Announcements

- No class on Oct 31 (DISC 2024)
- Class on Nov 7 (7th lecture)
- Nov 14 (8th lecture) will be dedicated to exercices
- No class on Nov 21
- Partial exam on Nov 28 or Dec 5 (to be specified ASAP)

Roadmap

 $(\Delta + 1)$ -coloring in polylog(*n*) rounds

- Network decomposition
- Derandomization

Network Decomposition

Network Decomposition

Definition A (c, d)-decomposition of an *n*-node graph G = (V, E) is a partition of *V* into clusters such that each cluster has diameter at most *d* and the cluster graph is properly colored with colors in $\{1, ..., c\}$.

Theorem [Linial and Saks (1993)]

Every graph has a $(O(\log n), O(\log n))$ decomposition, and such a decomposition can be computed by a *randomized* algorithm in $O(\log^2 n)$ rounds in the LOCAL model.

Theorem [Panconesi and Srinivasan (1992)] A $(2^{\sqrt{\log n}}, 2^{\sqrt{\log n}})$ -decomposition can be computed *deterministically* in $2^{\sqrt{\log n}}$ rounds in the LOCAL model.

Impact on coloring and MIS

Lemma Given a (c, d)-decomposition, $(\Delta + 1)$ -coloring and MIS can be solved in O(cd) rounds in the LOCAL model.

Proof

Proceed in c phases, each of O(d) rounds

Fast Network Decomposition

Theorem [Rozhon and Ghaffari (2019)] A $(O(\log n), O(\log n))$ -decomposition can be computed deterministically in polylog(n) rounds in the LOCAL model.

Corollary $(\Delta + 1)$ -coloring and MIS can be deterministically solved in polylog(*n*) rounds in the LOCAL model.

Derandomization

Derandomization

Assume every node v of G = (V, E) maintains

$$D(v) = (p_1, ..., p_{\Delta+1})$$

$$\Pr[c(v) = x] = p_x$$

Initially
$$D(v) = (\frac{1}{\Delta + 1}, ..., \frac{1}{\Delta + 1})$$

Objective: $D(v) = (0, ..., 0, 1, 0, ..., 0)$

Framework

- Assume given a proper $O(\Delta^2)$ -coloring of G
- Assume (for simplicity) that $\Delta + 1 = 2^k$
- Derandomization proceeds in a series of k phases
- At phase i = 1, ..., k: $D(v) = (p_1, ..., p_{\Delta+1})$ with

-
$$2^{k-i+1}$$
 entries equal to $1/2^{k-i+1}$

- all other entries equal to 0

Initially

 $X = # \text{monochromatic edges} = \sum_{e \in E} X_e$

$$\mathbb{E}X = \sum_{e \in E} \mathbb{E}X_e \le \frac{1}{\Delta + 1} \cdot \frac{n\Delta}{2} \le \frac{n}{2}$$

Let $X_v =$ #monochromatic edges incident to $v \in E$

Ordering the probability

$$D(v) = (p_1, ..., p_{\Delta+1})$$

For
$$x \in \{1, \dots, \Delta + 1\}$$
, let $E_x = \mathbb{E}[X_v \mid c(v) = x]$

$$C_{small} = \{2^{k-i} \text{ colors } x \text{ with smallest non null } E_x\}$$

$$C_{large} = \{2^{k-i} \text{ colors } x \text{ with largest non null } E_x\}$$

Action: double p_x for $x \in C_{small}$ (and others p_x set to 0)

Impact on #monochromatic edges Treat each color class in $\{1, ..., O(\Delta^2)\}$ separately

$$\mathbb{E}X_{v}^{new} = \sum_{x \in [\Delta+1]} \mathbb{E}[X_{v} \mid c(v) = x] \cdot \Pr[c(v) = x]$$

$$= \sum_{x \in C_{small}} \left(\sum_{u \in N(v)} \Pr[c(u) = x] \right) \cdot \Pr[c(v) = x]$$

$$\leq \sum_{x \in C_{small} \cup C_{large}} \left(\sum_{u \in N(v)} \Pr[c(u) = x] \right) \cdot \left(\frac{1}{2^{k-i+1}} + \frac{1}{2^{k-i+1}} \right)$$

 $\leq \mathbb{E}X_v^{old}$

After $k = \log(\Delta + 1)$ phases

- For every v the distribution D(v) is integral, i.e., D uses $(\Delta + 1)$ colors, but it is not necessarily proper.
- #monochromatic edges $\leq n/2$
- Let G' = (V, E') where $E' = \{\text{monochromatic edges}\}$
- Number of nodes with degree > 4 is at most n/4
- Compute MIS in subgraph G'' of nodes with degree $\,\leq 4,$ in $O(\log^\star \Delta)$ rounds
- Nodes in the MIS adopt their colors, and terminate

• Any MIS in
$$G''$$
 is of size $\frac{3n/4}{5} \implies \frac{3n}{20}$ nodes terminate

In Total...

- $O(\log n)$ iterations
- each iteration takes $O(\log \Delta)$ phases
- But... each phase takes $O(\Delta^2)$ rounds!

Defective Coloring

A coloring $\gamma: V \rightarrow \{1, ..., k\}$ of G = (V, E) is *d*-defective if every node has at most *d* neighbors with the same color.

Let $w : E \to \mathbb{R}^+$ and $\epsilon > 0$. A coloring γ is an ϵ -average defective coloring if

$$\sum_{e=\{u,v\} \mid \gamma(u)=\gamma(v)} w(e) \le \epsilon \sum_{e\in E} w(e)$$

Lemma There exists an $O(\log \Delta)$ -round deterministic algorithm that computes an $(1/\log \Delta)$ -average defective coloring using $O(\log \Delta)$ colors.

Application

- For weight w defined as $\forall e \in E, w(e) = \mathbb{E}X_e$ compute an $(1/\log \Delta)$ -average defective $O(\log \Delta)$ -coloring γ at the beginning of each phase, in $O(\log \Delta)$ rounds
- Ignore monochromatic edges in γ , and treats each color classes separately.
- X =#monochromatic edges
- $\mathbb{E}X_{new} \leq (1 + 4/\log \Delta) \cdot \mathbb{E}X_{old}$
- $\mathbb{E}X_{final} \le (1 + 4/\log \Delta)^{\log \Delta} \cdot \mathbb{E}X_{initial} \le O(n)$

Wrap Up

Theorem [Ghaffari and Kuhn, 2021] There exists an $O(\log n \cdot \log^2 \Delta)$ -round deterministic algorithm solving $(\Delta + 1)$ -coloring in any *n*-node graph with maximum degree Δ .

For large Δ (e.g., $\Delta = \Omega(n^{\epsilon})$) there is a faster algorithm (using network decomposition) running in $O(\log^2 n)$ rounds.

For small degrees, $O(\sqrt{\Delta} + \log^* n)$ rounds

End Lecture 5