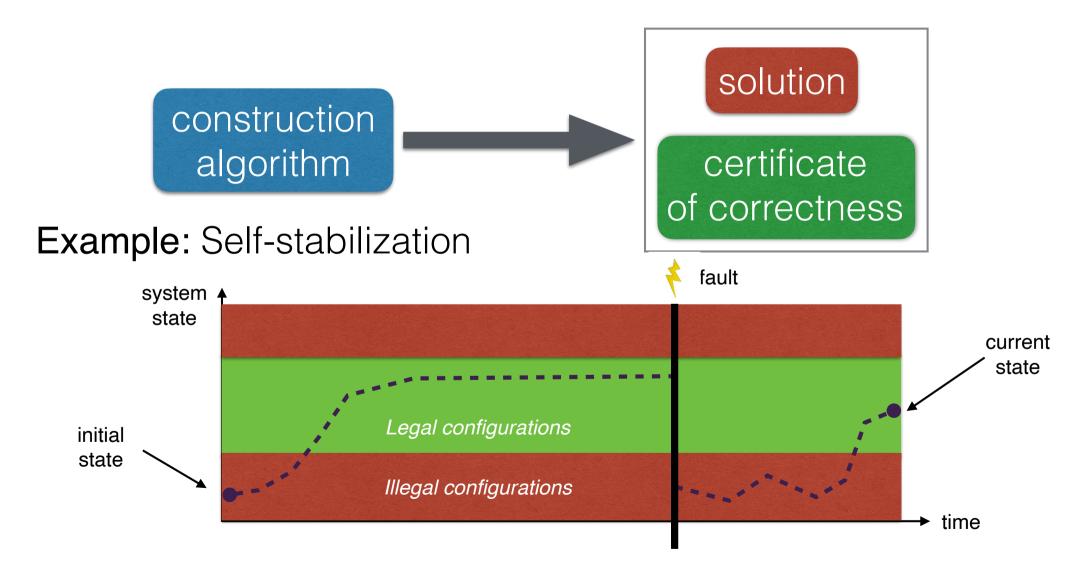
Distributed Certification

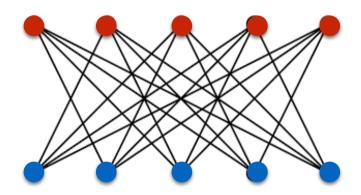
- Definition
- Certifying Spanning Tree
- Universal Certification Scheme
- Lower bounds
- Interactive Protocols

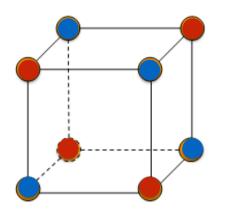
Application: Fault-Tolerance



Example: Bipartiteness

- **Definition** A graph G = (V, E) is bipartite if V can be partitioned into two sets V_1 and V_2 such that $G[V_1]$ and $G[V_2]$ are stable graphs (i.e., for every edge in E one extremity is in V_1 and the other extremity is in V_2)
- **Remark:** *G* is bipartite \iff *G* is 2-colorable.





Verification is local:

- bipartite \implies all nodes accept
- non bipartite \implies at least one node rejects

Certification Scheme

Given a graph property:

- A non-trustable *prover* assigns *certificates* to the nodes
- A distributed *verifier* checks these certificates at each nodes (in O(1) rounds)

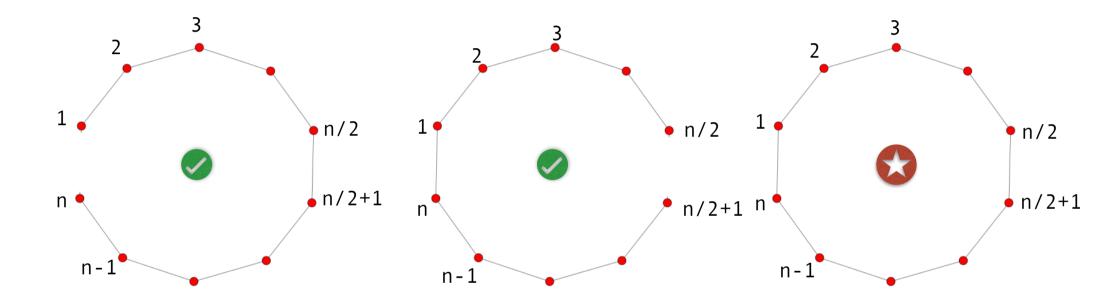
Completeness: If the property is satisfies then there exists certificates such that the verifier accepts at all nodes.

Soundness: If the property is not satisfied, then, for every certificate assignment, the verifier reject in at least one node

Variants of Certification Schemes

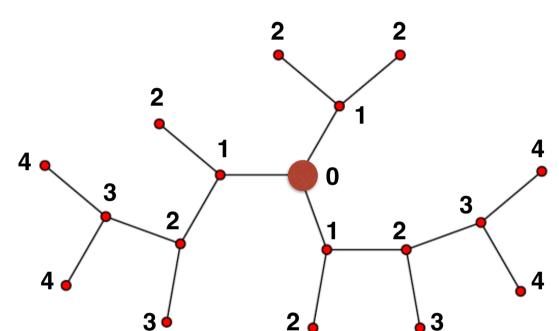
- Locally Checkable Proofs: Verifiers exchange inputs and certificates with neighbors
- Proof-Labeling Scheme: Verifiers exchange only the certificates
- Non-Deterministic Local Decision: Certificates do not depend of the IDs assigned to the node

Cycle-Freeness



Non locally decidable!

