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Example: Bipartiteness

 Definition A graph G = (V, E) is bipartite if V can be
partitioned into two sets V; and V, such that G[ V]
and G| V,] are stable graphs (i.e., for every edge in E
one extremity is in V; and the other extremity is in V)

« Remark: G is bipartite <= G is 2-colorable.

Verification is local:
« bipartite = all nodes accept
e NON bipartite = at least one node rejects
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Certification Scheme

Given a graph property:
* A non-trustable prover assigns certificates to the nodes

o A distributed verifier checks these certificates at each
nodes (in O(1) rounds)

Completeness: If the property is satisfies then there exists
certificates such that the veritier accepts at all nodes.

Soundness: If the property is not satisfied, then, for every
certificate assignment, the verifier reject in at least one node
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Variants of Certification
Schemes

* [ocally Checkable Proofs: Verifiers exchange
inputs and certificates with neighbors

e Proof-Labeling Scheme: Verifiers exchange only
the certificates

* Non-Deterministic Local Decision: Certificates do
not depend of the IDs assigned to the node
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Cycle-Freeness

3 3
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@] o o
n-1 ® n-1 ®

Non locally decidable!
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Certitying Cycle-Freeness

if G is acyclic, then there is
2 2 an assignment of the counter
resulting in all nodes accept.

if G is has a cycle, then for
every assignment of the

counters, at least one node
rejects.

Verifier at node u

X+K

exchange counters with neighbors X+

if 31 veN(u) : cpt(v)=cpt(u)-1 and
v weN(u)\{v}, cpt(w)=cpt(u)+1

then accept

else reject
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Proof-Labeling Scheme

A distributed algorithm A verifies ¢ if and only if:
e GE® =3c:V(G)— {0,1}* : all nodes accept (G,c)

e G¥P =vc:V(G) — {0,1} at least one node rejects (G,c)
The bit-string c(u) is called the certificate for u (cf. class NP)

Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL)

Examples:
e Cycle-freeness: c(u) = distg(u,r) 4//
e Spanning tree: c(u) = (distg(u,r),ID(r))

O(log n) bits

Measure of complexity: maxuev(a) [c(u)
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Universal PLS

Theorem For any (decidable) graph property &, there

exists a PLS for ¢, with certificates of size O(n?) bits in n-
node graphs.

Proof c(u) = (M,x) where
« M = adjacency matrix of G
o X = table[1..n] with x(i) = ID(node with index i)

Veritication algorithm:
1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ¢

exercice

G satisfies — both tests are passed
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L ower bound

Theorem There exists a graph property for which any PLS has
certificates of size ()(n2) bits.

Proof Graph automorphism = bijection f:V(G)—V(G) such that
{uv} € E(G) = {f(u),f(v)} € E(G)

Fact For n large enough, there are > ™ graphs with no non-
trivial automorphism.

If certificates on < €n2/3 bits, then 3 i#] such that the three
nodes O OO have same certificates on Gi-Giand Gi-Gi.




Certitying Diameter

Given k > 1 certifying Diam(G) = k requires
certifying Diam(G) < k and Diam(G) > k

Lemma 1. There exists a PLS for Diam(G) > k with
certificates on O(log n) bits.

Lemma 2. There exists a PLS for Diam(G) < k with
certificates on O(n) bits.

Remark: Certifying Diam(G) < & requires certificates
on £2(n) bits (cf. Réduction to DISJ)
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PLS for Diam(G) > k

f Diam(G) > k then there are two nodes u, v
(identified by their IDs) at distance k

* Prover uses:
- twotrees 1), and T, rooted at u, v, respectively,

to certify the existence of these two nodes
- athird tree T, which is a shortest path tree rooted

at u with nodes labeled with distance to u

* Verifier at each node:
- Checks consistency of T, T, and 1" (exercice)
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PLS for Diam(G) < k

« Prover gives to each node u:

. Table D, where D [v] = dist(u, v)

« \erifier at each node u checks:

D, [u] =0, and, foreveryv € {1,...,n}\{u},
DVl <k

- du' e Nw) : D, vl=D,v] -1

- YueNuwu):D,vl]>D,Iv] -1
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INnteractive Proofs



Randomized Protocols

e At most one selected (AMOS)

DO

e Decision algorlthm (2—S|ded).

_letp=(y/5—1)/2=061...
- If not selected then accept
- |If selected then accept w/ prob p, and reject w/ prob 1-p

e |ssue with boosting! — But OK for 1-sided error



Distributed Interactive Protocols

KOS, 2018]

Arthur-Merlin Phase
(no communication,
only interactions)
Verification Phase
(only communications)

Merlin has infinite
computation power
Arthur is randomized

K = #interactions
dAM[k] or dMA[K]
dAM = dAM[2]
dAMA = dMA][3]



Example: AMOS

POY

e Locally checkable with success probability (\/g — 1)/2

e In dAM(r) with r random bits, and success prob 1 — 1/2"
- Arthur independently picks a r-bit index x,, at each node u, u.a.r.

- Merlin answer y = _L if no nodes selected, or the index y = X,
of the selected node v

- Verifier checks with neighbors that all nodes get same value y
from Merlin, and selected nodes v checks that y = Xx,..



Parameters




Seqguential setting

Forevery k > 2, AM[k] = AM

MA C AM because MA C MAM = AM[3] = AM
MA € 2,PNIL,P

AM e I1,P

AM{[poly(n)] = IP = PSPACE



Distributed Setting

KOS 2018, NPY 2018]

Sym € dAM(n log n)
Sym e dMAM(log n)

Any dAM protocol for Sym requires Q(loglog n)-bit
certificates

-Sym € dAMAM(log n)



Example: Set Equality

 Everynode uisgivena, b, € {1,...,n}

e LetA ={a,:ue V(G)}

e LetB=1{b,: u e V(G)}

« Legality: A = B as multisets (i.e., with repetitions)

Theorem SET-EQ is in dAM(O(log n))
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Proof

Let g be prime, with 3n < g < 6n

Let us consider two polynomials in [Fq:

PX) = ] @-ayandPyx)= [] x-5)

ueV(G) ueV(G)

Note also that P(X) = P4(X) — Pg(X) is of degree n,
and thus has at most 7 roots in [Fq

In particularr A = B < P4(X) = P3(X)
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Proot (continued)

« Every node u picks rand(u) € [Fq u.a.r. and sends it to Merlin

* Merlin sends to all nodes:
- node r with smallest ID, with a spanning tree T rooted at r

- the value x = rand(r)

- the value Py(x) = H (x—a,)
veV(T)

- thevaue Py = || -5,
veW(T)

* Arthur checks consistency with neighbors at every node

« Root r checks that P, (x) = Pg(x)
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Proof (end)

e Completeness is satisfied with probability 1

 Soundness: if A # B then P,(X) # Pg(X)
if all tests are passed, then P,(x) = Pg(x)

Since x € [ is random, P,(x) = Pg(x) occurs with

1
probability < n/qg < 3 H
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End Lecture 7
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