Lower Bounds for
(A + 1)-coloring

Ramsey lower bounds
Linial's log* n lower bound



Simple Lower Bounds

Theorem For all t > 0, every f-round algorithm fails to
3-color some cycle.

In other words, 3-coloring the cycles cannot be done
in O(1) rounds, i.e., requires w(1) rounds.

The proof is based on Ramsey’s theory.
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Ramsey [heorem

Theorem |Ramsey, 1920s] For every positive integers
r and s there exists R = R(r, s) such that every

edge-coloring of the complete graph on R vertices
with two colors blue and red contains a blue clique

on r vertices or a red clique on s vertices.

Example: R(3,3) = 6
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Extension to Hypergrapnhs

For k > 2, a k-hypergraph is a hypergraph whose
hyperedges are sets of k vertices

Theorem [Ramsey, 1920s] For any integers k and c,
and any integers ny, ..., n., there is an integer

R = R(n,, ...,n_; k) such that if the hyperedges of a
complete k-hypergraph of R vertices are colored with
c different colors, then there exists i € [c] such that
the hypergraph contain a complete sub-k-hypergraph
of order n; whose hyperedges are all colored 1.
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Theorem For all £ > 0, every f-round algorithm fails to 3-
color some cycle.

Proof: Let r > O and let A be a 7-round algorithm.
Alx_, ..., xg, ---,X) € 11,2,3} withx; € {1,...,n}
k=2t+1, c=3,and ny=n,=n; =2t +72
Cycle C, with n = R(ny, n,, ns; 2t + 1) nodes

Color hyperedge {x_,, ..., Xy, - .., X, } where
X_, < ...<xy<...<x withcolorA(x_,, ..., Xy, ---»X,)

Ramsey — dx_, < ... <xy < ... <X, <X, qsuch
that A(x_,, ..., Xgs ooy X) = Ay oo s Xy v s Xy ) O



A-coloring is hard

Theorem 2-coloring the 2n-node cycle requires at least n
rounds.

Proof: Let A be a t-round algorithm, fort < n — 1
Alx_p .. nXg, .- x) € { 1,2} withx; € {1,...,2n}

AX], X9, oy X, ) = 1
AXy, X35 ooy Xy 1, Y) = 2
A, Xge ooy X0y 1, Y,2) = 1
AXgy ooy Xy 15V, 2, X)) =2

A(y, <o X1s ...,th_l) =2
A(Z,xl, ...,X2t) =] OJ



Lower Bound 3-Coloring C,

e Theorem [Linial 1992] Any deterministic algorithm for
computing a 3-coloring of the n-node cycle C, with IDs
in [1,n] takes at least 1/2 - log™ n — 1 rounds.

configuration graph

e Linial’s original proof: /
» C, can be c-colored in  rounds = y(G, ) < ¢

» C, can be c-colored in f rounds
—> C, can be 2° -colored in ¢ — 1 rounds

* \We present a direct proof by Laurinharju & Suomela
(2014)



Proof

Definition & is a k-ary c-coloring function if

y Foralll <x;<x, <...<x,<n,
A(xy,...x) € 11,...,c}

y Foralll <xy<x < ... <x<x,.15n
Axpy .. x) F A (X, ooy Xppq)

Claim 1: #-tound algorithm & for 3-coloring C,
w o/ is (2t + 1)-ary 3-coloring function

Claim 2. If & is a 1-ary c-coloring function then ¢ > n.



Claim 3. If & is a k-ary c-coloring function, then there
is a (k — 1)-ary 2°-colouring function 3.

Proof: The following function is a 2“-colouring function:
B(X(s oo Xp ) =D (Xs oo s X5 X) 2 X, > Xy }

For contradiction, let 1 < x{k <...< x]f < n with

B(x*F, ...,x]:k_l) = B(x*F, ...,xlf)
Letd = 9/ (xF, ...,xlzk).
w d € B(xF, ...,x]f_l) —d € B(x*F, ..., xF)
2 % . ] — & s
- Elxk+1 > X - d = I (xF, ...,ka)
w of is not proper. _
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Let 4# be a t-tound algorithm for 3-coloring C,
= A#is a (2t + 1)-ary 3-coloring function (by Claim 1)

= 3 a (21)-ary 23-coloring function (by Claim 3)

= da (2t — 1)-ary 223—Coloring function (by Claim 3)

3
= da (2t —2)-ary 22 -coloring function (by Claim 3)

3
2t—1 2

= d a 1-ary 122" -coloring function (by Claim 3)

23

= 2% > n (by Claim 2)
=1t>1%log*n - 1. .
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End Lecture 3



