Informative Labeling Schemes

Informative Labeling Schemes

Example: Adjacency-labeling in trees

Definition

Let $f: V(G) \times V(G) \rightarrow \mathbb{N}$ be a function defined on paires of vertices (e.g., adjacency, distance, connectivity, etc.)

A f-labeling scheme for a graph class \mathscr{G} is a pair

- Encoder: Assigns a label $L(u) \in\{0,1\}^{\star}$ to every node of every $G \in \mathscr{G}$
- Decoder: $\mathbf{D}(L(u), L(v))=f(u, v)$ for every two nodes $u, v \in V(G), G \in \mathscr{G}$.

Measure of quality: Label size.

Distance-labeling scheme in trees

Lemma Every n-node tree has a centroid, that is, a node whose removal results in a forest with trees of size at most $\frac{n}{2} \mathrm{o}^{v_{1}}$

$$
\begin{gathered}
L(u)=\left(\operatorname{cD}\left(c_{1}\right), \operatorname{dist}\left(u, c_{1}\right), \ldots, \operatorname{ID}\left(c_{k}\right), \operatorname{dist}\left(u, c_{k}\right)\right) \\
\operatorname{dist}(u, v)=\operatorname{dist}\left(u, c_{\text {sep }}\right)+\operatorname{dist}\left(v, c_{\text {sep }}\right) \\
\text { label size: } O\left(\log ^{2} n\right) \operatorname{bits}
\end{gathered}
$$

Planar graphs

A graph is planar if it can be drawn in the plane in such a way that its edges intersect only at their endpoints.

Planar Separator Theorem [Lipton \& Tarjan (1979)]
In any n-node planar graph $G=(V, E)$, there exists a partition of the vertices of G into three sets A, B, S such that

- each of A, B has at most $2 n / 3$ nodes,
- S has $O(\sqrt{n})$ nodes,
- there are no edges with one endpoint in A and one endpoint in B (S is called separator).

Distance-labeling scheme in planar graphs

- Recursive application of the Planar Separator Theorem
- At each level, a node gets its distance to all the nodes in the separator

\bigcirc Level 1
\bigcirc Level 2

Level 3

Analysis

Labels are on $O\left(\sqrt{n} \log ^{2} n\right)$ bits
Claim: $d(u, v)=\min _{s \in S}(d(u, s)+d(s, v))$

Compact Routing

Routing Function

- Each node u has a name (u) by whom it is known by every other node
- Each node u stores a routing table(u)
- Routing function

Correctness

A routing function R must satisfy that, for every source node s and every destination node d, there exists a sequence of nodes $u_{0}, u_{1}, \ldots, u_{k}$ such that

- $u_{0}=s$ and $u_{k}=d$
- for every $i \in\{0, \ldots, k-1\}$
- $R\left(\right.$ name (d), table $\left.\left(u_{i}\right)\right)=p_{i}>0 u_{1}$
- neighbor of u_{i} by port p_{i} is u_{i+1}
- $R\left(\operatorname{name}(d), \operatorname{table}\left(u_{k}\right)\right)=0$

Quality Criteria

- Length of the routes: ideally, shortest-path routing

$$
\text { stretch }=\max _{s, d} \frac{\text { length of } s \rightarrow d \text { route }}{\operatorname{dist}_{G}(s, d)}
$$

- Size of the names: ideally on $O(\log n)$ bits
- Size of the tables: ideally $\Theta\left(n^{\epsilon}\right)$ for some $\epsilon<1$

Universal Shortest-Path Routing Scheme

- Nodes are labeled arbitrarily from 1 to n
- $\operatorname{table}(u)=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ where p_{i} is the port number leading to a neighbor of u on the shortest path from node u to node i.
- Size of tables: $O(n \log \Delta)$ bits

Compact Routing in Trees

Theorem Given any n-node tree T, there is a way to assign $O(\log n)$-bit names and $O(\log n)$-bit tables to the nodes, so that to route along shortest paths.

Root the tree at an arbitrary node, and assign IDs from 0 to $n-1$ according to a DFS traversal from the root visiting largest subtrees first.
Port numbers are assigned to the children in order of largest subtrees.

Weights

- $w_{0}(u)=$ number of nodes in the subtree rooted at u

If $\operatorname{ID}(d) \notin\left[\operatorname{ID}(u), \operatorname{ID}(u)+w_{0}(u)-1\right]$ then route (up) via port number $\operatorname{deg}(u)$ - with special case for the root

- $w_{1}(u)=$ number of nodes in a largest subtree pending at a child of u

If $\operatorname{ID}(d) \in\left[\operatorname{ID}(u)+1, \operatorname{ID}(u)+w_{1}(u)\right]$ then route (down) via port number 1

- What about nodes in the other subtrees with port $2, \ldots, \operatorname{deg}(u)-1$?

Light Paths

- Let $P(u)=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be the sequence of port numbers traversed when going from root r to node u along a shortest path.
- Let $L P(u)=\left(q_{1}, q_{2}, \ldots, q_{\ell}\right)$ obtained from $P(u)$ by removing all 1's.

Light Paths are... Light!

- $L P(u)=\left(q_{1}, q_{2}, \ldots, q_{\ell}\right)$
- $n_{i+1} \leq n_{i} / q_{i} \leq n_{i} / 2$
- $\ell \leq \log _{2} n$
- $q_{i} \leq n_{i} / n_{i+1}$

. $\sum_{i=1}^{\ell}\left[\log _{2} q_{i}\right] \leq \ell+\sum_{i=1}^{\ell} \log _{2} q_{i} \leq \ell+\log _{2}\left(\prod_{i=1}^{\ell} q_{i}\right) \leq 2 \log _{2} n$

Routing Using Light Paths

- $L P(d)=\left(q_{1}, q_{2}, \ldots . ., q_{\ell}\right)$
- $L P(u)=\left(q_{1}, q_{2}, \ldots, q_{k}\right)$
- Next port $=q_{k+1}$

Wrap Up

$$
\operatorname{name}(d)=(\operatorname{ID}(d), L P(d))
$$

Exercice

- Design a routing scheme for trees in the fixed-port model, with names and tables on $\frac{\log ^{2} n}{\log \log n}$ bits
- Hints: Store $w_{1}(u), \ldots, w_{k}(u)$ in table (u) for an appropriate k, and redefine $L P(u)$ accordingly.

$$
\text { End Lecture } 8
$$

