CONGEST Model

- Definition
- Local and global problems
- Solving local problems
- Lower bounds

CONGEST Model

 Each process is located at a node of a network modeled as an n-node graph (n = #processes)

 Computation proceeds in synchronous rounds during which every process:

- 2. Receives a message from each neighbor
- 3. Performs individual computation (same algorithm for all nodes)

Typically, $B = O(\log n)$

Non Local Problems

- In LOCAL, all (Turing constructible) problems can be solved in O(D) rounds in graphs with maximum diameter D.
- Computing a Minimum-Weight Spanning Tree (MST) requires $\Omega(D)$ rounds in the LOCAL model.

Input of node u : ID(u), w(e) for every $e \in E(u)$

Output of node u : list of edges $e \in E(u)$ belonging to MST

MST is a non-local problem

input configuration
$$I = (w(e), w(e'))$$

$$diameter(C_{2n}) = n$$

Assume performing less than *n* rounds

Then consider the three configurations:

$$I_1 = (1,3)$$
 $I_2 = (3,2)$ $I_3 = (1,2)$

Local Problems

Informal definition: Problems solvable in $g(n) \ll n$ rounds in LOCAL, e.g., g(n) = polylog n rounds, or $g(n) = O(n^{\epsilon})$ rounds, with $\epsilon < 1$.

Objective

In CONGEST, we aim at the following:

- Local problems, i.e., solvable in o(D) rounds in LOCAL express round-complexity in CONGEST as f(n) goal = minimizing f
- Non-local problems, i.e., require $\Omega(D)$ rounds in LOCAL express round-complexity in CONGEST as O(D) + f(n) goal = minimizing f

Detecting subgraphs

H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$

G is H-free if G does not contain H as a subgraph.

Distributed decision

A distributed algorithm A decides ϕ if and only if:

- $G \models \varphi \Rightarrow \text{all nodes output } accept$
- $G \not\models \varphi \Rightarrow$ at least one node output *reject*

Theorem Deciding C_4 -freeness can be done in $O(\sqrt{n})$ rounds in CONGEST.

It takes O(1) rounds in LOCAL

Algorithm

```
Algorithm 3 C_4-detection executed by node u.
```

```
1: send ID(u) to all neighbors, and receive ID(v) from every neighbor v
     2: send deg(u) to all neighbors, and receive deg(v) from every neighbor v
      3: S(u) \leftarrow \{\text{IDs of the min}\{\sqrt{2n}, \deg(u)\} \text{ neighbors with largest degrees}\}
     4: send S(u) to all neighbors, and receive S(v) from every neighbor v
     5: if \sum_{v \in N(u)} \deg(v) \ge 2n + 1 then
                                             output reject
     7: else
                                             if \exists v_1, v_2 \in N(u), \exists w \in S(v_1) \cap S(v_2) : w \neq u \text{ and } v_1 \neq v_2 \text{ then } v_1 \neq v_2 \neq v
     8:
                                                                   output reject
     9:
                                             else
10:
11:
                                                                   output accept
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        W
                                              end if
12:
                                                                                                                                                                                                                                                                                                 Case 1: there exists a 'large' node w in C
13: end if
                                                                                                                                                                                                                                                                                                  Case 2: all nodes of C are 'small'
```

Lower bound techniques

Reduction to communication complexity

Communication complexity

$$f: \{0,1\}^N \times \{0,1\}^N \rightarrow \{0,1\}$$

Alice & Bob must compute f(a,b)

How many bits need to be exchanged between them?

Equality

• Alice gets $a \in \{0,1\}^N$, and Bob gets $b \in \{0,1\}^N$

$$f(a,b) = 1 \iff a = b$$

Theorem $CC(EQ) = \Omega(N)$.

Set-disjointness

- Ground set S of size N
- Alice gets A ⊆ S, and Bob gets B ⊆ S

$$f(A,B) = 1 \iff A \cap B = \emptyset$$

Theorem $CC(DISJ) = \Omega(N)$, even using randomization (i.e., even if Alice and Bob have access to sources of random bits).

Application

Deciding C₄-freeness

Theorem (Drucker, Kuhn & Oshman, 2014) Deciding C_4 -freeness required $\Omega(\sqrt{n/\log n})$ rounds.

Reduction from Set-Disjointness.

We use the following result:

Lemma There is an infinite family of C_4 -free graphs $\{G_n : n \geq 1\}$ such that, for every $n \geq 1$, G_n has n nodes and $m = \Omega(n^{3/2})$ edges.

Reduction

Let A and B as in set-disjointness with $N = m = \Omega(n^{3/2})$

Bob's copy

of Gn

- Alice keeps $e \in E(G_n)$ iff $e \in A$
- Bob keeps $e \in E(G_n)$ iff $e \in B$

Algo in R rounds exchanges $R \cdot n \cdot \log n$ bits $\Rightarrow R \ge \Omega(n^{3/2})/(n \log n)$ $= \Omega(\sqrt{n}/\log n)$

Open problem

Complexity of deciding ____-freeness

C₃-free graph

2-party communication complexity fails

Detecting Induced Subgraphs

A graph H is an induced subgraph of a graph G if

- 1. $V(H) \subseteq V(G)$
- 2. For every $(u, v) \in V(H) \times V(H)$, we have

$$\{u, v\} \in E(H) \iff \{u, v\} \in E(G)$$

Detecting induced subgraphs is hard

Theorem Detecting induced C_4 -freeness requires $\tilde{\Theta}(n)$ rounds in the CONGEST model.

<u>Upper bound:</u> Every node send the IDs of all its neighbors to each of its neighbors.

Each nodes send O(n) IDs, each on $O(\log n)$ bits.

Lower Bound

Proof

Reduction from set-disjointness: Let $N = n^2$

- Alice and Bob agree on an order $e_1, e_2, ..., e_N$ of the edges in $K_{n,n}$
- Alice receives input $x \in \{0,1\}^N$ and keeps only edges e_i for which $x_i = 1$
- Bob receives input $y \in \{0,1\}^N$ and keeps only edges e_i for which $y_i = 1$

Claim There is an induced C_4 in G if and only if $\exists i : x_i = y_i = 1$

- Algorithme in R rounds exchanges $O(Rn \log n)$ bits between Alice and Bob.
- Since CC(DISJ) = $\Omega(n^2)$, we get $R = \Omega(n/\log n)$.

Exercice 1

Show that, for every $k \geq 1$, deciding C_{2k+1} -freeness requires $\tilde{\Omega}(n)$ rounds in the CONGEST model

Exercice 2

Show that deciding between D=2 and D=3 requires $\tilde{\Theta}(n)$ rounds in the CONGEST model.

End Lecture 7