
Distributed Certification
• Definition

• Certifying Spanning Tree

• Universal Certification Scheme

• Lower bounds

• Interactive Protocols
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Application: Fault-Tolerance
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Example: Bipartiteness
• Definition A graph  is bipartite if  can be 

partitioned into two sets  and  such that  
and  are stable graphs (i.e., for every edge in  
one extremity is in  and the other extremity is in ) 


• Remark:  is bipartite    is 2-colorable. 

G = (V, E) V
V1 V2 G[V1]

G[V2] E
V1 V2

G ⟺ G

134

Verification is local:

• bipartite  all nodes accept

• non bipartite  at least one node rejects

⟹
⟹



Certification Scheme
Given a graph property: 


• A non-trustable prover assigns certificates to the nodes


• A distributed verifier checks these certificates at each 
nodes (in  rounds)


Completeness: If the property is satisfies then there exists 
certificates such that the verifier accepts at all nodes. 


Soundness: If the property is not satisfied, then, for every 
certificate assignment, the verifier reject in at least one node

O(1)
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Variants of Certification 
Schemes

• Locally Checkable Proofs: Verifiers exchange 
inputs and certificates with neighbors


• Proof-Labeling Scheme: Verifiers exchange only 
the certificates


• Non-Deterministic Local Decision: Certificates do 
not depend of the IDs assigned to the node
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Cycle-Freeness
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Non locally decidable! 
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Certifying Cycle-Freeness
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Verifier at node u


exchange counters with neighbors

if ∃! v∈N(u) : cpt(v)=cpt(u)-1 and

   ∀ w∈N(u)∖{v}, cpt(w)=cpt(u)+1

then accept

else reject

if G is acyclic, then there is 

an assignment of the counter 

resulting in all nodes accept. 

if G is has a cycle, then for 

every assignment of the 

counters, at least one node

rejects.  


x

x+1

x+2

x+k
cycle Ck



Proof-Labeling Scheme
A distributed algorithm A verifies ϕ if and only if: 


• G ⊨ ϕ  ⇒ ∃ c: V(G) → {0,1}* : all nodes accept (G,c)


• G ⊭ϕ  ⇒ ∀ c: V(G) → {0,1}* at least one node rejects (G,c)


The bit-string c(u) is called the certificate for u (cf. class NP)


Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL)


Examples: 
• Cycle-freeness: c(u) = distG(u,r)

• Spanning tree: c(u) = (distG(u,r),ID(r))


Measure of complexity: maxu∈V(G) |c(u)|
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O(log n) bits



Universal PLS
Theorem For any (decidable) graph property ϕ, there 
exists a PLS for ϕ, with certificates of size O(n2) bits in n-
node graphs. 


Proof c(u) = (M,x) where 

• M = adjacency matrix of G

• x = table[1..n] with x(i) = ID(node with index i)


Verification algorithm: 

1. check local consistency of M using x

2. if no inconsistencies, check whether M satisfies ϕ


G satisfies ⟺ both tests are passed 

140

❏
exercice



Lower bound
Theorem There exists a graph property for which any PLS has 
certificates of size Ω(n2) bits. 


Proof Graph automorphism = bijection f:V(G)→V(G) such that 
{u,v} ∈ E(G) ⟺ {f(u),f(v)} ∈ E(G)


Fact For n large enough, there are ≥ 2      graphs with no non-
trivial automorphism.

If certificates on < εn2/3 bits, then ∃ i≠j such that the three 
nodes          have same certificates on Gi-Gi and Gi-Gi.
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ε n2

GiGi GjGj GjGi

❏



Certifying Diameter
Given  certifying  requires 
certifying  and  


Lemma 1. There exists a PLS for  with 
certificates on  bits. 


Lemma 2. There exists a PLS for  with 
certificates on  bits. 


Remark: Certifying  requires certificates 
on  bits (cf. Réduction to DISJ)

k ≥ 1 𝖣𝗂𝖺𝗆(G) = k
𝖣𝗂𝖺𝗆(G) ≤ k 𝖣𝗂𝖺𝗆(G) ≥ k

𝖣𝗂𝖺𝗆(G) ≥ k
O(log n)

𝖣𝗂𝖺𝗆(G) ≤ k
Õ(n)

𝖣𝗂𝖺𝗆(G) ≤ k
Ω̃(n)
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PLS for 𝖣𝗂𝖺𝗆(G) ≥ k
If  then there are two nodes  
(identified by their IDs) at distance 


• Prover uses: 

- two trees  and  rooted at , respectively, 

to certify the existence of these two nodes

- a third tree , which is a shortest path tree rooted 

at  with nodes labeled with distance to 


• Verifier at each node: 

