a problem P can be solved in f rounds in
the LOCAL model by an algorithm A, then there is a
t-round algorithm B solving P in which every node

proceeds in two phases: (1) Gather all data in the
-ball around it; (2) Simulate and compute the solution.

Foreveryi =1,...,¢
it suffices for node v to simulate the
‘ i-th round of all nodes in B (v, t — 1)
j ' = {u € V(G) | distg(u,v) < 1 — i

61

Four classical problems

SEP@N)

-Vertex Coloring

SEEPONN

Maximal Matching

A

-Edge Coloring

L AN

End Lecture 3

