Distributed Certification

- Definition
- Certifying Spanning Tree
- Universal Certification Scheme
- Lower bounds
- Interactive Protocols

Application: Fault-Tolerance

construction algorithm

Example: Self-stabilization

Example: Bipartiteness

- Definition A graph $G=(V, E)$ is bipartite if V can be partitioned into two sets V_{1} and V_{2} such that $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are stable graphs (i.e., for every edge in E one extremity is in V_{1} and the other extremity is in V_{2})
- Remark: G is bipartite $\Longleftrightarrow G$ is 2-colorable.

Verification is local:

- bipartite \Longrightarrow all nodes accept
- non bipartite \Longrightarrow at least one node rejects

Certification Scheme

Given a graph property:

- A non-trustable prover assigns certificates to the nodes
- A distributed verifier checks these certificates at each nodes (in $O(1)$ rounds)

Completeness: If the property is satisfies then there exists certificates such that the verifier accepts at all nodes.

Soundness: If the property is not satisfied, then, for every certificate assignment, the verifier reject in at least one node

Variants of Certification Schemes

- Locally Checkable Proofs: Verifiers exchange inputs and certificates with neighbors
- Proof-Labeling Scheme: Verifiers exchange only the certificates
- Non-Deterministic Local Decision: Certificates do not depend of the IDs assigned to the node

Cycle-Freeness

Non locally decidable!

Certifying Cycle-Freeness

if G is acyclic, then there is an assignment of the counter resulting in all nodes accept.

Verifier at node u
exchange counters with neighbors
if \exists ! $v \in N(u): \operatorname{cpt}(v)=\operatorname{cpt}(u)-1$ and $\forall w \in N(u) \backslash\{v\}, c p t(w)=\operatorname{cpt}(u)+1$
then accept else reject
if G is has a cycle, then for every assignment of the counters, at least one node rejects.

Proof-Labeling Scheme

A distributed algorithm A verifies ϕ if and only if:

- $G \vDash \phi \Rightarrow \exists c: V(G) \rightarrow\{0,1\}^{*}$: all nodes accept (G, c)
- $\mathrm{G} \neq \boldsymbol{\phi} \Rightarrow \forall \mathrm{c}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}^{*}$ at least one node rejects (G, c)

The bit-string $c(u)$ is called the certificate for u (cf. class NP)
Objective: Algorithms in $O(1)$ rounds (ideally, just 1 round in LOCAL) Examples:

- Cycle-freeness $c(u)=\operatorname{distg}_{\mathrm{G}}(u, r) \longleftrightarrow \mathrm{O}(\log n)$ bits
- Spanning tree: $c(u)=(\operatorname{distg}(u, r), I D(r))$

Measure of complexity: $\max _{u \in V(G)}|c(u)|$

Universal PLS

Theorem For any (decidable) graph property ϕ, there exists a PLS for ϕ, with certificates of size $O\left(n^{2}\right)$ bits in n node graphs.

Proof $c(u)=(M, x)$ where

- $\mathrm{M}=$ adjacency matrix of G
- $x=$ table[1..n] with $x(i)=I D($ node with index $i)$

Verification algorithm:

1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ϕ

G satisfies \Longleftrightarrow both tests are passed

Lower bound

Theorem There exists a graph property for which any PLS has certificates of size $\Omega\left(n^{2}\right)$ bits.

Proof Graph automorphism $=$ bijection $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{V}(\mathrm{G})$ such that $\{u, v\} \in E(G) \Longleftrightarrow\{f(u), f(v)\} \in E(G)$
Fact For n large enough, there are $\geq \mathfrak{\varkappa}^{n^{2}}$ graphs with no nontrivial automorphism.

If certificates on $<\varepsilon n^{2} / 3$ bits, then $\exists i \neq j$ such that the three nodes $\bigcirc \bigcirc \bigcirc$ have same certificates on $G_{i}-G_{i}$ and $G_{i}-G_{i}$.

Certifying Diameter

Given $k \geq 1$ certifying $\operatorname{Diam}(G)=k$ requires certifying $\operatorname{Diam}(G) \leq k$ and $\operatorname{Diam}(G) \geq k$

Lemma 1. There exists a PLS for $\operatorname{Diam}(G) \geq k$ with certificates on $O(\log n)$ bits.

Lemma 2. There exists a PLS for $\operatorname{Diam}(G) \leq k$ with certificates on $\tilde{O}(n)$ bits.

