
Lower Bounds for 
-coloring

• Ramsey lower bounds 
• Linial’s  lower bound

(Δ + 1)
log⋆ n
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Simple Lower Bounds

Theorem For all , every -round algorithm fails to 
3-color some cycle.  

In other words, 3-coloring the cycles cannot be done 
in  rounds, i.e., requires  rounds.  

The proof is based on Ramsey’s theory. 

t ≥ 0 t

O(1) ω(1)
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Ramsey Theorem

Theorem [Ramsey, 1920s] For every positive integers 
 and  there exists  such that every 

edge-coloring of the complete graph on  vertices 
with two colors blue and red contains a blue clique 
on  vertices or a red clique on  vertices.


Example: 

r s R = R(r, s)
R

r s

R(3,3) = 6
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Extension to Hypergraphs
For , a -hypergraph is a hypergraph whose 
hyperedges are sets of  vertices 

Theorem [Ramsey, 1920s] For any integers  and , 
and any integers , there is an integer 

 such that if the hyperedges of a 
complete -hypergraph of  vertices are colored with 
 different colors, then there exists  such that 

the hypergraph contain a complete sub- -hypergraph 
of order  whose hyperedges are all colored . 

k ≥ 2 k
k

k c
n1, …, nc

R = R(n1, …, nc; k)
k R

c i ∈ [c]
k

ni i
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Theorem For all , every -round algorithm fails to 3-
color some cycle. 


Proof: Let  and let  be a -round algorithm. 


 with 


,  , and   


Cycle  with  nodes


Color hyperedge  where 
 with color 


Ramsey  such 
that    ❒

t ≥ 0 t

t ≥ 0 A t

A(x−t, …, x0, …, xt) ∈ {1,2,3} xi ∈ {1,…, n}

k = 2t + 1 c = 3 n1 = n2 = n3 = 2t + 2

Cn n = R(n1, n2, n3; 2t + 1)

{x−t, …, x0, …, xt}
x−t < … < x0 < … < xt A(x−t, …, x0, …, xt)

⟹ ∃x−t < … < x0 < … < xt < xt+1
A(x−t, …, x0, …, xt) = A(x−t+1, …, x1, …, xt+1)



-coloring is hard

Theorem 2-coloring the -node cycle requires at least  
rounds.


Proof: Let  be a -round algorithm, for 


 with 











        




                                                     ❒

Δ
2n n

A t t ≤ n − 1
A(x−t, …, x0, …, xt) ∈ {1,2} xi ∈ {1,…,2n}

A(x1, x2, …, x2t+1) = 1
A(x2, x3, …, x2t+1, y) = 2
A(x3, x4…, x2t+1, y, z) = 1
A(x4, …, x2t+1, y, z, x1) = 2

⋮
A(y, z, x1, …, x2t−1) = 2
A(z, x1, …, x2t) = 1



Lower Bound 3-Coloring Cn
• Theorem [Linial 1992] Any deterministic algorithm for 

computing a 3-coloring of the -node cycle  with IDs 
in  takes at least  rounds. 


• Linial’s original proof: 


‣  can be -colored in  rounds  


‣  can be -colored in  rounds 

  can be -colored in  rounds


• We present a direct proof by Laurinharju & Suomela 
(2014)

n Cn
[1,n] 1/2 ⋅ log⋆ n − 1

Cn c t ⟹ χ(Gn,t) ≤ c
Cn c t
⟹ Cn 22c t − 1

configuration graph



Proof
Definition  is a -ary -coloring function if 

‣ For all , 
 

‣ For all , 
 

Claim 1: -tound algorithm  for 3-coloring  
              ➥  is -ary 3-coloring function 

Claim 2. If  is a 1-ary -coloring function then .

𝒜 k c
1 ≤ x1 < x2 < … < xk ≤ n

𝒜(x1, …, xk) ∈ {1,…, c}
1 ≤ x1 < x2 < … < xk < xk+1 ≤ n

𝒜(x1, …, xk) ≠ 𝒜(x2, …, xk+1)

t 𝒜 Cn
𝒜 (2t + 1)

𝒜 c c ≥ n



Claim 3. If  is a -ary -coloring function, then there 
is a -ary -colouring function . 

Proof: The following function is a -colouring function: 
 

For contradiction, let  with 
 

Let .  

➥    

➥  :    

➥  is not proper.

𝒜 k c
(k − 1) 2c ℬ

2c

ℬ(x1, …, xk−1) = {𝒜(x1, …, xk−1, xk) : xk > xk−1}
1 ≤ x*1 < … < x*k ≤ n

ℬ(x*1 , …, x*k−1) = ℬ(x*2 , …, x*k )

d = 𝒜(x*1 , …, x*k )

d ∈ ℬ(x*1 , …, x*k−1) ⟹ d ∈ ℬ(x*2 , …, x*k )

∃x*k+1 > x*k d = 𝒜(x*2 , …, x*k+1)

𝒜
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Let A be a -tound algorithm for 3-coloring  
⇒ A is a -ary 3-coloring function (by Claim 1) 

⇒  a -ary -coloring function (by Claim 3) 

⇒  a -ary -coloring function (by Claim 3) 

⇒  a -ary -coloring function (by Claim 3) 

     ⋮ 

⇒  a 1-ary   -coloring function (by Claim 3) 

⇒  (by Claim 2)          

⇒ t ≥ ½ log*n - 1.

t Cn

(2t + 1)

∃ (2t) 23

∃ (2t − 1) 223

∃ (2t − 2) 2223

∃ 22..
.2

3

22..
.2

3

≥ n
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End Lecture 3
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