
• Nov 14 (8th lecture) will be dedicated to exercices


• No class on Nov 21 


• Partial exam on Nov 28

Announcements 



Roadmap

Randomized -coloring in  
rounds 

• Graph Shattering 

• A Monte-Carlo algorithm 

• Concentration bounds

(Δ + 1) poly(log log n)
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Graph Shattering
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Randomized Algorithms 
using Shattering
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Pick     or     u.a.r.

W.h.p., max length monochromatic interval  

 3-coloring or MIS in  rounds

≤ O(log n)

⟹ O(log⋆ log n)



Graph Shattering 

parts that remain 
to be fixed by 2.

parts that are  
fixed after 1.

nodes
O(logO(1) n)

1. Shatter the graph using randomization 
2. Complete each piece deterministically

Rand( ) ≈ Det( )n O(logO(1) n)



A Monte-Carlo 
Algorithm
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Algorithm OneShotColoring 
[L. Barenboim, M. Elkin, S. Pettie, J. Schneider (2015)]

For , let  

 

For all  in parallel:  
‣ pick  u.a.r. 
‣ if  satisfies  for all  such 

that  , then 

G = (V, E) U = {v ∈ V ∣ c(v) = ⊥ }

Ψ(v) = {1,…, deg(v) + 1} ∖ ∪u∈NG(v) {c(u)}

v ∈ U
ctmp(v) ∈ Ψ(v)

v ID(v) > ID(u) u ∈ NU(v)
ctmp(u) = ctmp(v) c(v) ← ctmp(v)
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Notations
Let  

For every , let  

 

Let  

Remark: 

In particular: 

N+
U(v) = {u ∈ NU(v) ∣ ID(u) > ID(v)}

q ∈ Ψ(v)
Ψ−1(q) = {u ∈ N+

U(v) ∣ q ∈ Ψ(u)}

w(q) = ∑
u∈Ψ−1(q)

1/ |Ψ(u) |

1/ |Ψ(u) | ≤ 1/(degU(u) + 1) ≤ 1/2

w(q) ≤ 1
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Analysis (1)



Lemma 1. 


Let  indicator of whether color   can be adopted by 


For  we have 





Pr[q ∉ ctmp(N+
U(v))] = Πu∈Ψ−1(q)(1 − 1/ |Ψ(u) | )

≥ Πu∈Ψ−1(q)(1/4)1/|Ψ(u)| = (1/4)w(q)

Pr[v is colored] ≥ 1/4

Xq ∈ {0,1} q v

X = ∑
q∈Ψ(v)

Xq 𝔼X ≥ ∑
q∈Ψ(v)

(1/4)w(q)

⟹ 𝔼X ≥ |Ψ(v) | ⋅ (1/4)∑q w(q)/|Ψ(v)|

≥ |Ψ(v) | ⋅ (1/4)degU(v)/|Ψ(v)| > |Ψ(v) | /4

, ∀x ∈ [0,1/2] 1 − x ≥ (1/4)x



Analysis (2)
Let  be the event «   », i.e., 1/8 of ’s colors are 
« good »


The random variables  are not independent, but they are 
negatively correlated. 

ℰv X ≥ |Ψ(v) | /8 v

Xq



Negative Correlation

 

Lemma  

Definition  and  are negatively correlated if  
 

Definition A collection  of random variables 
are negatively correlated if, for every ,  

Cov(X, Y) = 𝔼[(X − 𝔼X) ⋅ (Y − 𝔼Y)]

Cov(X, Y) = 𝔼[XY] − 𝔼[X] ⋅ 𝔼[Y]

X Y
𝔼[XY] ≤ 𝔼[X] ⋅ 𝔼[Y]

X1, …, Xk
S ⊆ [k]

𝔼[Πi∈SXi] ≤ Πi∈S𝔼Xi
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Concentration
Theorem Let  be the sum of  
independent or negatively correlated random variables  
with values in  for all . For every ,  

 

The same bound applies to .  

X = X1 + … + Xk k
Xi

[ai, bi] i ∈ [k] λ > 0

Pr[X ≤ 𝔼X − λ] ≤ exp −
2λ2

∑k
i=1 (bi − ai)2

Pr[X ≥ 𝔼X + λ]
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Analysis (2)
Let  be the event «   », i.e., 1/8 of ’s colors 
are « good »


The random variables  are not independent, but they are 
negatively correlated. Therefore, with , we get: 





Lemma 2. Let  be the uncolored nodes, and let 


ℰv X ≥ |Ψ(v) | /8 v

Xq
λ = 𝔼X/2

Pr[¬ℰv] < exp (−
2 ⋅ ( |Ψ(v) | /8)2

|Ψ(v) | ) = exp (−
|Ψ(v) |

32 )
U v ∈ U

Pr[ℰv] ≥ 1 − exp (−
degU(v) + 1

32 )



Shattering Property
Let  be the max degree of the subgraph  induced by . 


Let . 


Property 1. With probability at least , after  
iterations of OneShotColoring, all uncolored components have at 
most  nodes.


