Correction

Show that, for every k > 2, deciding C,,, -freeness
requires £2(n) rounds in the CONGEST model
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Proof

« We show that an R-round algorithm & for deciding C; ;-freeness in
CONGEST can be used to solve DISJ(N).

. Alice and Bob agree beforehand on the gadget G, and on a ordering
ey, ..., ey of the N = n* edges of the two copies K,ﬁn and K,lzn of K, ,

. Alice receives inputx = (Xy, ..., Xy) € {0,1}V. For every i € [N], Alice
keeps e; in K,f,n if and only if x; = 1. This results in graph K*.

. Bob receives inputy = (yy, ..., Yy) € {0,1}V. For every i € [N], Bob keeps
e; in Kf’n if and only if y; = 1. This results in graph K5

Fact. DISJ(x,y) < (K4, KP)is C,-free
. Simulation of & on (K?, K®) can be done by exchanging O(R n log n) bits.
. Since DISJ(V) has communication complexity Q(N) bits, i.e., Q(n?) bits, we

get that R = Q(n/logn)
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Correction

Show that deciding between D = 2 and D = 3 requires
®(n) rounds in the CONGEST model.

Gadget G

X

Alice




Proof

« We show that an R-round algorithm & for deciding DIAM 2 vs. 3 in
CONGEST can be used to solve DISJ(N).

« Alice and Bob agree beforehand on the gadget G, and on a ordering
ey, ...,eyof the N = n(n — 1)/2 edges of the two copies K and KZ of K

« Alice receives inputx = (xy, ..., xy) € {0,1}V. For every i € [N], Alice
keeps e, in K2 if and only if x; = 0. This results in graph K*.

. Bob receives inputy = (y;, ..., yy) € {0,1}". Foreveryi € [N], Bob
keeps e; in KB if and only if y; = 0. This results in graph K.

Fact. DISJ(x,y) <= (K%, K®) has diameter 2
. Simulation of & on K4, KB) can be done by exchanging O(R n log n) bits.

. Since DISJ(N) has communication complexity Q(N) bits, i.e., Q(n?) bits,
we get that R = Q(n/log n)
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O(n) rounds Algorithm for
Deciding C;-freeness, k > 3

General idea:

k — 1 phases

At first phase, every node sends its ID to all its neighbors (i.e., this
phase performs 1 round).

At each phase i > 1, every node forwards O(1) simple paths
(V> V15 - - -, V;_1) for each source v. Hence each phase takes O(n)
rounds.

After k — 1 phases, if a node v has received a simple path
(Vo, Vis eves Vk_z) at phase k — 1 such that (V(), Vis eees Vi, V) isak
-cycle, then v rejects, otherwise v accepts.

Question: How to select O(1) simple paths (vy, vy, ..., v;_;) for each
source Vv, at each phase without « missing » a path?
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Selecting a path

Only A, (of length p) can
be continued by a path X
of lengthg =k —p
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Filtering

Definition For every integer n > 1, every family & of subsets
of [n], and every g € [n], a family of sets BB C f is a
g-representative of & if, for every X C [n] of size | X | < g,

JAed |ANX=0 < IB€e B|BnX=0

Lemma [Monien (1985)]

Letn > 1 be aninteger, let (p,q) € [n] X [n], and let & C Ll
f|[A] < pforall A € &, then there exists a g-representative
family 98 C &f of & such that

|99|s<p+q>.
1%
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CONGEST Model (cont.)

e Global problems

« Minimum-weight Spanning Tree (MST)
»  Boruvska’s algorithm
»  Matroid algorithm
»  Sublinear algorithm

« Lower bound for MST
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Minimum Spanning Tree

Input of node u : ID(u), w(e) for every e € E(u)
Output of node u : list of edges e € E(u) belonging to MST
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Facts about MST

Let G = (V,E) be a connected weighted graph

e Without loss of generality, all weights can be
assumed distinct = for every e = {u,v} with
ID(u) > ID(v), replace w(e) by (w(e),ID(u),ID(v)).

e For every cut (5,V\S) in G, the edge of minimum
weight in the cut belongs to the MST.

e For every cycle C in (G, the edge of maximum
weight in C does not belong to the MST
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MST Is a non-local problem
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Remark MST requires at least D rounds in the cycle.

Algorithms with round-complexity O(f(n)+D)
in N-node graphs of diameter D.

Objective: minimizing f(n)
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Boruvska’s algorithm (1926)

distributed version

Collection of subtrees
called « fragments »

A-A

A phase = fragments

are merged Merges use the edge of minimum

weight going out of each fragment
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Fragments & Merging
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Round complexity

complexity of a phase = O(maxr diam(F))
diam(F) < n-1

Theorem The distributed version of Borlvska’s
algorithm can be implemented in O(n log n) rounds in
the CONGEST model.

The bound is tight:

AMAAAAAAAAAAAMAAAAAAALALALLL
MMMMMMMMMLAMLMAMAM
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Another MST algorithm

Breadth First Search
Based on a Breadth-First Level 0
Search (BFS) tree Lavel 1
Lemma BFS construction requires  _ ewl?
O(D) rounds in the CONGEST model “ Level 3
Level 4

Tree Edges
Horizontal Edges

Algorithm of node u Interlevel Edges

[ idmin « ID(u)
| repeat
| send idmin 10 Neighbors, and receive IDs from neighbors

if 3 id € {IDs sent by neighbors} : id < idmin then

idmin — ld

~ parent(u) < ID

where v is the neighbor which sentid |

v)
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Matroid Algorithm (1)

Algorithm for a node u

K « E(U) edgesincident to node u

wait until having received an edge from each child
repeat

wmow K+ K u {received edges}

U + {edges previously sent to parent(u)}
emove R = {e € K\NU : U u {e} contains a cycle}
candidate (4 K\(U U R)
if C # @ then
send e € C with minimum weight to parent

receive edges from children
else terminate
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Proof of correctness

Theorem The Matroid algorithm performs in O(n + D) rounds in
the CONGEST model, and enables the root of the tree to
construct a MST.