Remark: Certifying $\operatorname{Diam}(G) \leq k$ requires certificates on $\tilde{\Omega}(n)$ bits (cf. Réduction to DISJ)

PLS for $\operatorname{Diam}(G) \geq k$

If $\operatorname{Diam}(G) \geq k$ then there are two nodes u, v (identified by their IDs) at distance k

- Prover uses:
- two trees T_{u} and T_{v} rooted at u, v, respectively, to certify the existence of these two nodes
- a third tree T, which is a shortest path tree rooted at u with nodes labeled with distance to u
- Verifier at each node:
- Checks consistency of T_{u}, T_{v} and T (exercice)

PLS for $\operatorname{Diam}(G) \leq k$

- Prover gives to each node u :
- Table D_{u} where $D_{u}[v]=\operatorname{dist}(u, v)$
- Verifier at each node u checks:

$$
\begin{aligned}
& D_{u}[u]=0, \text { and, for every } v \in\{1, \ldots, n\} \backslash\{u\}, \\
& -D_{u}[v] \leq k \\
& -\exists u^{\prime} \in N(u): D_{u^{\prime}}[v]=D_{u}[v]-1 \\
& -\forall u^{\prime} \in N(u): D_{u^{\prime}}[v] \geq D_{u}[v]-1
\end{aligned}
$$

Interactive Proofs

Randomized Protocols

- At most one selected (AMOS)

- Decision algorithm (2-sided):
- let $p=(\sqrt{5}-1) / 2=0.61 \ldots$
- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! - But OK for 1-sided error

Distributed Interactive Protocols

[KOS, 2018]

- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite computation power
- Arthur is randomized
- $\mathrm{k}=$ \#interactions
- dAM[k] or dMA[k]
- dAM = dAM[2]
- $\mathrm{dAMA}=\mathrm{dMA}[3]$

Example: AMOS

- Locally checkable with success probability $(\sqrt{5}-1) / 2$
- In $\mathrm{dAM}(r)$ with r random bits, and success prob $1-1 / 2^{r}$
- Arthur independently picks a r-bit index x_{u} at each node u, u.a.r.
- Merlin answer $y=\perp$ if no nodes selected, or the index $y=x_{v}$ of the selected node v
- Verifier checks with neighbors that all nodes get same value y from Merlin, and selected nodes v checks that $y=x_{v}$.

Parameters

- Number of interactions between

- Size of

- Size of

- Number of random
- Shared vs distributed

Sequential setting

- For every $k \geq 2, \mathrm{AM}[k]=\mathrm{AM}$
- $M A \subseteq A M$ because $M A \subseteq M A M=A M[3]=A M$
- $\mathrm{MA} \in \Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$
- $A M \in \Pi_{2} P$
- $\operatorname{AM}[\operatorname{poly}(n)]=\mathrm{IP}=\mathrm{PSPACE}$

Distributed Setting [KOS 2018, NPY 2018]

- $\operatorname{Sym} \in d A M(n \log n)$
- $\operatorname{Sym} \in \mathrm{dMAM}(\log \mathrm{n})$
- Any dAM protocol for Sym requires Ω (loglog n)-bit certificates
- \neg Sym $\in \operatorname{dAMAM}(\log n)$

Example: Set Equality

- Every node u is given $a_{u}, b_{u} \in\{1, \ldots, n\}$
- Let $A=\left\{a_{u}: u \in V(G)\right\}$
- Let $B=\left\{b_{u}: u \in V(G)\right\}$
- Legality: $A=B$ as multisets (i.e., with repetitions)

Theorem SET-EQ is in $\mathrm{dAM}(O(\log n))$

Proof

Let q be prime, with $3 n<q<6 n$
Let us consider two polynomials in \mathbb{F}_{q} :

$$
P_{A}(X)=\prod_{u \in V(G)}\left(X-a_{u}\right) \text { and } P_{B}(X)=\prod_{u \in V(G)}\left(X-b_{u}\right)
$$

Note also that $P(X)=P_{A}(X)-P_{B}(X)$ is of degree n, and thus has at most n roots in \mathbb{F}_{q}

In particular: $A=B \Longleftrightarrow P_{A}(X)=P_{B}(X)$

Proof (continued)

- Every node u picks rand $(u) \in \mathbb{F}_{q}$ u.a.r. and sends it to Merlin
- Merlin sends to all nodes:
- node r with smallest ID, with a spanning tree T rooted at r
- the value $x=\operatorname{rand}(r)$
- the value $P_{A}^{u}(x)=\prod_{v \in V\left(T_{u}\right)}\left(x-a_{v}\right)$
- the value $P_{B}^{u}(x)=\prod_{v \in V\left(T_{u}\right)}\left(x-b_{v}\right)$
- Arthur checks consistency with neighbors at every node
- Root r checks that $P_{A}^{r}(x)=P_{B}^{r}(x)$

Proof (end)

- Completeness is satisfied with probability 1
- Soundness: if $A \neq B$ then $P_{A}(X) \neq P_{B}(X)$
if all tests are passed, then $P_{A}(x)=P_{B}(x)$
Since $x \in \mathbb{F}_{q}$ is random, $P_{A}(x)=P_{B}(x)$ occurs with probability $\leq n / q<\frac{1}{3}$

$$
\text { End Lecture } 7
$$