Corollary There exists a randomized Monte-Carlo -coloring 
algorithm running in  rounds, succeeding 
w.h.p. 


Proof. After  rounds, each -node component can be colored 
deterministically in  rounds, where .

ΔU G[U] U

α ≥ 1

1 − 1/nα 5 log4/3 ΔU

α ⋅ Δ2
U ⋅ logΔU

n

(Δ + 1)
O(log2 Δ + log2 log n)

O(log Δ) ν
O(log2 ν) ν ≤ α ⋅ Δ2 ⋅ logΔ n ☐



Basic Facts
Claim 1. The number of rooted unlabeled -node trees is 
less than .


Proof. The Euler tour of such a tree can be encoded as a bit-
vector with length . 


Claim 2. The number of ways to embed a -node tree in an 
-node graph of maximum degree  is less than . 


Proof. There are  choices for the root, and less than 
choices for each subsequent node. 

t
4t

2t

t n
Δ nΔ(t−1)

n Δ
☐

☐



Proof of Property 1
If  then  and  are independent. 


Let  such that

1. 

2. 

3.  is a tree in 


Remark. If the property does not hold, then a partially uncolored 
set  as above exists.


There are at most  such sets . 


By Lemma 1, 


By union bound, . 

dist(v, v′￼) ≥ 3 ℰv ℰv′￼

T ⊆ U
|T | = α logΔU

n
∀v, v′￼∈ T, dist(v, v′￼) ≥ 3
T G3[U]

T

4α logΔU n ⋅ Δ3(α logΔU n−1)
U ⋅ n < n4α T

Pr[T uncolored] ≤ ( 3
4 )

(α logΔU n)⋅(5 log4/3 ΔU)

= n−5α

Pr[∃T, T partially uncolored] ≤ n4α−5α = 1/nα ☐



Decreasing Degrees

Let 


Let 


Property 2. , and if  and  denotes 
the set of uncolored nodes before and after one iteration of 
OneShotColoring, then, for every node   

U+ = {v ∈ U ∣ degU(v) > c ln n}

ℰ = ⋀
v∈U+

ℰv

Pr[¬ℰ] < n−c/32+1 U0 U1

v ∈ U+
0

Pr[degU+
1
(v) ≤

15
16

degU+
0
(v)] > 1 − n−c/512 − n−c/32+1



Fast Randomized  
-Coloring(Δ + 1)

Corollary There exists a randomized Monte-Carlo 
-coloring algorithm running in  rounds, 
succeeding w.h.p. 


Proof. After  iterations: 

‣ for every ,  by Property 2

‣ for every ,  by definition.


By Property 1, after  iterations, 
uncolored components of size at most , and each 
can be colored (deterministically) in  rounds.

(Δ + 1)
O(log Δ + log2 log n)

log16/15 Δ
v ∈ U+ degU+(v) ≤ c ln n
v ∈ U ∖ U+ degU∖U+(v) ≤ c ln n

O(log(c ln n)) = O(log log n)
O((c ln n)3)

O(log2 log n) ☐



Proof of Property 2

By Lemma 2, .


By Union bound, 


Pr[¬ℰv] ≤ exp (−
c ln n + 1

32 )

Pr[¬ℰ] ≤ |U+ | ⋅ exp (−
c ln n + 1

32 ) ≤ n−c/32+1



Yet Another  
Concentration Bound

Let  be  random variables with values in  for all 


Let  


Let  be  random variables, and assume that  is 
determined by  only. 


Let  and 


Lemma 3. For every ,  

The same bound applies to . 

X1, …, Xk k [ai, bi] i ∈ [k]

X =
k

∑
i=1

Xi

Y0, Y1, …, Yk k + 1 Xi
Y0, …, Yi

μi = 𝔼[Xi ∣ Y0, …, Yi] μ =
k

∑
i=1

μi

λ > 0 Pr[X ≤ 𝔼X − λ] ≤ exp −
λ2

2∑k
i=1 (bi − ai)2

Pr[X ≥ 𝔼X + λ]



Proof of Property 2 
(Continued)

Let  and let  be the  neighbors of  in  
ordered in decreasing order of IDs. 


At step 0, reveal  for all , resulting in 


At step , reveal , resulting in 


Let  indicator variable of whether  is colored


Let 


Assuming  we have .

v ∈ U+ u1, …, uk k v G[U+]

ctmp(u) u ∉ NU+(v) Y0

i ≥ 1 ctmp(ui) Yi

Xi ui

X =
k

∑
i=1

Xi

ℰ Pr[Xi = 1 ∣ Yi−1] ≥ 1/8



Proof of Property 2 
(Continued 2)

By Lemma 3, we get that 





Complete the proof by applying union bound. 

Pr[X < degU+
0
(v)/16 ∣ ℰ] ≤ exp

(degU+
0
(v)/16)2

2 degU+
0
(v)

= exp (−
1

512
degU+

0
(v))

≤ n−c/512

☐



End Lecture 6
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