. OCAL Model & LCL Problems



| OCAL Model

e Each process is located at a node of a network
modeled as an n-node graph (n = #processes) 7

« Each process has a unique IDin {1,...,n}

e Computation proceeds in synchronous rounds )
during which every process: 5

1. Sends a message to each neighbor

===
2. Recei f h neighb <\ g\\
eceives a message from each neighbor @L@L’”

3. Performs individual computation (same
algoritnm for all nodes)
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Complexity = #rounds

Lemma If a problem P can be solved in f rounds in
the LOCAL model by an algorithm A, then there is a
t-round algorithm B solving P in which every node

proceeds in two phases: (1) Gather all data in the
-ball around it; (2) Simulate and compute the solution.

Foreveryi =1,...,¢
it suffices for node v to simulate the
‘ i-th round of all nodes in B (v, t — 1)
j ' = {u € V(G) | distg(u,v) < 1 — i
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Four classical problems

SEP@N)

-Vertex Coloring

SEEPONN

Maximal Matching

A

-Edge Coloring

L AN




Reduction

* (A+1)-coloring =» MIS
in A rounds by maximizing {1}

e MIS =» (A+1)-coloring
in MIS((A + 1)n,2A) rounds by simulation

virtual
network

actual N
network
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Claim 1. At most one node of each clique in the MIS

Claim 2. At least one node of each clique in the MIS

Color = index of node in the MIS
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| ine Graphs

Definition The line graph of a graph G is the graph
L(G) such that

 V(L(G)) = E(G)
e {e,e'} e E(L(G)) &= e and e’ are incident in G

b
/ ¢ al
4 d 3




Reductions

SEP@N)

ﬁ MIS on line graph

Maximal Matching

A

clique

reduction

<
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-Vertex Coloring

SEEPONN

coloring
on line graph

-Edge Coloring

L AN
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Randomized algorithm

for MIS

Algorithm (Luby, 1985)
mis(u) € {-1,0,1} = {undecided, not in MIS, in MIS}
At any given round: H = G[{u : mis(u)=—1}]

/G

Trick: enforcing an order between nodes:

‘v

.

> U e degn(v) > degn(u)
or (degn(v) = degn(u) and ID(v) > ID(u))

~

_J




Luby's algorithm

One phase of the algorithm for node u with mis(u) = -1

if degr(u) = 0 then mis(u) « 1

else join(u) « true with proba 1/(2 degn(u)), false otherwise
exchange join with every v e N(u)
free(u) < A v e N(u) such that v > u and join(v)=true
iIf (join(u) = true and free(u) = true) then mis(u) «+ 1
exchange mis with every v € N(u)
if (mis(u) = -1 and 3aveN(u) mis(v)=1) then mis(u) « O
exchange mis with every v € N(u)
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Round-Complexity of
Luby’s Algorithm

Remark A very similar algorithm was independently
discovered by Alon, Babai, and Itai (1986).

Theorem Luby'’s algorithm terminates in O(log n)
rounds, w.h.p.

70



Luby's algorithm terminates
in O(log n) rounds, w.h.p.

Structure of the proof:
1. Pr[mis(u) = 1] = 1/(4 degn(u))

2. For a set ‘N of nodes,

u e N = Pr[u terminates] >1/36

3. For a large set ‘E of edges,

e € E = Pr[e removed from H] >1/36

4. Use concentration result (Chernoff bound) to get w.h.p.
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Step 1

Primis(u) # 1 | join(u)] = Pr[3v e N(u) : v = u A join(v) | join(u)]
Pr[3v € N(u) : v = u A join(v)]

< Z Prljoin(v)]
veEN (u):v-u
- Y s
o if degn(u) = 0 then mis(u) + 1
vEN (u):w>=u 2 deg(v) else join(u) + true with proba 1/(2 degn(u))
1 exchange join with every v e N(u)
free(u) « A v e N(u) such that v » u and join(v)=true
S Z 2 deg(u) if (join(u) = true and free(u) = true) then mis(u) « 1
veEN (u):v>-u exchange mis with every v e N(u)
if (mis(u) = -1 and 3veN(u) mis(v)=1) then mis(u) + 0
< deg(u) exchange mis with every v e N(u)
— 2deg(u)
1
< _
- 2
Prlmis(u) = 1] = Primis(u) = 1| join(u)] - Pr[join(u)]

111
2 2deg(u) 4deg(u)’

Primis(u) = 1]

Vv
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Step 2

A node u is large if Z 2 deg(v) > G
veEN (u) &

Claim: u large = Pr[u terminates] >1/36

* The claim holds whenever ElveNgu) ) decigH(v) <2

* vveN(u), if degn(v) = 3 then ; < =

/3



Primis(u) # —1]

AVARRAVS

Pr[dv € §': mis(v) =

Z Primis(v) = 1] —

veS

= Pr|mis(u) # —1]

Vv

'V

1]

Z Primis(v) =1 A mis(w) = 1].

