LCL Problems

Randomized algorithm for (A + 1)-coloring
—our basic symmetry-breaking problems

| uby’s randomized algorithm for MIS

| ocally Checkable Labelings

| Imit of randomization
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Randomized (A+1)-coloring

Assume each node picks colorsin {1,..., A+ 1} u.a.r.

For every neighbor v of u we have
Prlc(u) =c(v)]=1/(A+ 1)

Thus Pr[3v € N(w) : c(u) = c(v)] < A/(A + 1)

If A = O(1) then each node terminates with constant
probability, but not if A = w(1) (i.e., depends on n)

There is however a simple trick resolving this issue
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Randomized (A + 1)-coloring
in O(log n) rounds

Algorithm (Barenboim and Elkin, 2013) for node u

while uncolored do
€ = {colors previously adopted by neighbors}
pick Z(u) at random in {0,1,...,A+1} - €
* 0 is picked w/ probability 7>
e Z(U) € {1,....A+1} - B is picket w/ proba 1/(2(A+1-€]))
if #(u) = 0 and Z(u) ¢ {colors picked by neighbors}
then adopt #(u) as my color T . ound

else remain uncolored
iInform neighbors of status <

— 1 round
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Theorem (Barenboim and Elkin, 2013) The (A+1)-coloring
algorithm takes, w.h.p., O(log n) rounds.

Claim For every node u, at any round, Pr[u terminates] > "4

Pr[u termine] = Pr[l(u) # 0 et aucun v € N(u) satisfait £(v) = £(u)]
= Pr[Vv € N(u),l(v) # £(u) | £(u) # 0] - Pr[f(u) # 0]
= 2 PrlYo € N(u), £(v) # £(u) | £(u) 0

Prll(v) = £(u) | £(u) # O] Pr|¢(v) | £(u) # 0 A L(v) = 0] Prlé(v) = 0]

t(u)
+ Prl(v) = £(u) | £(u) # 0 A L(v) # 0] Prié(v) # 0]
Prit(v) = €(u) | £(u) # 0 A L(v) # 0] Prlé(v) # 0]

< 5 Prl(v) = £(u) | u) # 0 A L(0) # 0
1 1
T 2A+1-|Cl)|
1 1
Pr{30 € N(u) : (v) = () | () £ 0] < (A= IC@D 55T 1e < 2



O(log n) rounds w.h.p.

Pr[u does not terminate in k In(xn) rounds]
< (3/4)KIn0) = ,=kIn(73)

Pr[ Ju that does not terminate in k In(n) rounds] < n!=*In#3)

1 +c
Let ¢ > 1, by choosing k = . we get:
In(4/3)
l+c
Pr[all nodes terminates after In(n) rounds] > 1 —1/n¢
In(4/3

J
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Four classical problems

SEP@N)

-Vertex Coloring

SEEPONN

Maximal Matching

A

-Edge Coloring

L AN
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Randomized algorithm

for MIS

Algorithm (Luby, 1985)
mis(u) € {-1,0,1} = {undecided, not in MIS, in MIS}
At any given round: H = G[{u : mis(u)=—1}]

/G

Trick: enforcing an order between nodes:

‘v

.

> U e degn(v) > degn(u)
or (degn(v) = degn(u) and ID(v) > ID(u))

~

_J




Luby's algorithm

One phase of the algorithm for node u with mis(u) = -1

if degr(u) = 0 then mis(u) « 1

else join(u) « true with proba 1/(2 degn(u)), false otherwise
exchange join with every v e N(u)
free(u) < A v e N(u) such that v > u and join(v)=true
iIf (join(u) = true and free(u) = true) then mis(u) «+ 1
exchange mis with every v € N(u)
if (mis(u) = -1 and 3aveN(u) mis(v)=1) then mis(u) « O
exchange mis with every v € N(u)
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Round-Complexity of
Luby’s Algorithm

Remark A very similar algorithm was independently
discovered by Alon, Babai, and Itai (1986).

