Informative Labeling
Schemes



Informative Labeling
Schemes

Example: Adjacency-labeling in trees

(0,1) (0) L(u) = (ID(u), ID(parent(u))

Given L(u) = (x,y) and
L(u') = (x,y"), nodes u
and u’ are adjacent iff
x=yory=Xx'

Labels are on 2|log, n]bits
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Definition
Let f: V(G) X V(G) — N be a function defined on

paires of vertices (e.g., adjacency, distance,
connectivity, etc.)

A f-labeling scheme for a graph class & is a pair

. Encoder: Assigns a label L(x) € {0,1}™ to every
node of every G € &

« Decoder: D(L(u), L(v)) = f(u, v) for every two
nodesu,v € V(G),G € &.

Measure of quality: Label size.
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Distance-labeling
scheme In trees

Lemma Every n-node tree has a centroid, that is, a

node whose removal results in a forest with trees of
n
size at most — 2

L(u) = (ID(c,), dist(u, ¢y), . .., ID(cy), dist(u, ¢;))
dist(u, v) = dist(u, c.,,)+dist(v, ¢

> sep) ’ Sep)

label size: 0§6100g n) bits



Planar grapns

A graph is planar if it can be drawn in the plane in such a
way that its edges intersect only at their endpoints.

Planar Separator Theorem [Lipton & Tarjan (1979)]

In any n-node planar graph G = (V, E), there exists a
partition of the vertices of GG into three sets A, B, S such that

. each of A, B has at most 2n/3 nodes,

- Shas O(\/ﬁ) nodes,

_ there are no edges with one endpoint in A and one
endpoint in B (3 is called separator).
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Distance-labeling
scheme In planar graphs

e Recursive application of the Planar Separator
Theorem

* At each level, a node gets its distance to all the
nodes in the separator
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Analysis

Labels are on O(\/E log? n) bits

Claim: d(u,v) = min (d(u, s) + d(s, v))

seS
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Compact Routing



Routing Function

« Each node u has a name(u) by whom it is known
by every other node

« Each node u stores a routing table(u)

* Routing function

R (name(d), table(u)) € {0,1,...,deg(u)}

VAR

current  message outgoing

node arrived port numbers
165
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Correctness

A routing function R must satisfy that, for every source node
s and every destination node d, there exists a sequence of
nodes uy, Uy, ..., U, such that U

. foreveryi € {0,....,.k—1}
i R(name(d),table(ui)) =p, >0 "
- neighbor of u; by port p; is u; 4

. R(name(d),table(uk)) =0
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Quality Criteria

e Length of the routes: ideally, shortest-path routing

length of s — d route

stretch = max .
s,d distg(s, d)

« Size of the names: ideally on O(log n) bits

« Size of the tables: ideally ®(n°) for some € < 1

167



Universal Shortest-Path
Routing Scheme

« Nodes are labeled arbitrarily from 1 to n

. table(u) = (p{, Py, ---, P,,) Where p; is the port
number leading to a neighbor of u on the shortest

path from node u to node 1.

« Size of tables: O(nlog A) bits
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Compact Routing in Trees

f

|

Theorem Given any n-node tree T, there is a way to assign
O(log n)-bit names and O(log n)-bit tables to the nodes, so
that to route along shortest paths.

169



IDs and Port Numbers | 4 .

1 & 10 17
AR 1/ \2
1
> 7¢ 9 11 15 1897 209 09
36 60 @ 10 o 196 210
5 6 8 14 16
40 183 @

Root the tree at an arbitrary node, and assign |Ds from O to
n — 1 according to a DFS traversal from the root visiting
largest subtrees first.

Port numbers are assigned to the children in order of largest
subtrees. 170



Weignts

« wy(u) = number of nodes in the subtree rooted at u

If ID(d) & [ID(), 1ID(14)

wy(u) — 1] then route (up)

via port number deg(u) — with special case for the root

« w(u) = number of nodes in a largest subtree

pending at a child of u

fID(d) € [ID(u) + 1,ID(«) + w{(u)] then route (down)

via port number 1

* \What about nodes in the other subtrees with port

2,....,deg(u) — 17

171



Light Paths

e Let P(u) = (py,poy, ---,Pp) be the
sequence of port numbers traversed when
going from root r to node u along a

shortest path.

« Let LP(u) = (g1, 9y, ---,q,) Obtained
from P(u) by removing all 1’s.
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Routing Using Light Paths

«*
%
““
.

° LP(d) — (q19 qza °°°°°° qz,ﬂ)

o LP(M) — (gp QZ9 ceey Qk)

« Nextport=¢g,
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Wrap Up
name(d) = (ID(d), LP(d))
table(u) = (ID(u), wo(u), wi(u), LP(u))
0

1 10
W()(u)
76 119/, 159 18¢  20¢
,l(u)1 2
® 121 ® 196 21e
3 14 16
13 &
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Exercice

* Design a routing scheme for trees in the fixed-port
| log°n
model, with names and tables on pits
loglogn

e Hints: Store wy(u), ..., w,(u) in table(u) for an
appropriate k, and redefine LP(u) accordingly.
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End Lecture 8