V,WES, vFW
ZPr[mis(v) =1] — Z Prljoin(v) A join(w)]
veS v,weS, VAW
Z Primis( Z Z Prljoin(v)] - Pr[join(w)]
veES vES wGS
> :
= 4deg = 2deg " 2deg(w)

(E) (

1/1 1\ 1
6\2 3/ 36
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1 1
2 Z 2deg(w)>

weS

if degn(u) = 0 then mis(u) « 1

else join(u) + true with proba 1/(2 degn(u))
exchange join with every v e N(u)
free(u) « A v € N(u) such that v » u and join(v)=true
if (join(u) = true and free(u) = true) then mis(u) « 1
exchange mis with every v e N(u)
if (mis(u) = -1 and aveN(u) mis(v)=1) then mis(u) «+ 0
exchange mis with every v e N(u)




Step 3

An edge e={u,v} is large if u or v is large
For e = {u,v} with u < v, orient the edge u = v

Claim For every small node u, deg+(u) > 2 deg-(u)
OO O
© o‘e
Indeed: deg+(u) < 2 deg-(u) = deg(u) < 3 deg-(u)

S ={v e N(u) : deg(v) < deg(u)}
S| > deg-(u) = |S| = [N(u)|/3

1 1 1 deg(u) 1 1
Z 2 deg(v) = Z 2 deg(v) = Z 2 deg(u) = 3 2deg(u) 6 MW

veEN (u) veS veS
75
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Let m = |E(H) Z deg™ (u) < % Z deg™ (u) < %

We have: u petit u petit

= Z deg™ (u) > 7; = at least m/2 large edges

Xe = Bernouilli variable equal to 1 if e is removed from H
For e large, Pr[Xe=1]21/36 = EXe = 1/36

X =Jelarge Xe = EX = Jelarge EXe > M/72

Let p = Pr[X < 72 EX]

1EX m

EX=) zPrX=a]=) aPrX=a+ > aPiX=a]<ipEX+(1-pm
— = z=2 EX+1
m—EX _m-—3EX 1
— P> <1-—"

< <
m—sEX ~ m 144
Let & = « at least m/144 edges are removed from H »
Pr[g] = 1/144
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Step 4

Let Y;, ..., Y}, be Bernouilli variables parameter g = 1/144

LetY= Y1++Yk

fY; = 1then #edges divided by o =

144
143

Remark: Y > log, | E(G) | = logiu | E(G) | = termination.

143

How big should be k?

Chernoff Inequality: v 6 € ]0,1[, Pr[Y <

(1 - §EY] < e

1 ¢2
—30°EY
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Step 4 (continued)

We have EY = kg, so, with o = 1/2 , we get
Pr[Y < kq/2] < e 4%

For k = clog, n, we get
Pr[Y < cqlog, n/2] < e¢q108.18

For ¢ = 4/q we get cqlog,n/2 > log, | E(G) |
and cqg > 81na.

cq

Pr[Y < log, | E(G)|] < e™“41%8""8 = 1 /pwma < 1/n

Thus, fork =4 - 144 - logisu n, we get

143

Pr[Y < logw |E(G)|] < 1/n

143

Thus Luby’s algorithm terminates in O(log n) rounds with
probability at least 1 — 1/n.
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ocally Checkable Labeling

Let F 5 be the set of all (connected) graphs with maximum
degree A.

Definition (Naor and Stockmeyer, 1995) An LCL in & 4 is

specified by a finite set of labels, and a finite set of labeled
balls with maximum degree A, called good balls.

Examples:
e k-coloring, k-edge-coloring Focus is on LCL tasks

| _ solvable sequentially by
e maximal mdependent set (M|S) a greedy algorithm

selecting nodes in
arbitrary order, like, e.qg.,
e Ftc. k-coloring for k > A+1.

e maximal matching
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Solving an LCL Problem

Let A > 2, and let L be an LCL in & 4

The LCL problem associated to L consists, for all
nodes of any graph G € F 4, to compute a label
such that the collection of labels results in good balls
centered at every node of G.

The definition can be generalized with inputs given to
the nodes, in addition to their IDs.
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The Limited Power of
Randomized Algorithms

Pr[success] > 1 —-1/n
Theorem [Y.-J. Chang, T. Kopelowitz, S. Pettie (2016)]

For any LCL problem, its randomized (Monte Carlo)
complexity on instances of size n is at least its

deterministic complexity on instances of size 1/log n

One needs to design better deterministic algorithms for
improving the performances of randomized algorithms!
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Proof

Let 11 be an LCL problem

Let Detp(n, A) and Randp(n, A) be the LOCAL
deterministic and randomized complexity of 11 for
instance of size n and maximum degree A.

We show that Detpy(72, A) < Rand(27, A)

We assume that, initially, each node v knows its |ID, as well
as nand A, with ID(v) € {0,1}¢1°¢" for some ¢ > 1.

Let &, A be the family of n-node graphs with maximum
degree A, and nodes with IDs on at most ¢ log n bits.
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Let £ be an optimal randomized algorithm for 11
Our aim is to construct a deterministic algorithm & for 11

Assume that, in &, 5, algorithm £

- performs in #(n, A) rounds, and
- uses r(n, A) random bits at each node.

Note that | &, o | < 2 (3)Fenlogn o on® | of N = 21",

Forany G € &, , let
G'=GUHwithH € Gy_, 5

In G’, nodes are given (N, A) as input

We have: Pr[Z failsin G'] < 1/N
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Let us consider any function ¢ of the form
¢ : {O,l}clogn N {O,l}r(N’A)

Let X[ ¢] be the deterministic algorithm equal to
R with the fixed random strings determined by @,
.e., node v uses &£ with bit-string ¢(ID(v)).

Rp] runs in t(N, A) rounds in G

We said that ¢ is bad if L[] fails on some
G € G, , as part of a larger graph G’
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Pr [¢ bad] < Z Pr [Z£[¢@] errs on G]
punif o prunif

= Z Pr[£ errs on G with input (V, A)]
GEYG, A

< |G AlIN<I1
It follows that there exists ¢* : {0,1}¢1°27 — 10,1} WA good

Deterministic algorithm &J: on input (n, A), every node v
- computes N = 2”2, t(N,A) and r(N, A)
_ performs Z[¢p™] for t(N, A) rounds

By construction & never errs in &, m
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End Lecture 4



