
Distributed Certification
• Definition
• Certifying Spanning Tree
• Universal Certification Scheme
• Lower bounds
• Interactive Protocols

132

Application: Fault-Tolerance

133

construction
algorithm

solution

certificate
of correctness

Example: Self-stabilization

Legal configurations

Illegal configurations
time

system
state

initial
state

current
state

fault

Example: Bipartiteness
• Definition A graph is bipartite if can be

partitioned into two sets and such that
and are stable graphs (i.e., for every edge in
one extremity is in and the other extremity is in)

• Remark: is bipartite is 2-colorable.

G = (V, E) V
V1 V2 G[V1]

G[V2] E
V1 V2

G ⟺ G

134

Verification is local:
• bipartite all nodes accept
• non bipartite at least one node rejects

⟹
⟹

Certification Scheme
Given a graph property:

• A non-trustable prover assigns certificates to the nodes

• A distributed verifier checks these certificates at each
nodes (in rounds)

Completeness: If the property is satisfies then there exists
certificates such that the verifier accepts at all nodes.

Soundness: If the property is not satisfied, then, for every
certificate assignment, the verifier reject in at least one node

O(1)

135

Variants of Certification
Schemes

• Locally Checkable Proofs: Verifiers exchange
inputs and certificates with neighbors

• Proof-Labeling Scheme: Verifiers exchange only
the certificates

• Non-Deterministic Local Decision: Certificates do
not depend of the IDs assigned to the node

136

Cycle-Freeness

137

Non locally decidable!

1

2

n-1

n n/2+1

n/2

3

1

2

n-1

n n/2+1

n/2

3

1

2

n-1

n n/2+1

n/2

3

Certifying Cycle-Freeness

138

0

1
1

1

4

2

2

2

2

2 2

3

3

3

3

4 4

4

Verifier at node u

exchange counters with neighbors
if ∃! v∈N(u) : cpt(v)=cpt(u)-1 and
 ∀ w∈N(u)∖{v}, cpt(w)=cpt(u)+1
then accept
else reject

if G is acyclic, then there is
an assignment of the counter
resulting in all nodes accept.

if G is has a cycle, then for
every assignment of the
counters, at least one node
rejects.

x

x+1

x+2

x+k
cycle Ck

Proof-Labeling Scheme
A distributed algorithm A verifies ϕ if and only if:

• G ⊨ ϕ ⇒ ∃ c: V(G) → {0,1}* : all nodes accept (G,c)

• G ⊭ϕ ⇒ ∀ c: V(G) → {0,1}* at least one node rejects (G,c)

The bit-string c(u) is called the certificate for u (cf. class NP)

Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL)

Examples:
• Cycle-freeness: c(u) = distG(u,r)
• Spanning tree: c(u) = (distG(u,r),ID(r))

Measure of complexity: maxu∈V(G) |c(u)|

139

O(log n) bits

Universal PLS
Theorem For any (decidable) graph property ϕ, there
exists a PLS for ϕ, with certificates of size O(n2) bits in n-
node graphs.

Proof c(u) = (M,x) where
• M = adjacency matrix of G
• x = table[1..n] with x(i) = ID(node with index i)

Verification algorithm:
1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ϕ

G satisfies ⟺ both tests are passed

140

❏
exercice

Lower bound
Theorem There exists a graph property for which any PLS has
certificates of size Ω(n2) bits.

Proof Graph automorphism = bijection f:V(G)→V(G) such that
{u,v} ∈ E(G) ⟺ {f(u),f(v)} ∈ E(G)

Fact For n large enough, there are ≥ 2 graphs with no non-
trivial automorphism.
If certificates on < εn2/3 bits, then ∃ i≠j such that the three
nodes have same certificates on Gi-Gi and Gi-Gi.

141

ε n2

GiGi GjGj GjGi

❏

Certifying Diameter
Given certifying requires
certifying and

Lemma 1. There exists a PLS for with
certificates on bits.

Lemma 2. There exists a PLS for with
certificates on bits.

