Lower Bounds for ($\Delta+1$)-coloring

- Ramsey lower bounds
- Linial's $\log ^{\star} n$ lower bound

Simple Lower Bounds

Theorem For all $t \geq 0$, every t-round algorithm fails to 3 -color some cycle.

In other words, 3-coloring the cycles cannot be done in $O(1)$ rounds, i.e., requires $\omega(1)$ rounds.

The proof is based on Ramsey's theory.

Ramsey Theorem

Theorem [Ramsey, 1920s] For every positive integers r and s there exists $R=R(r, s)$ such that every edge-coloring of the complete graph on R vertices with two colors blue and red contains a blue clique on r vertices or a red clique on s vertices.

Example: $R(3,3)=6$

Extension to Hypergraphs

For $k \geq 2$, a k-hypergraph is a hypergraph whose hyperedges are sets of k vertices

Theorem [Ramsey, 1920s] For any integers k and c, and any integers n_{1}, \ldots, n_{c}, there is an integer $R=R\left(n_{1}, \ldots, n_{c} ; k\right)$ such that if the hyperedges of a complete k-hypergraph of R vertices are colored with c different colors, then there exists $i \in[c]$ such that the hypergraph contain a complete sub-k-hypergraph of order n_{i} whose hyperedges are all colored i.

Theorem For all $t \geq 0$, every t-round algorithm fails to 3color some cycle.

Proof: Let $t \geq 0$ and let A be a t-round algorithm.
$A\left(x_{-t}, \ldots, x_{0}, \ldots, x_{t}\right) \in\{1,2,3\}$ with $x_{i} \in\{1, \ldots, n\}$
$k=2 t+1, c=3$, and $n_{1}=n_{2}=n_{3}=2 t+2$
Cycle C_{n} with $n=R\left(n_{1}, n_{2}, n_{3} ; 2 t+1\right)$ nodes
Color hyperedge $\left\{x_{-t}, \ldots, x_{0}, \ldots, x_{t}\right\}$ where
$x_{-t}<\ldots<x_{0}<\ldots<x_{t}$ with color $A\left(x_{-t}, \ldots, x_{0}, \ldots, x_{t}\right)$
Ramsey $\Longrightarrow \exists x_{-t}<\ldots<x_{0}<\ldots<x_{t}<x_{t+1}$ such that $A\left(x_{-t}, \ldots, x_{0}, \ldots, x_{t}\right)=A\left(x_{-t+1}, \ldots, x_{1}, \ldots, x_{t+1}\right) \square$

Δ-coloring is hard

Theorem 2-coloring the $2 n$-node cycle requires at least n rounds.

Proof: Let A be a t-round algorithm, for $t \leq n-1$

$$
\begin{aligned}
& A\left(x_{-t}, \ldots, x_{0}, \ldots, x_{t}\right) \in\{1,2\} \text { with } x_{i} \in\{1, \ldots, 2 n\} \\
& A\left(x_{1}, x_{2}, \ldots, x_{2 t+1}\right)=1 \\
& A\left(x_{2}, x_{3}, \ldots, x_{2 t+1}, y\right)=2 \\
& A\left(x_{3}, x_{4} \ldots, x_{2 t+1}, y, z\right)=1 \\
& A\left(x_{4}, \ldots, x_{2 t+1}, y, z, x_{1}\right)=2 \\
& \vdots \\
& A\left(y, z, x_{1}, \ldots, x_{2 t-1}\right)=2 \\
& A\left(z, x_{1}, \ldots, x_{2 t}\right)=1
\end{aligned}
$$

Lower Bound 3-Coloring C_{n}

- Theorem [Linial 1992] Any deterministic algorithm for computing a 3 -coloring of the n-node cycle C_{n} with IDs in $[1, n]$ takes at least $1 / 2 \cdot \log ^{\star} n-1$ rounds.
- Linial's original proof:
- C_{n} can be c-colored in t rounds $\Longrightarrow \chi\left(G_{n, t}\right) \leq c$
- C_{n} can be c-colored in t rounds $\Longrightarrow C_{n}$ can be $2^{2^{c}}$-colored in $t-1$ rounds
- We present a direct proof by Laurinharju \& Suomela (2014)

Proof

Definition \mathscr{A} is a k-ary c-coloring function if

- For all $1 \leq x_{1}<x_{2}<\ldots<x_{k} \leq n$, $\mathscr{A}\left(x_{1}, \ldots, x_{k}\right) \in\{1, \ldots, c\}$
- For all $1 \leq x_{1}<x_{2}<\ldots<x_{k}<x_{k+1} \leq n$, $\mathscr{A}\left(x_{1}, \ldots, x_{k}\right) \neq \mathscr{A}\left(x_{2}, \ldots, x_{k+1}\right)$

Claim 1: t-tound algorithm \mathscr{A} for 3-coloring C_{n}
$\rightarrow \mathscr{A}$ is $(2 t+1)$-ary 3 -coloring function

Claim 2. If \mathscr{A} is a 1 -ary c-coloring function then $c \geq n$.

Claim 3. If \mathscr{A} is a k-ary c-coloring function, then there is a $(k-1)$-ary 2^{c}-colouring function \mathscr{B}.

Proof: The following function is a 2^{c}-colouring function:

$$
\mathscr{B}\left(x_{1}, \ldots, x_{k-1}\right)=\left\{\mathscr{A}\left(x_{1}, \ldots, x_{k-1}, x_{k}\right): x_{k}>x_{k-1}\right\}
$$

For contradiction, let $1 \leq x_{1}^{*}<\ldots<x_{k}^{*} \leq n$ with

$$
\mathscr{B}\left(x_{1}^{*}, \ldots, x_{k-1}^{*}\right)=\mathscr{B}\left(x_{2}^{*}, \ldots, x_{k}^{*}\right)
$$

Let $d=\mathscr{A}\left(x_{1}^{*}, \ldots, x_{k}^{*}\right)$.
$\Rightarrow d \in \mathscr{B}\left(x_{1}^{*}, \ldots, x_{k-1}^{*}\right) \Longrightarrow d \in \mathscr{B}\left(x_{2}^{*}, \ldots, x_{k}^{*}\right)$
$\rightarrow \exists x_{k+1}^{*}>x_{k}^{*}: d=\mathscr{A}\left(x_{2}^{*}, \ldots, x_{k+1}^{*}\right)$
$\Leftrightarrow \mathscr{A}$ is not proper.

Let A be a t-tound algorithm for 3-coloring C_{n}
$\Rightarrow A$ is a $(2 t+1)$-ary 3 -coloring function (by Claim 1)
$\Rightarrow \exists \mathrm{a}(2 t)$-ary 2^{3}-coloring function (by Claim 3)
$\Rightarrow \exists \mathrm{a}(2 t-1)$-ary $2^{2^{3}}$-coloring function (by Claim 3)
$\Rightarrow \exists \mathrm{a}(2 t-2)$-ary $2^{2^{2^{3}}}$-coloring function (by Claim 3) \vdots
$\Rightarrow \exists$ a 1 -ary $\downarrow_{2}^{2 t-1} 2^{2^{2^{3}}}$-coloring function (by Claim 3)
$\Rightarrow 2^{2^{2^{2^{3}}}} \geq n$ (by Claim 2)
$\Rightarrow t \geq 1 / 2 \log ^{*} n-1$.

$$
\text { End Lecture } 3
$$

