Informative Labeling Schemes

Informative Labeling Schemes

Example: Adjacency-labeling in trees

Definition

Let $f: V(G) \times V(G) \rightarrow \mathbb{N}$ be a function defined on paires of vertices (e.g., adjacency, distance, connectivity, etc.)

A f -labeling scheme for a graph class ${\mathscr G}$ is a pair

- Encoder: Assigns a label $L(u) \in \{0,1\}^{\star}$ to every node of every $G \in \mathcal{G}$
- Decoder: $\mathbf{D}(L(u), L(v)) = f(u, v)$ for every two nodes $u, v \in V(G), G \in \mathcal{G}$.

Measure of quality: Label size.

Distance-labeling scheme in trees

Planar graphs

A graph is planar if it can be drawn in the plane in such a way that its edges intersect only at their endpoints.

Planar Separator Theorem [Lipton & Tarjan (1979)]

In any *n*-node planar graph G = (V, E), there exists a partition of the vertices of G into three sets A, B, S such that

- each of A, B has at most 2n/3 nodes,
- S has $O(\sqrt{n})$ nodes,
- there are no edges with one endpoint in A and one endpoint in B (S is called separator).

Distance-labeling scheme in planar graphs

- Recursive application of the Planar Separator
 Theorem
- At each level, a node gets its distance to all the nodes in the separator

Analysis Labels are on $O(\sqrt{n}\log^2 n)$ bits

Claim:
$$d(u, v) = \min_{s \in S} \left(d(u, s) + d(s, v) \right)$$

Compact Routing

Routing Function

- Each node *u* has a name(*u*) by whom it is known by every other node
- Each node u stores a routing table(u)
- Routing function

Correctness

A routing function R must satisfy that, for every source node s and every destination node d, there exists a sequence of nodes u_0, u_1, \ldots, u_k such that u_3

•
$$u_0 = s$$
 and $u_k = d$

- for every $i \in \{0, ..., k-1\}$
 - $R(name(d), table(u_i)) = p_i > 0^{-u_i}$
 - neighbor of u_i by port p_i is u_{i+1}
- $R(\operatorname{name}(d), \operatorname{table}(u_k)) = 0$

Quality Criteria

• Length of the routes: ideally, shortest-path routing

stretch =
$$\max_{s,d} \frac{\text{length of } s \rightarrow d \text{ route}}{\text{dist}_G(s,d)}$$

- Size of the names: ideally on $O(\log n)$ bits
- Size of the tables: ideally $\Theta(n^{\epsilon})$ for some $\epsilon < 1$

Universal Shortest-Path Routing Scheme

- Nodes are labeled arbitrarily from 1 to *n*
- table(u) = ($p_1, p_2, ..., p_n$) where p_i is the port number leading to a neighbor of u on the shortest path from node u to node i.
- Size of tables: $O(n \log \Delta)$ bits

Compact Routing in Trees

Theorem Given any *n*-node tree *T*, there is a way to assign $O(\log n)$ -bit names and $O(\log n)$ -bit tables to the nodes, so that to route along shortest paths.

Root the tree at an arbitrary node, and assign IDs from 0 to n-1 according to a DFS traversal from the root visiting largest subtrees first.

Port numbers are assigned to the children in order of largest subtrees.

Weights

• $w_0(u)$ = number of nodes in the subtree rooted at u

If $ID(d) \notin [ID(u), ID(u) + w_0(u) - 1]$ then route (up) via port number deg(u) — with special case for the root

• $w_1(u)$ = number of nodes in a largest subtree pending at a child of u

If $ID(d) \in [ID(u) + 1, ID(u) + w_1(u)]$ then route (down) via port number 1

• What about nodes in the other subtrees with port $2,..., \deg(u) - 1$?

Light Paths

- Let $P(u) = (p_1, p_2, ..., p_k)$ be the sequence of port numbers traversed when going from root r to node u along a shortest path.
- Let $LP(u) = (q_1, q_2, ..., q_{\ell})$ obtained from P(u) by removing all 1's.

Routing Using Light Paths r ****** 5 U • $LP(d) = (q_1, q_2, \dots, q_\ell)$ • $LP(u) = (q_1, q_2, ..., q_k)$ • Next port = q_{k+1}

Exercice

- Design a routing scheme for trees in the fixed-port model, with names and tables on $\frac{\log^2 n}{\log \log n}$ bits
- *Hints:* Store $w_1(u), \ldots, w_k(u)$ in table(u) for an appropriate k, and redefine LP(u) accordingly.

End Lecture 8