Remark: Certifying requires certificates
on bits (cf. Réduction to DISJ)

k ≥ 1 𝖣𝗂𝖺𝗆(G) = k
𝖣𝗂𝖺𝗆(G) ≤ k 𝖣𝗂𝖺𝗆(G) ≥ k

𝖣𝗂𝖺𝗆(G) ≥ k
O(log n)

𝖣𝗂𝖺𝗆(G) ≤ k
Õ(n)

𝖣𝗂𝖺𝗆(G) ≤ k
Ω̃(n)

142

PLS for 𝖣𝗂𝖺𝗆(G) ≥ k
If then there are two nodes
(identified by their IDs) at distance

• Prover uses:
- two trees and rooted at , respectively,

to certify the existence of these two nodes
- a third tree , which is a shortest path tree rooted

at with nodes labeled with distance to

• Verifier at each node:
- Checks consistency of , and (exercice)

𝖣𝗂𝖺𝗆(G) ≥ k u, v
k

Tu Tv u, v

T
u u

Tu Tv T
143

PLS for 𝖣𝗂𝖺𝗆(G) ≤ k
• Prover gives to each node :

- Table where

• Verifier at each node checks:

, and, for every ,

-

-

-

u
Du Du[v] = dist(u, v)

u
Du[u] = 0 v ∈ {1,…, n}∖{u}

Du[v] ≤ k
∃u′ ∈ N(u) : Du′

[v] = Du[v] − 1
∀u′ ∈ N(u) : Du′

[v] ≥ Du[v] − 1

144

Interactive Proofs

145

Randomized Protocols
• At most one selected (AMOS)

• Decision algorithm (2-sided):

- let p = = 0.61…

- If not selected then accept

- If selected then accept w/ prob p, and reject w/ prob 1-p

• Issue with boosting! — But OK for 1-sided error

(5 − 1)/2

Distributed Interactive Protocols
[KOS, 2018]

• Arthur-Merlin Phase
(no communication,
only interactions)

• Verification Phase
(only communications)

• k = #interactions

• dAM[k] or dMA[k]

• dAM = dAM[2]

• dAMA = dMA[3]

• Merlin has infinite
computation power

• Arthur is randomized

Example: AMOS

• Locally checkable with success probability

• In dAM() with random bits, and success prob

- Arthur independently picks a -bit index at each node , u.a.r.

- Merlin answer if no nodes selected, or the index
of the selected node

- Verifier checks with neighbors that all nodes get same value
from Merlin, and selected nodes checks that .

(5 − 1)/2

r r 1 − 1/2r

r xu u
y = ⊥ y = xv

v
y

v y = xv

• Number of interactions between and

• Size of

• Size of

• Number of random

• Shared vs distributed

Parameters

Sequential setting
• For every ,

• because

•

•

•

k ≥ 2 𝖠𝖬[k] = 𝖠𝖬

𝖬𝖠 ⊆ 𝖠𝖬 𝖬𝖠 ⊆ 𝖬𝖠𝖬 = 𝖠𝖬[3] = 𝖠𝖬

𝖬𝖠 ∈ Σ2𝖯 ∩ Π2𝖯

𝖠𝖬 ∈ Π2𝖯

𝖠𝖬[poly(n)] = 𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤

Distributed Setting

• Sym ∈ dAM(n log n)

• Sym ∈ dMAM(log n)

• Any dAM protocol for Sym requires Ω(loglog n)-bit
certificates

• ¬Sym ∈ dAMAM(log n)

[KOS 2018, NPY 2018]

Example: Set Equality
• Every node is given

• Let

• Let

• Legality: as multisets (i.e., with repetitions)

Theorem SET-EQ is in dAM

u au, bu ∈ {1,…, n}

A = {au : u ∈ V(G)}

B = {bu : u ∈ V(G)}

A = B

(O(log n))

152

Proof
Let be prime, with

Let us consider two polynomials in :

 and

Note also that is of degree ,
and thus has at most roots in

In particular:

q 3n < q < 6n

𝔽q

PA(X) = ∏
u∈V(G)

(X − au) PB(X) = ∏
u∈V(G)

(X − bu)

P(X) = PA(X) − PB(X) n
n 𝔽q

A = B ⟺ PA(X) = PB(X)

153

Proof (continued)
• Every node picks u.a.r. and sends it to Merlin

• Merlin sends to all nodes:

- node with smallest ID, with a spanning tree rooted at

- the value

- the value

- the value

• Arthur checks consistency with neighbors at every node

• Root checks that

u rand(u) ∈ 𝔽q

r T r

x = rand(r)

Pu
A(x) = ∏

v∈V(Tu)

(x − av)

Pu
B(x) = ∏

v∈V(Tu)

(x − bv)

r Pr
A(x) = Pr

B(x)
154

Proof (end)
• Completeness is satisfied with probability 1

• Soundness: if then

if all tests are passed, then

Since is random, occurs with

probability

A ≠ B PA(X) ≠ PB(X)

PA(x) = PB(x)

x ∈ 𝔽q PA(x) = PB(x)

≤ n/q <
1
3

155

❏

End Lecture 7

156

Final exam
Feb 28, 10h30-12h00