Lemma 0 Let A and B be acyclic subsets of edges. If |A[>|B| then
there exists e e ANB such that B u {e} is acyclic. «—__ Thisisa

matroid axiom
Proof B is aforest {T1,...,T«}. Let ni = |V(Ti)|. We have |E(Ti)|=ni-1.

For every I, there are at most
) ni-1 edges of A connecting

nodes in T.

L w [here IS an edge in A whose
extremities do not belong to a

. . same tree T.. _
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A node u is said active at phase t if it has not terminated at phase
t—1.

Let h(u) = height of u = length of longest path to a leaf of the
subtree T, rooted at u.

Lemma 1 For every active child v of a node u, the set C of
candidates for u at time t contains at least one edge sent by v to

u before time t. &> no premature termination

Proof Induction on h(u). Lemma holds for h(u)=0.
Assume lemma hold for all nodes at height < k.

Let u with h(u)=k+1, and v active child of u. Note h(v) < k.

Let Ey and Ey be edges sent by u to p(u), and by v to u=p(v)
before phase t.

Since h(v)<h(u) we have | Ev| > | Eu|.

By Lemma 0, 3e € Ey, \ Ey such that Eyu {e} is acyclic = e € C.
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Lemma 2
(a) If u sends e to p(u) at phase t then
1. all edges received by u at phase t-1 from its active
children were of weight > w(e), and
2. all edges to be received by u at phases >t will be
of weight > w(e).
(b) The weights of the edges sent by u to its parent are »~

=> it is legitimate
to remove edges
creating cycles
with previously

Proof True for height 0. Assume holds for height k.
(a.1) Let u with h(u) = k+1.

Let e’ be edge sent by child v at phase t-1.

Let e” € C whose existence follows from Lemma 1.
By induction, property (b) implies w(e”) < w(e’).
By the choice of the edge in C, we have w(e) < w(e”).

- \W(e') > w(e).

(a.2) follows from (a.1) and by induction from (b).

(b) follows from (a.2) by the choice of the edge in C. W
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Complexity

In n-node graphs, any set of
n edges includes a cycle

= cvery node sends < n-1 edges

w Hrounds <D +n- 1

171



Broadcasting the MST from
the root to all nodes

Pipelining the edges of
T ={e1,es,...,en1} down
the BFS tree

w Hrounds <D +n- 1
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* Bordvska: O(n log n) rounds — this is because fragments can

have arbitrarily large diameter

* Matroid: O(D+n) rounds — this is because too many edges are
gathered at a single node.

* Combining Boruvska and Matroid:

control the diameter of the fragment, and stops when
fragments have too large diameter

carry on with matroid for computing the (few) edges
connecting the fragments already computed by Boruvska
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ToOl|

e D c Visadominating setifevery u g D has a
neighbor in D.

e Remarks:

- Every maximal independent set is a
dominating set.

- Every tree has a dominating set of size < n/2

* Objective: Distributed computing of a dominating
set of size < n/2 in consistently oriented trees.
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MIS In Rooted Trees

Every node has | |
oointer to its parent e Perform Cole and Vishkin

p algorithm with parent

root

 \When colors are on 3 bits,
every node pushes down its
color

e Performs 5 rounds to get all
colors in {1,2,3}.

Complexity : O(log*™n) rounds
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Computing small dominating
sets In rooted trees

root  Xq = {nodes at distance d from a leaf}
tree T e Y =V(T) N\ (Xou Xju Xo)

e LletdbeMISInNY (comput. in O(log*n) rounds)
e letD =J u Xy

- Dis adominating set
o Xa £ Xo| = |Xa| £ V2 [Xo u Xq|

< |(YuXo)Nd= |J| <V |Y u Xy

- |D| <n/2
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Bounding the diameter of
fragments
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Fast MST algorithm

Two stages:
1. Few phases of Boruvska
2. Completed by Matroid

N(t) = #frags after t phases
diam(t) = max diameter frags

Phase t costs

N(t) < N(t-1)/2 O(diam(t) log*n) rounds
= N(t) < n/2 T phases Bordvska costs
diam(t) < 3 diam(t-1) + 2 O(3r) rounds

= diam(t) < 3t-1 Matroid completes in

O(D+N(T1)) rounds

~

3T = n/2T = #rounds = O(D + n0.6131)
Theorem MST construction can be achieved in
OWD + \/Z) rounds in the CONGEST model.
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Q(ﬁ) lower bound for MST

weight 0 weight oo

n = O(k4)
k2/
weight w” %
b

Wi = 2 w'i =2 xi + 1 with x; € {O,1}
Lemma Transmitting k2 bits from ck to ¢1 takes Q(k2) rounds

Proof (simplified: no recombination)
e 31, X uses < k/2 of highway = Q(k - k/2) rounds

* Vi, Xiuses > k/2 of highway = Q((k? - k/2)/(k log n) roundsEI



End Lecture 8