Theorem Luby'’s algorithm terminates in O(log n)
rounds, w.h.p.
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Reduction

* (A+1)-coloring =» MIS
in A rounds by maximizing {1}

e MIS =» (A+1)-coloring
in MIS((A + 1)n,2A) rounds by simulation

virtual
network

actual N
network
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Claim 1. At most one node of each clique in the MIS

Claim 2. At least one node of each clique in the MIS

Color = index of node in the MIS
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| ine Graphs

Definition The line graph of a graph G is the graph
L(G) such that

 V(L(G)) = E(G)
e {e,e'} e E(L(G)) &= e and e’ are incident in G

b
/ ¢ al
4 d 3




Reductions

SEP@N)

ﬁ MIS on line graph

Maximal Matching

A

clique

reduction

<
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-Vertex Coloring

SEEPONN

coloring
on line graph

-Edge Coloring

L AN




State of the Art
and Open Problems

Each of the four problems (A + 1)-coloring, MIS, Maximal Matching,
and (2A — 1)-edge-coloring has

« a deterministic algorithm running in O(log® n) rounds, ¢ > 1

« arandomized algorithm running in O(log®logn) rounds, ¢ > 1

= |mproving the exponent of the logs and loglogs?
= [ ower bounds?

Recent breakthrough: 2(log n/loglogn + A)-round lower bound
for deterministic MIS (this will be taught later in the course)

For (A + 1)-coloring, no better deterministic lower bound that
Q(log™* n) rounds
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ocally Checkable Labeling

Let F 5 be the set of all (connected) graphs with maximum
degree A.

Definition (Naor and Stockmeyer, 1995) An LCL in & 4 is

specified by a finite set of labels, and a finite set of labeled
balls with maximum degree A, called good balls.

Examples:
e k-coloring, k-edge-coloring Focus is on LCL tasks

| _ solvable sequentially by
e maximal mdependent set (M|S) a greedy algorithm

selecting nodes in
arbitrary order, like, e.qg.,
e Ftc. k-coloring for k > A+1.

e maximal matching
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Solving an LCL Problem

Let A > 2, and let L be an LCL in & 4

The LCL problem associated to L consists, for all
nodes of any graph G € F 4, to compute a label
such that the collection of labels results in good balls
centered at every node of G.

The definition can be generalized with inputs given to
the nodes, in addition to their IDs.
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The Limited Power of
Randomized Algorithms

Pr[success] > 1 —-1/n
Theorem [Y.-J. Chang, T. Kopelowitz, S. Pettie (2016)]

For any LCL problem, its randomized (Monte Carlo)
complexity on instances of size n is at least its

deterministic complexity on instances of size 1/log n

One needs to design better deterministic algorithms for
improving the performances of randomized algorithms!
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Proof

Let 11 be an LCL problem

Let Detp(n, A) and Randp(n, A) be the LOCAL
deterministic and randomized complexity of 11 for
instance of size n and maximum degree A.

We show that Detpy(72, A) < Rand(27, A)

We assume that, initially, each node v knows its |ID, as well
as nand A, with ID(v) € {0,1}¢1°¢" for some ¢ > 1.

Let &, A be the family of n-node graphs with maximum
degree A, and nodes with IDs on ¢ log n bits.
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Let £ be an optimal randomized algorithm for I1
Our aim is to construct a deterministic algorithm & for I1
Assume that X%

- performs in #(n, A) rounds, and
- uses r(n, A) random bits at each node.

Note that | &, 5 | < 2(3)Fenlogn o on”

We consider graphs G € &, , and let N = "

We also consider G'= GU Hwith H € &_, 5 o

In G’, nodes are given (N, A) as input

We have: Pr[ £ failsin G'] < 1/N
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Let us consider any function ¢ of the form
¢ : {O,l}clogn N {O,l}r(N’A)

Let X[ ¢] be the deterministic algorithm equal to
R with the fixed random strings determined by @,
.e., node v uses &£ with bit-string ¢(ID(v)).

R[p] runs in t(N, A) rounds in G

We said that ¢ is bad if L[] fails on some
GeE Y, A
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Pr [¢ bad] < Z Pr [Z£[¢@] errs on G]
punif o prunif

= Z Pr[£ errs on G with input (V, A)]
GEYG, A

< |G AlIN<I1
It follows that there exists ¢* : {0,1}¢1°27 — 10,1} WA good

Deterministic algorithm &J: on input (n, A), every node v
- computes N = 2”2, t(N,A) and r(N, A)
_ performs Z[¢p™] for t(N, A) rounds

By construction & never errs in &, m
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End Lecture 4



