Lower Bounds for $(\Delta + 1)$ -coloring

- Ramsey lower bounds
- Linial's $\log^* n$ lower bound

Simple Lower Bounds

Theorem For all $t \ge 0$, every *t*-round algorithm fails to 3-color some cycle.

In other words, 3-coloring the cycles cannot be done in O(1) rounds, i.e., requires $\omega(1)$ rounds.

The proof is based on Ramsey's theory.

Ramsey Theorem

Theorem [Ramsey, 1920s] For every positive integers r and s there exists R = R(r, s) such that every edge-coloring of the complete graph on R vertices with two colors blue and red contains a blue clique on r vertices or a red clique on s vertices.

Example: R(3,3) = 6

Extension to Hypergraphs

For $k \ge 2$, a k-hypergraph is a hypergraph whose hyperedges are sets of k vertices

Theorem [Ramsey, 1920s] For any integers k and c, and any integers n_1, \ldots, n_c , there is an integer $R = R(n_1, \ldots, n_c; k)$ such that if the hyperedges of a complete k-hypergraph of R vertices are colored with c different colors, then there exists $i \in [c]$ such that the hypergraph contain a complete sub-k-hypergraph of order n_i whose hyperedges are all colored i. Theorem For all $t \ge 0$, every *t*-round algorithm fails to 3-color some cycle.

Proof: Let $t \ge 0$ and let A be a t-round algorithm.

 $A(x_{t}, ..., x_{0}, ..., x_{t}) \in \{1, 2, 3\}$ with $x_{i} \in \{1, ..., n\}$ k = 2t + 1, c = 3, and $n_1 = n_2 = n_3 = 2t + 2$ Cycle C_n with $n = R(n_1, n_2, n_3; 2t + 1)$ nodes Color hyperedge $\{x_{t}, \ldots, x_{0}, \ldots, x_{t}\}$ where $x_{t} < \ldots < x_{0} < \ldots < x_{t}$ with color $A(x_{t}, \ldots, x_{0}, \ldots, x_{t})$ Ramsey $\implies \exists x_{-t} < \ldots < x_0 < \ldots < x_t < x_{t+1}$ such that $A(x_{-t}, \dots, x_0, \dots, x_t) = A(x_{-t+1}, \dots, x_1, \dots, x_{t+1})$

Δ -coloring is hard

Theorem 2-coloring the 2n-node cycle requires at least n rounds.

Proof: Let A be a t-round algorithm, for $t \leq n-1$ $A(x_{t}, ..., x_{0}, ..., x_{t}) \in \{1, 2\}$ with $x_{i} \in \{1, ..., 2n\}$ $A(x_1, x_2, \dots, x_{2t+1}) = 1$ $A(x_2, x_3, \dots, x_{2t+1}, y) = 2$ $A(x_3, x_4, \dots, x_{2t+1}, y, z) = 1$ $A(x_4, \ldots, x_{2t+1}, y, z, x_1) = 2$ $A(y, z, x_1, \dots, x_{2t-1}) = 2$ $A(z, x_1, ..., x_{2t}) = 1$

Lower Bound 3-Coloring C_n

- **Theorem** [Linial 1992] Any deterministic algorithm for computing a 3-coloring of the *n*-node cycle C_n with IDs in [1,*n*] takes at least $1/2 \cdot \log^* n 1$ rounds.
- Linial's original proof:
 - C_n can be *c*-colored in *t* rounds $\Longrightarrow \chi(G_{n,t}) \leq c$

configuration graph

- C_n can be *c*-colored in *t* rounds $\implies C_n$ can be 2^{2^c} -colored in t - 1 rounds
- We present a direct proof by Laurinharju & Suomela (2014)

Proof

Definition \mathscr{A} is a *k*-ary *c*-coloring function if

- For all $1 \le x_1 < x_2 < \dots < x_k \le n$, $\mathscr{A}(x_1, \dots, x_k) \in \{1, \dots, c\}$
- For all $1 \le x_1 < x_2 < \dots < x_k < x_{k+1} \le n$, $\mathscr{A}(x_1, \dots, x_k) \ne \mathscr{A}(x_2, \dots, x_{k+1})$

Claim 1: *t*-tound algorithm \mathscr{A} for 3-coloring C_n $\rightarrowtail \mathscr{A}$ is (2t + 1)-ary 3-coloring function

Claim 2. If \mathscr{A} is a 1-ary *c*-coloring function then $c \geq n$.

Claim 3. If \mathscr{A} is a *k*-ary *c*-coloring function, then there is a (k-1)-ary 2^c -colouring function \mathscr{B} .

Proof: The following function is a 2^{c} -colouring function: $\mathscr{B}(x_1, \dots, x_{k-1}) = \{\mathscr{A}(x_1, \dots, x_{k-1}, x_k) : x_k > x_{k-1}\}$ For contradiction, let $1 \leq x_1^* < \ldots < x_k^* \leq n$ with $\mathscr{B}(x_1^*, \dots, x_{k-1}^*) = \mathscr{B}(x_2^*, \dots, x_k^*)$ Let $d = \mathscr{A}(x_1^*, ..., x_k^*)$. $\Rightarrow d \in \mathscr{B}(x_1^*, \dots, x_{k-1}^*) \Longrightarrow d \in \mathscr{B}(x_2^*, \dots, x_k^*)$ $\Rightarrow \exists x_{k+1}^* > x_k^* : d = \mathscr{A}(x_2^*, \dots, x_{k+1}^*)$

► 🖉 is not proper.

Let \mathcal{A} be a *t*-tound algorithm for 3-coloring C_n $\Rightarrow \mathcal{A}$ is a (2t + 1)-ary 3-coloring function (by Claim 1) $\Rightarrow \exists a (2t) - ary 2^3 - coloring function (by Claim 3)$ $\Rightarrow \exists a (2t - 1) - ary 2^{2^3} - coloring function (by Claim 3)$ $\Rightarrow \exists a (2t - 2) - ary 2^{2^3} - coloring function (by Claim 3)$ • $\Rightarrow \exists a 1-ary \downarrow 2^{2} \cdot \cdot^{2^3} - coloring function (by Claim 3)$ $\Rightarrow 2^{2^{\cdot}} \ge n \text{ (by Claim 2)}$

 \Rightarrow t \geq $\frac{1}{2}$ log*n - 1.

End Lecture 3