Certifying Cycle-Freeness

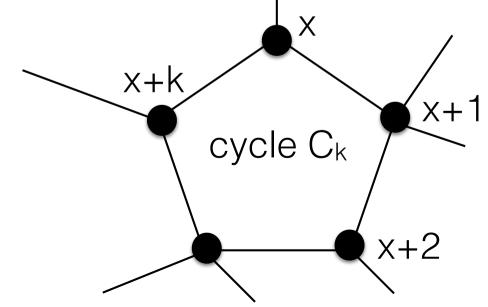


if G is acyclic, then there is an assignment of the counter resulting in all nodes accept.

if G is has a cycle, then for every assignment of the counters, at least one node rejects.

Verifier at node u

exchange counters with neighbors if $\exists ! v \in N(u) : cpt(v) = cpt(u) - 1$ and $\forall w \in N(u) \setminus \{v\}, cpt(w) = cpt(u) + 1$ then accept else reject



Proof-Labeling Scheme

A distributed algorithm A verifies ϕ if and only if:

- $G \models \phi \Rightarrow \exists c: V(G) \rightarrow \{0,1\}^*$: all nodes accept (G,c)
- $G \nvDash \varphi \Rightarrow \forall c: V(G) \rightarrow \{0,1\}^*$ at least one node rejects (G,c)

The bit-string c(u) is called the *certificate* for u (cf. class NP) **Objective:** Algorithms in O(1) rounds (ideally, just 1 round in LOCAL) **Examples:** O(log n) bits

- Cycle-freeness: $c(u) = dist_G(u,r)$
- Spanning tree: c(u) = (dist_G(u,r),ID(r))

Measure of complexity: $\max_{u \in V(G)} |c(u)|$

Universal PLS

Theorem For any (decidable) graph property ϕ , there exists a PLS for ϕ , with certificates of size O(n²) bits in n-node graphs.

- **Proof** c(u) = (M, x) where
 - M = adjacency matrix of G
 - x = table[1..n] with x(i) = ID(node with index i)

Verification algorithm:

- 1. check local consistency of M using x
- 2. if no inconsistencies, check whether M satisfies ϕ

G satisfies $\stackrel{\text{exercice}}{\Leftrightarrow}$ both tests are passed

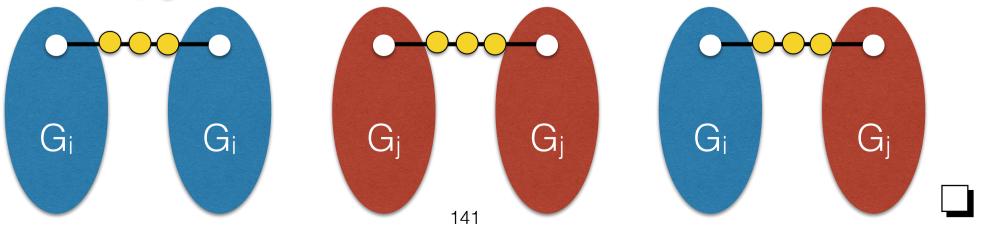
Lower bound

Theorem There exists a graph property for which any PLS has certificates of size $\Omega(n^2)$ bits.

Proof Graph automorphism = bijection $f:V(G) \rightarrow V(G)$ such that $\{u,v\} \in E(G) \iff \{f(u),f(v)\} \in E(G)$

Fact For n large enough, there are $\geq 2^{e^{n^2}}$ graphs with no non-trivial automorphism.

If certificates on $< \epsilon n^2/3$ bits, then $\exists i \neq j$ such that the three nodes $\bigcirc \bigcirc \bigcirc$ have same certificates on G_i - G_i and G_i - G_i .



Certifying Diameter

Given $k \ge 1$ certifying Diam(G) = k requires certifying $Diam(G) \le k$ and $Diam(G) \ge k$

Lemma 1. There exists a PLS for $Diam(G) \ge k$ with certificates on $O(\log n)$ bits.

Lemma 2. There exists a PLS for $Diam(G) \le k$ with certificates on $\tilde{O}(n)$ bits.