- Checks consistency of ,  and  (exercice)

𝖣𝗂𝖺𝗆(G) ≥ k u, v
k

Tu Tv u, v

T
u u

Tu Tv T
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PLS for 𝖣𝗂𝖺𝗆(G) ≤ k
• Prover gives to each node : 


- Table  where 


• Verifier at each node  checks: 


, and, for every , 


- 


- 


-

u
Du Du[v] = dist(u, v)

u
Du[u] = 0 v ∈ {1,…, n}∖{u}

Du[v] ≤ k
∃u′￼ ∈ N(u) : Du′￼

[v] = Du[v] − 1
∀u′￼ ∈ N(u) : Du′￼

[v] ≥ Du[v] − 1
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Interactive Proofs
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Randomized Protocols
• At most one selected (AMOS)


• Decision algorithm (2-sided): 


- let p =  = 0.61…


- If not selected then accept

- If selected then accept w/ prob p, and reject w/ prob 1-p


• Issue with boosting!  — But OK for 1-sided error

( 5 − 1)/2



Distributed Interactive Protocols

[KOS, 2018]

• Arthur-Merlin Phase 
(no communication, 
only interactions)


• Verification Phase 
(only communications)

• k = #interactions

• dAM[k] or dMA[k]

• dAM = dAM[2]

• dAMA = dMA[3]

• Merlin has infinite 
computation power


• Arthur is randomized



Example: AMOS

• Locally checkable with success probability 


• In dAM( ) with  random bits, and success prob 


- Arthur independently picks a -bit index  at each node , u.a.r. 


- Merlin answer if no nodes selected, or the index  
of the selected node 


- Verifier checks with neighbors that all nodes get same value  
from Merlin, and selected nodes  checks that . 

( 5 − 1)/2

r r 1 − 1/2r

r xu u
y = ⊥ y = xv

v
y

v y = xv



• Number of interactions between         and        


• Size of 


• Size of


• Number of random


• Shared vs distributed

Parameters



Sequential setting
• For every , 


•  because 


• 


• 


•

k ≥ 2 𝖠𝖬[k] = 𝖠𝖬

𝖬𝖠 ⊆ 𝖠𝖬 𝖬𝖠 ⊆ 𝖬𝖠𝖬 = 𝖠𝖬[3] = 𝖠𝖬

𝖬𝖠 ∈ Σ2𝖯 ∩ Π2𝖯

𝖠𝖬 ∈ Π2𝖯

𝖠𝖬[poly(n)] = 𝖨𝖯 = 𝖯𝖲𝖯𝖠𝖢𝖤



Distributed Setting

• Sym ∈ dAM(n log n)


• Sym ∈ dMAM(log n)


• Any dAM protocol for Sym requires Ω(loglog n)-bit 
certificates 


• ¬Sym ∈ dAMAM(log n)

[KOS 2018, NPY 2018]



Example: Set Equality
• Every node  is given 


• Let 


• Let 


• Legality:  as multisets (i.e., with repetitions)


Theorem SET-EQ is in dAM

u au, bu ∈ {1,…, n}

A = {au : u ∈ V(G)}

B = {bu : u ∈ V(G)}

A = B

(O(log n))
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Proof
Let  be prime, with 


Let us consider two polynomials in :


 and 


Note also that  is of degree , 
and thus has at most  roots in 


In particular: 

q 3n < q < 6n

𝔽q

PA(X) = ∏
u∈V(G)

(X − au) PB(X) = ∏
u∈V(G)

(X − bu)

P(X) = PA(X) − PB(X) n
n 𝔽q

A = B ⟺ PA(X) = PB(X)
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Proof (continued)
• Every node  picks  u.a.r. and sends it to Merlin 


• Merlin sends to all nodes: 


- node  with smallest ID, with a spanning tree  rooted at 


- the value 


- the value  


- the value 


• Arthur checks consistency with neighbors at every node 


• Root  checks that 

u rand(u) ∈ 𝔽q

r T r

x = rand(r)

Pu
A(x) = ∏

v∈V(Tu)

(x − av)

Pu
B(x) = ∏

v∈V(Tu)

(x − bv)

r Pr
A(x) = Pr

B(x)
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Proof (end)
• Completeness is satisfied with probability 1


• Soundness: if  then 


if all tests are passed, then 


Since  is random,  occurs with 

probability

A ≠ B PA(X) ≠ PB(X)

PA(x) = PB(x)

x ∈ 𝔽q PA(x) = PB(x)

≤ n/q <
1
3
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End Lecture 7
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Final exam
Feb 28, 10h30-12h00