Remark: Certifying $Diam(G) \le k$ requires certificates on $\tilde{\Omega}(n)$ bits (cf. Réduction to DISJ)

PLS for $Diam(G) \ge k$

If $Diam(G) \ge k$ then there are two nodes u, v (identified by their IDs) at distance k

- Prover uses:
 - two trees T_u and T_v rooted at u, v, respectively, to certify the existence of these two nodes
 - a third tree T, which is a shortest path tree rooted at u with nodes labeled with distance to u
- Verifier at each node:
 - Checks consistency of T_u , T_v and T (exercice)

PLS for $Diam(G) \leq k$

- Prover gives to each node *u*:
 - Table D_u where $D_u[v] = dist(u, v)$
- Verifier at each node *u* checks:

 $D_u[u] = 0$, and, for every $v \in \{1, ..., n\} \setminus \{u\}$,

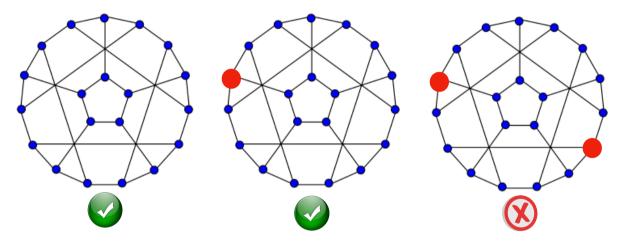
$$- D_u[v] \le k$$

- $\exists u' \in N(u) : D_{u'}[v] = D_u[v] 1$
- $\forall u' \in N(u) : D_{u'}[v] \ge D_u[v] 1$

Interactive Proofs

Randomized Protocols

• At most one selected (AMOS)



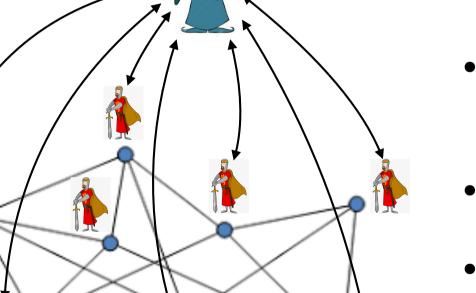
• Decision algorithm (2-sided):

- let
$$\mathbf{p} = (\sqrt{5} - 1)/2 = 0.61...$$

- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! But OK for 1-sided error

Distributed Interactive Protocols

[KOS, 2018]



- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite computation power
- Arthur is randomized
- **k** = #interactions
- dAM[k] or dMA[k]
- dAM = dAM[2]
- dAMA = dMA[3]

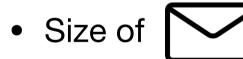
Example: AMOS

- Locally checkable with success probability $(\sqrt{5} 1)/2$
- In dAM(*r*) with *r* random bits, and success prob $1 1/2^r$
 - Arthur independently picks a *r*-bit index x_u at each node u, u.a.r.
 - Merlin answer $y = \bot$ if no nodes selected, or the index $y = x_v$ of the selected node v
 - Verifier checks with neighbors that all nodes get same value y from Merlin, and selected nodes v checks that $y = x_v$.

Parameters

Number of interactions between

CERTIFICATE



- Number of random
- Shared vs distributed

Sequential setting

- For every $k \ge 2$, AM[k] = AM
- MA \subseteq AM because MA \subseteq MAM = AM[3] = AM
- $\mathsf{MA} \in \Sigma_2 \mathsf{P} \cap \Pi_2 \mathsf{P}$
- AM $\in \Pi_2 P$
- AM[poly(n)] = IP = PSPACE

Distributed Setting [KOS 2018, NPY 2018]

- Sym ∈ dAM(n log n)
- Sym ∈ dMAM(log n)
- Any dAM protocol for Sym requires Ω(loglog n)-bit certificates
- \neg Sym \in dAMAM(log n)

Example: Set Equality

- Every node u is given $a_u, b_u \in \{1, ..., n\}$
- Let $A = \{a_u : u \in V(G)\}$
- Let $B = \{b_u : u \in V(G)\}$
- Legality: A = B as multisets (i.e., with repetitions)

Theorem SET-EQ is in $dAM(O(\log n))$

Proof

Let q be prime, with 3n < q < 6n

Let us consider two polynomials in \mathbb{F}_q :

$$P_A(X) = \prod_{u \in V(G)} (X - a_u) \text{ and } P_B(X) = \prod_{u \in V(G)} (X - b_u)$$

Note also that $P(X) = P_A(X) - P_B(X)$ is of degree *n*, and thus has at most *n* roots in \mathbb{F}_q

In particular:
$$A = B \iff P_A(X) = P_B(X)$$

Proof (continued)

- Every node u picks rand $(u) \in \mathbb{F}_q$ u.a.r. and sends it to Merlin
- Merlin sends to all nodes:
 - node r with smallest ID, with a spanning tree T rooted at r
 - the value x = rand(r)

- the value
$$P_A^u(x) = \prod_{v \in V(T_u)} (x - a_v)$$

- the value
$$P_B^u(x) = \prod_{v \in V(T_u)} (x - b_v)$$

- Arthur checks consistency with neighbors at every node
- Root *r* checks that $P_A^r(x) = P_B^r(x)$

Proof (end)

- Completeness is satisfied with probability 1
- Soundness: if $A \neq B$ then $P_A(X) \neq P_B(X)$

if all tests are passed, then $P_A(x) = P_B(x)$

Since $x \in \mathbb{F}_q$ is random, $P_A(x) = P_B(x)$ occurs with probability $\leq n/q < \frac{1}{3}$

End Lecture 7

